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Abstract: We deposited 300-nm-thick GaN films on an amorphous glass substrate at a substrate
temperature of 300 ◦C by using pulsed direct current (DC) sputtering. A ZnO buffer layer was utilized
to improve the crystalline quality of the GaN films. Scanning electron microscopy results showed
that the GaN thin films were grown along the c-axis and possessed a columnar structure. Atomic
force microscopy results revealed that the GaN film deposited at a sputtering power of 75 W had
the maximum grain size (24.1 nm). Room-temperature photoluminescence measurement of the
GaN films indicated an ultraviolet near-band-edge emission at 365 nm and a Zn impurity energy
transition level at 430 nm. In addition, X-ray diffraction conducted on the GaN films revealed a
predominant (002) hexagonal wurtzite structure. The GaN film deposited at the sputtering power of
75 W demonstrated a high optical transmittance level of 88.5% in the wavelength range of 400–1100 nm.
The material characteristics of the GaN films and ZnO buffer layer were studied using cross-sectional
high-resolution transmission electron microscopy. The deposition of GaN films by using pulsed
DC magnetron sputtering can result in high material quality and has high potential for realizing
GaN-related optoelectronic devices on glass substrates.

Keywords: gallium nitride; photoluminescence; DC-pulse magnetron sputtering; zinc oxide; buffer
layer; transmission electron microscopy

1. Introduction

Gallium nitride (GaN) films have a wide energy band gap along with inherent advantages of
chemical and thermal stability, hardness, high thermal conductivity, high breakdown voltage, and
electron mobility [1]. Such films have high potential for application in high-quality optoelectronic
devices such as light-emitting diodes; in addition, they can be applied in other electronic devices such
as field-effect transistors, heterojunction bipolar transistors, and high-electron mobility transistors [2,3].
For high-temperature operations and high-power electronic applications, GaN films and their related
compound materials are relatively favorable because of their wide energy band gap and excellent
thermal stability. In addition to the particularly high energy band gap of GaN films, the flexibility
of the tunable energy band alignment for the nitride-related heterostructure in a GaN matrix is
indispensable in developing a variety of optoelectronic devices [4] by using aluminum nitride (6.2 eV)
and indium nitride (1.9 eV) compound materials for the wide modulation of the energy band alignment
of GaN-related compound materials.

Presently, several thin film deposition techniques, such as metalorganic chemical vapor deposition [5],
molecular beam deposition [6], and hydride vapor phase epitaxy [7], are widely used in industry and
academia for growing high-quality GaN thin films on sapphire (Al2O3) or monocrystalline silicon
substrates. Although a large lattice mismatch of 15% exists between a sapphire substrate and a GaN
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film [1], the crystal dislocation that is typically induced by the lattice mismatch can be minimized by
utilizing a buffer layer and patterned sapphire. Sapphire substrates are still the most common substrates
for growing high-quality GaN films [8].

However, to develop large-area GaN-related devices on low-cost glass or flexible plastic substrates
such as Polyimide (PI), Polyethylene Terephthalate (PET), Polyethylene Naphthalate (PEN), and
Polyether sulfone (PES), the GaN films and their related compound layers should be grown at a
low substrate temperature to prevent the melt of the glass or flexible plastic substrates. Therefore,
developing a low-temperature deposition technology for growing GaN films on glass substrates is
essential. According to the literature, GaN films can be deposited using magnetron sputtering on
glass substrates, and this process involves the following advantages: Increased thin film deposition
rate, large-area and low-temperature deposition, and reduced harmful byproducts during GaN film
fabrication [9,10].

The crystal quality of GaN films grown on glass substrates is in terms of the thin film deposition
rate, growth temperature, and buffer layer insertion between the film and glass substrate. Radio
frequency (RF) plasma magnetron sputtering has been reported to be a suitable technique for growing
GaN films on glass substrates because the sputtering power can be easily modulated to enhance the
kinetic energy of adatoms, consequently engendering adatom migration and thin film growth [11].
Although GaN films can be grown on glass substrates through RF sputtering, the thin film deposition
rate and crystal quality of GaN films can be further improved.

