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Abstract: Debonds at the interfaces between layers of multilayered systems make the degree of
the composite action reduce. As a consequence, the global stiffness of such composites decreases.
In order to investigate this reduction, even simplified analytical models are preferable to numerical
analyses. This paper analyzes the flexural response of a three-point bending three-layer beam having
a debonded portion at the upper interface to investigate the effects of the interlayer debond on the
flexural stiffness of the three-layer beam and to examine the feasibility of detecting the presence of
possible manufacturing or in-service flaws. A more general model proposed and validated previously
by the author was specialized to solve the equilibrium problem considered. A parametric analysis
was then performed on varying the model parameters and evaluating the maximum deflection to
compare with that for perfectly bonded layers as a measure of the reduction of the flexural stiffness
due to the presence of the debond. The numerical results obtained show that the flexural behavior of
the sandwich beam under consideration is affected strongly by the length of the debond but only
moderately by its position along the interface unless the outer faces are quite stiffer than the core.

Keywords: three-layer beam; interlayer slip; interfacial debond

1. Introduction

Composite beams consisting of structural elements connected together at the common interfaces
by appropriate mechanical devices or adhesive joints are widely used in many practical applications,
in which the use of materials with unique properties is desirable. Laminated and sandwich beams
are only some examples of the employment of multilayer composite beams to develop lightweight
structures with high flexural stiffness and strength.

Such enhanced performances depend not only on the mechanical properties of each layer but
also on those of the connections that force the parts to act together as a composite, as well as on the
geometry of the beam. In such structures, manufacturing flaws as well as in-service debonds at the
interfaces between layers can be dangerous, because they lead to a reduction of the degree of the
composite action and of the global stiffness and strength of the system as a consequence. Failure
can occur even if each element behaves elastically. The investigation of such an additional collapse
mechanism is, then, of great importance for the optimal design of composite systems.

This paper deals with the investigation of the effects on the mechanical response of composite
systems of a partial composite action between their elements for a prescribed loading condition.
In order to do this, even simplified analytical models are preferable to numerical analyses performed
for specific geometry, material properties, and interface behavior. In particular, the attention is focused
here on the flexural behavior of three-layer beams. This has been the object of some studies in the
literature. Starting from the pioneering works by Goodman and Popov [1], McCutcheon [2], and Chui
and Barclay [3], other models have been developed (see, e.g., [4–6]). Among others, Monetto [7] solved
explicitly the problem of partial interaction in three-layer beams with interlayer slip and stepwise linear
interface law. This formulation builds on previous work [8] on two-layer composite beams and permits
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one to derive explicit expressions, having general validity, for all static and kinematic variables of the
problem. In spite of its simplicity, this analytical solution can be employed to analyze the response of
composite beams for different boundary and loading conditions, also inducing irreversible processes
of progressive interfacial debonding. Among more recent papers, References [9–13] present other
analytical solutions but for particular geometries or boundary and loading conditions.

In this paper, the analytical solution of the problem of partial interaction in three-layer beams
proposed in [7] was employed. Namely, this more general model, proposed previously by the author
and validated with many results from the literature for different boundary and loading conditions as
well as for interfaces behaving nonlinearly, was here specialized to a specific problem. This is central
to achieve the main goal of the present work: The investigation of the effects of an interlayer debond
on the flexural stiffness of three-layer beams, as a feasibility study for detecting the presence and
possibly determining the extension of possible debonding during the fabrication or employment of a
composite beam.

The case study of a sandwich beam simply supported at both ends, subjected to a point load at
center and with a debonded portion along the upper interface, was considered. A parametric analysis
was then performed on varying the geometrical and mechanical properties of the layers, as well
as the debond length and related distance from one end of the beam. The maximum deflection at
midspan was then evaluated and compared with that of the beam composed of the same layers but
perfectly bonded to measure the reduction of the flexural stiffness due to the presence of the debond,
which causes an increase in the displacements as a consequence. The numerical results obtained show
that the flexural behavior of the sandwich beam under consideration is strongly affected by the length
of the debond but only moderately by its position along the interface unless the outer faces are quite
stiffer than the core. This occurs for high face Young’s modulus and/or thickness.