In recent years, pulsed direct current (DC) magnetron sputtering has been regarded as a novel
deposition technique because it exhibits a thin film deposition rate higher than that achieved using
the conventional RF magnetron sputtering system [12]. It has a wide adjustment range for the pulse
frequency (5–350 kHz), and the pulse frequency can be easily adjusted to reduce the arc discharge
generated during the sputtering process. In previous research, the arc generated by pulsed DC
magnetron sputtering was reduced because the charge accumulated on the target surface during
pulse polarity modulation was eliminated. The corresponding mechanism was reported to involve the
conversion of the target voltage to a positive voltage to eliminate the accumulated positive charges;
thus, fewer arc events were observed on using pulsed DC magnetron sputtering [13].

According to previous reports, pulsed DC sputtering can result in a high thin film quality.
Furthermore, the DC pulse frequency is closely related to the thin film quality. A study reported
that the defect density in thin films decreased considerably as the frequency of pulsed DC sputtering
increased [14]. Pulsed DC sputtering enables films to have dense nucleation sites along with a high
thin film growth rate and high crystalline quality. Moreover, the irregularity in the shape and size
of a crystallite, caused by the arc event during sputtering, has been reported to be considerably
reduced [12,15,16]. Therefore, pulsed DC sputtering engenders a relatively smooth film surface.
The DC pulse power supply can also solve problems such as plasma instability, arc discharge, and
target poisoning during metal oxide deposition [17].

In this study, we successfully deposited GaN films on a glass substrate by using pulsed DC
sputtering at a low growth temperature. To realize a high-quality GaN film, a zinc oxide (ZnO) layer
was used as a buffer layer and inserted between the GaN film and amorphous glass substrate since high
crystal quality of the ZnO layer was easily grown on glass substrate through sputtering-deposition
method, meanwhile, there existed a low lattice mismatch of 2.2% [18] between the ZnO and GaN layer.
The study results indicated that pulsed DC sputtering has high potential for realizing the growth of a
high-quality GaN film on a large-area amorphous glass substrate for optoelectronic devices, thereby
realizing a low fabrication cost.

2. Materials and Methods

In this study, GaN films were grown on Corning E2K glass substrates, with a ZnO layer serving
as the buffer layer. The ZnO buffer layer was first grown using RF magnetron sputtering with a
3-inch ZnO target (purity: 99.99%). After the deposition of the ZnO buffer layer, the GaN film was
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subsequently grown using pulsed DC magnetron sputtering with a 3-inch GaN target (purity: 99.99%).
Prior to thin film deposition, the sputtering chamber was evacuated using a high vacuum pressure of
approximately 5.33 × 10−4 Pa; the processing pressure was 1.33 × 10−1 Pa for ZnO buffer layer and
1.99 Pa for GaN film growth using argon (Ar) gas flow rates of 30 and 15 sccm, respectively. Both
targets were pre-sputtered 1 min for cleaning the target surface. The argon: nitrogen gas mixing ratio
was set at 1:1 for GaN film deposition, whereas pure Ar process gas (30 sccm) was used for the growth
of the ZnO buffer layer. The distance between the target and the substrate was 15 cm and the thin-film
deposition rates were 0.14 nm/s for ZnO buffer layer and 0.18, 0.14 and 0.11 nm/s for GaN thin-film
growth with sputtering powers of 125, 100 and 75 W, respectively. A 100-nm-thick ZnO buffer layer
was grown using an RF sputtering power of 150 W at a substrate temperature of 300 ◦C, followed by
post in situ annealing at 400 ◦C with annealing time of 100 s in a vacuum environment. A 300-nm-thick
GaN film was subsequently grown at a substrate temperature of 300 ◦C using pulsed DC sputtering at
varied sputtering powers of 75, 100, and 125 W.

The crystallite structural properties of the films were analyzed through X-ray diffraction (XRD)
using a Cu-Kα (λ= 1.54052 Å) irradiation source in a grazing incidence XRD configuration that involved
2θ scan angles of 10◦–80◦. The lattice structure of the ZnO buffer layer and GaN films were studied
using a transmission electron microscopy (TEM) system. A selected area electron diffraction (SAED)
system equipped on the TEM system (JEM2100) was used to analyze SAED lattice diffraction patterns
and high-resolution lattice images. The operational voltage was 200 KV for both the TEM and SAED
processes, with the magnification factors being 600,000× and 100×, respectively. Elemental analyses for
the ZnO buffer layer and GaN films were conducted using a secondary ion mass spectroscopy (SIMS)
measurement. Photoluminescence (PL) measurements were conducted using a 30-mW He-Cd laser
excitation at a wavelength of 325 nm at 10 K and room temperature. The optical transmittance of the
GaN samples examined in this study was determined using an ultraviolet-visible spectrophotometer
with reference to a glass substrate over an optical wavelength range of 300–1100 nm.

3. Results and Discussions

In this study, all GaN films demonstrated crystal growth on glass substrates. The XRD image
of the GaN films shown in Figure 1a,b illustrates the XRD patterns of the ZnO buffer layer and GaN
films, respectively, grown at various pulsed DC sputtering powers from 75 to 125 W. The ZnO buffer
layer was grown using an RF magnetron sputtering power of 150 W. The peak was along the c-axis
(002) hexagonal wurtzite structure—with the predominant XRD peak being observed at a 2θ angle
of approximately 34.4◦—and had a narrow full width at half maximum (FWHM) value of 0.542◦,
indicating the superior quality of the ZnO buffer layer grown on the glass substrate.
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The GaN films deposited on an amorphous glass substrate in this study demonstrated clear and
narrow XRD FWHM values because of the superior crystal quality and optimal structural properties
provided by the ZnO buffer layer, which contributed to the grain growth of the GaN films [19].
Additionally, during the sputtering process, a mixed process gas of Ar and N2 was excited through
electrical discharge to form Ar+ and N+ plasma ions, which were accelerated by a negative bias applied
to the substrate. Thus, the amount of plasma ions and degree of ion bombardment were affected. These
factors can considerably affect the compositions, structures, and morphological properties of GaN
films [20]. Consequently, the introduction of the ZnO buffer layer and the appropriate Ar:N2 mixing
ratio in this study contributed to the superior crystal quality of the GaN films possessing high XRD
intensity and narrow XRD FWHM values.

As presented in Figure 1b, the XRD spectra revealed the presence of peaks at 2θ angles of 32.5◦,
34.5◦, 36.9◦, and 72.6◦, which were determined to correspond to the (100), (002), (101), and (004) crystal
orientations of the GaN films, respectively [21]. Accordingly, the spectra revealed that for all GaN
samples, the (002) hexagonal wurtzite structure had a predominant XRD peak position at the 2θ
angle of approximately 34.5◦. This c-axis orientation was considered to result from the lowest surface
energy of the (002) lattice plane in the GaN films, leading to preferential growth in the (002) direction.
In addition, XRD peaks at 2θ angles of the 32.5◦ and 36.9◦, corresponding to typical hexagonal wurtzite
GaN of (100), (101) lattice planes, respectively, according to JCPDS card No.65-3410. The 2θ angle
discrepancy of the XRD (100), and (101) peaks presented a small shift compared with the theoretical
values, which indicated the tensile stress caused by the lattice mismatch between the GaN film and the
glass substrate [22,23].

The XRD FWHM values also decreased significantly from 0.515◦ to 0.417◦ as the sputtering
deposition power decreased from 125 to 75 W. The GaN film deposited at the low sputtering power of
75 W displayed superior XRD intensity with a narrow FWHM value of 0.417◦. The XRD FWHM value
is a vital parameter for assessing the average crystallite size according to the Scherrer formula [24,25]:

D =
0.9λ

β cos θ
(1)

where D is the grain size, λ is the X-ray wavelength (0.154 nm), β is the XRD (002) FWHM, and θ is the
Bragg angle. The grain sizes calculated from the Scherrer formula are 23.1, 19.5, and 18.7 nm for the
GaN films with the standard deviations of the FWHM as 0.079, 0.087, and 0.091 for GaN with sputtering
powers of 75, 100 and 125 W, respectively, which are agreed with the atomic force microscopy (AFM)
measurement results. As revealed by XRD analyses, the sputtering deposition of the GaN film with
the ZnO buffer layer by using a low sputtering power of 75 W demonstrated a narrow FWHM value of
0.417◦, indicating that the GaN film grown on the glass substrate was of superior quality.

The high-resolution TEM (HRTEM) images and SAED patterns of the ZnO and GaN films are
depicted in Figure 2; the cross-sectional image of GaN/ZnO combination layers on the glass substrate
is depicted in Figure 2a, and the magnified lattice images for the ZnO and GaN films are displayed in
Figure 2b. Because of the large lattice mismatch (15%), an obvious threading dislocation is expected
in a single-crystal GaN film grown on a sapphire substrate through metalorganic chemical vapor
deposition [5]. However, in this study, the GaN film with a polycrystalline structure that was grown
along c-axis direction on the ZnO buffer layer by using pulsed DC sputtering (Figure 2a), and the
threading dislocation density was calculated as 1.72 × 1011 cm−2, which was slightly higher than those
of grown on sapphire substrates by using MOCVD technology (approximately 108 to 1010 cm−2) [26].

The interface image of ZnO and GaN films were clearly shown by the HRTEM measurement in
Figure 2b, the nanoisland structures with different orientations revealed that the GaN film exhibited a
polycrystalline structure, where the lattice arrangement is nearly regular corresponding to the narrow
XRD FWHM value in Figure 1b and the preceding analysis demonstrates that the results of this study
are rather satisfactory, and the GaN film grown on the glass substrate exhibited a high-quality crystal
growth. The SAED patterns observed for the GaN thin film (Figure 2c) revealed a diffraction ring,
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signifying polycrystalline structures. As illustrated in the SAED patterns of the GaN film (Figure 2c),
we can observe that diffraction spots are superposed on the amorphous halo indicating the hexagonal
wurtzite structure with (100), (002) and (101) crystal planes marked on the Figure 2c, demonstrating
that the GaN film had a well-ordered SAED pattern of polycrystalline orientation spots possessing
advanced thin film quality [27,28]. The interplanar spacing (dhkl) values of 2.41, 2.56 and 2.77 Å were
calculated, which corresponded to the GaN (100), (002), and (101) planes, respectively [29].
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Figure 2. High-resolution TEM (HRTEM) images and selected area electron diffraction (SAED)
diffraction patterns of ZnO and GaN films: (a) The cross-sectional image of GaN/ZnO combination
layers on glass substrate; (b) The lattice images for GaN films; (c) and the SAED patterns for GaN films.

Additionally, the SIMS analysis were performed in order to confirm the elemental composition in
all samples for chemical compositional study of GaN film with sputtering power of 75 W in Figure 3.
From the SIMS results, the elements of gallium, nitrogen, zinc, oxygen, carbon were found in the GaN
film. Additionally, an obvious Zn diffusion from ZnO buffer layer to GaN layer was clearly observed
in the SIMS measurement.
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Figure 3. Secondary Ion Mass Spectroscopy (SIMS) measurement of GaN film with ZnO buffer layer
grown on the amorphous glass substrate.

According to atomic force microscopy (AFM) observation results for the GaN samples (Figure 4),
the grain sizes were estimated to be 24.1, 22.6, and 21.7 nm with the standard deviations of the grain
size as 1.37, 2.08, and 2.54 for the sputtering powers of 75, 100, and 125 W, respectively. During the
process of thin film deposition at a low sputtering power, despite the low deposition rate, the low
sputtering power considerably contributed to the formation of relatively large grain sizes. By contrast,
at a high sputtering power, the sputtering particulates could have excess kinetic energy, leading to a
very high deposition rate and consequently the formation of smaller grain sizes, thereby degrading
the thin film crystal quality [30,31]. According to previous studies, the deposition rate of high-power
sputtering and the increase in high-energy ion bombardment can engender damage to the GaN thin
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film surface and thus reduce the surface diffusion of adatoms, thereby impeding crystallite formation.
Thus, using a relatively low and appropriate sputtering power can ensure the effective nucleation
growth of crystals leading to superior GaN thin film quality.Coatings 2019, 9, x FOR PEER REVIEW 6 of 11 
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Figure 4. 2D AFM surface roughness images of GaN thin films deposited by DC-pulse sputtering at
different powers of 75 W (a), 100 W (b), and 125 W (c), the grain size values were 24.1 (a), 22.6 (b), and
21.7 nm (c), respectively.

To understand the material characteristics of GaN films, PL measurements were performed in
this study. A 325-nm (3.8 eV) laser excitation source, with a laser photon energy level higher than the
energy band gap of GaN films (3.4 eV), was used to investigate the optical properties of the GaN films.
Through the PL measurements, the energy band gap, impurity type, carrier energy transition behavior,
stoichiometry or material composition distribution, crystal quality, and defect type in the GaN films
could be comprehensively studied [32,33]. To develop high-quality GaN films through sputtering
deposition on a glass substrate and to realize a near-band-edge (NBE) luminescence emission at
365 nm, investigating the carrier energy transition through the defect and donor/acceptor states is
critical [34,35].

The largest grain size was observed in the GaN film deposited at a sputtering power of 75 W,
and the corresponding PL spectra are presented in Figure 5; the room-temperature (300 K) and
low-temperature (10 K) PL measurement results are shown in Figure 5a,b, respectively. The PL spectral
emission peak was observed at 430 nm (2.88 eV), with a spectral shoulder appearing at 365 nm (3.4 eV).
The peak position at 365 nm was determined to correspond to an NBE emission in GaN thin films with
a hexagonal crystal structure. The peak position from 413 to 460 nm (3.0–2.7 eV; the peak was obvious
at 2.88 eV in this study) show in Figure 5b, was determined to represent the blue luminescence (BL)
band in GaN thin films [36]. The peak position at 430 nm in the BL band was observed to indicate a
deep defect level of undoped GaN films, and this peak was considered as an energy transition from
the conduction band or shallow donor level to the deep acceptor energy level, which was associated
with zinc impurities observed in GaN films [37,38].

In this study, the ZnO layer was used as the buffer layer for GaN film growth at a substrate
temperature of 300 ◦C. The Zn element might diffuse from the buffer layer to the GaN film, which
was observed by the SIMS measurement, during the sputtering process. Therefore, the PL emission
peak at 430 nm could be explained in terms of Zn impurity energy level in GaN films [19]. Figure 5b
illustrates the low-temperature PL measurements for the GaN film deposited at a sputtering power
of 75 W. The PL spectrum shows the fingerprints in unintentionally doped GaN films, indicating a
fine crystal structure. In addition to the NBE emission observation at 365 nm, typical defects were
clearly observed at the 413 and 540 nm emission peaks. The spectral peak position at 413 nm (3.0 eV)
might have resulted from the carrier transition from the CGa donor level to the CN acceptor level (the
presence of carbon impurities can be clearly observed in SIMS measurement), which was verified
through the calculation results obtained through density functional theory [39,40]. Moreover, the
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GaN film PL spectrum of the yellow luminescence (YL) band (2.3 to 2.1 eV) is show in Figure 5b.
In this study, the YL band of GaN exhibited a peak at 540 nm (2.3 eV), which can be ascribed to the
Ga vacancies (VGa) point defects [41,42]. For carrier recombination through defect states in undoped
GaN films, considerable research has been conducted on the origin of YL emissions, and a model of
carrier transition from the shallow donor to the deep acceptor levels was established and studied [43].
Moreover, recent investigations have proposed that the YL emission in GaN films can be due to a
VGa-ON, single CN defect, or CN-ON compound [44–46]. Therefore, this information, coupled with the
peak positions at 413 and 540 nm clearly observed in the low-temperature PL measurements, is useful
for studying the defect states in GaN films to further improve the crystal quality.
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the low-temperature PL spectra measured at 10 k.

The optical transmission spectra of the GaN films (Figure 6) showed that at sputtering powers of
75, 100, and 125 W, the average transmittance levels observed for the GaN films were 88.5%, 84.2%,
and 81.6%, respectively, in the wavelength range of 400–1100 nm. The optical transmittance increased
as the sputtering power decreased. The optical properties of the GaN films were determined to be
significantly influenced by the difference in the average grain size and the surface morphology of a
GaN film. The increase in optical transmittance as the sputtering power decreased could be attributed
to an increase in grain size, as verified by the AFM measurement results. As the grain size increased,
the reduced grain boundary scattering engendered an increase in optical transmittance [47].
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The observed optical transmittance was also significantly reduced in the wavelength range shorter
than 375 nm, signifying that the absorption edge of the GaN film was at approximately 375 nm, which
corresponded to an energy band gap of 3.4 eV, as verified by the PL results. Below the absorption edge
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of 375 nm, discontinuities occurred in situations in which the energy of a high-energy photon was
enough to excite electrons from the valence band to the conduction band; thus, the photon absorption
phenomenon was dominant and led to the decrease in optical transmittance. Moreover, the light with
an electromagnetic wave energy level lower than the GaN energy band gap was not absorbed but
was rather transparent; thus, a high optical transmittance level was observed for the GaN films in
the wavelength range longer than the absorption edge [48,49]. Therefore, in combination with the
aforementioned arguments, the GaN film deposited at a power of 75 W had a high transmittance level
along with a sharp absorption edge at approximately 375 nm because of its increased grain size, which
is beneficial for high-performance optoelectronic applications.

However, a low nitrogen content was also observed for the GaN film. In this study, the GaN
film was grown using a GaN target in a magnetron sputtering system with the argon and nitrogen
gas as the process gases and the GaN thin films were grown at a low growth pressure and growth
temperature, which indicated a low degree of nitrogen dissociation from the nitrogen process gas.
Therefore, the low N content was observed in this study, and the modulation of nitrogen gas flow,
growth temperature for the optimum growth condition is necessary for high quality GaN film growth.

4. Conclusions

This study investigated the sputtering deposition of high-quality GaN films with a ZnO buffer
layer on an amorphous glass substrate by using pulsed DC sputtering. The experimental results show
that the GaN film deposited at a sputtering power as low as 75 W and a low temperature of 300 ◦C
exhibited improved columnar crystal growth and a polycrystalline structure.

At room temperature, PL measurement results reveal a typical NBE emission wavelength
corresponding to a hexagonal GaN crystal structure at 365 nm with a deep defect level emission at
430 nm. Furthermore, low-temperature PL measurement results demonstrate that the defect emission
peaks at 413 and 540 nm might have originated from a carrier transition through the CGa donor level to
the CN acceptor level and a YL emission in the GaN films, which was attributed to a VGa-ON, single
CN defect, or CN-ON compound. From the observation of these defect levels in the PL measurements,
GaN films possessing high crystal quality could be developed and grown through the reduction of
deep defect levels. The XRD spectra of the GaN films revealed a c-axis (002) hexagonal wurtzite
structure and a narrow FWHM value, with the predominant XRD peak being observed at a 2θ angle
of approximately 34.5◦. Additionally, the GaN film grown at a sputtering power of 75 W had a high
transmittance level because of the large grain size obtained.

Considering the HRTEM results obtained for the ZnO buffer layer and GaN films, the lattice
arrangement of the ZnO buffer layer was observed to be almost identical to that of a single-crystal ZnO
film. In the HRTEM analysis of the GaN films, nanoisland structures with different orientations were
noted, revealing a polycrystalline structure, but the lattice arrangement was nearly regular. From the
SAED patterns of the GaN films, we can observe that the GaN film had a well-ordered SAED pattern
of polycrystalline orientation spots. Moreover, the SIMS measurements were conducted on the GaN
films to determine their chemical composition. The analyses of the GaN films and ZnO buffer layer
indicated that they were chemically composed of Ga, N, Zn, C, and O elements. Therefore, the study
results indicate that sputtering- deposited GaN films with a thin ZnO buffer layer on glass substrates
can demonstrate a high crystal quality and have potential for fabrication and application in large-scale
and low-cost GaN-related optoelectronic devices.
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