The paper is organized as follows. In Section 2, the composite beam analyzed as a case study to
obtain the numerical results is presented; furthermore, the related equilibrium problem is posed; finally,
the procedure to employ the explicit functions for all the kinematic and static quantities characterizing
the mechanical response of the beam and to determine the arbitrary constants contained in such
functions is detailed. The numerical results of the parametric analysis performed are shown and
discussed in Section 3, whereas final additional conclusions are drawn in Section 4. In Appendix A,
firstly, a brief statement of the main points of a more general model formulation and related fundamental
solution detailed in [7] is given; secondly, the procedure to specialize such a more general formulation
to the special equilibrium problem described in Section 2 is presented; finally, the derivation of
displacements and internal forces functions describing the solution of the equilibrium problem under
consideration is detailed.

2. Materials and Methods

The composite beam considered in the present model consists of three layers connected by
continuous bonds. The layers have constant cross sections and are made of isotropic, linearly elastic,
and homogeneous materials. The lower interface is perfect in both transverse and longitudinal
directions: No separation, interpenetration or slip across this interface are possible. The upper
interface is perfect in the transverse direction, while it can only ensure partial composite actions in
the longitudinal direction. Only interlayer slips can then be allowed at the upper interface, whereas
no separation or interpenetration between the layers can occur. Figure 1 shows the undeformed and
typical deformed configurations of the three-layer beam under consideration.
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mechanical properties of the layers. The procedure is described with reference to the case study, for 
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Figure 1. Composite beam assumed in the present model: Geometry and typical
deformed configuration.

Under the assumption of small strains, displacements, and rotations, each layer is modeled as
a linearly elastic Euler–Bernoulli beam subjected only to the action of internal forces and interfacial
tractions, as shown in Figure 2. This is the situation when point loads are applied, as of interest in
this paper. For the imperfect bond, the limit case of vanishing interfacial stiffness is considered; as a
consequence, no shear traction is transmitted across the interface.
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Figure 2. Composite beam assumed in the present model: Free-body diagram of an infinitesimal element.

The problem of the equilibrium of the composite beam under consideration is governed by the
compatibility, equilibrium, and constitutive equations for the three layers together with the bond
conditions at the two interfaces. In order to solve this special problem, reference is made to a more
general formulation proposed and validated by the author in [7]. In that paper, the governing equations
and the solution procedure leading to exact expressions of all the static and kinematic variables were
detailed with reference to the most general case of three-layer beams with interlayer slip and stepwise
linear interface law at both interfaces and uniformly loaded along their axis. In this paper, these general
results were specialized to the particular three-layer beam under consideration shown in Figures 1
and 2. The procedure followed is detailed in Appendix A, where all the closed form solution functions
for rotation, deflection, axial displacements, and internal forces so derived can be found as well.
The limit case of perfect upper interface was also analyzed.

In this paper, the closed form solution presented in Appendix A was employed to simulate the
response in bending of three-layer composite beams with interfacial flaws and analyze the effects of
their length and position along the interface on the flexural stiffness for different geometrical and
mechanical properties of the layers. The procedure is described with reference to the case study,
for which the numerical results are shown and interpreted in Sections 3 and 4.

A composite symmetric sandwich beam comprising an inner core (layer 2), having thickness hc

and Young’s modulus Ec, enclosed by two stiffer outer faces, having equal thickness hf and Young’s
modulus Ef, was considered. The beam is simply supported at both ends and subjected to a point
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load at center, as shown in Figure 3. The lower interface between the core and the lower face (layer 3)
was assumed to be perfect also in the longitudinal direction, so no slip can occur along this interface.
The upper interface between the core and the upper face (layer 1) was assumed to be perfect as well,
except for the presence of a debonded portion having length a at a distance d < l/2 from the left end.
Then, the upper interface can exhibit one of the two configurations shown in Figure 4 depending on
the value of d + a.
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Figure 3. Simply supported composite sandwich beam case study: Geometry, constraining and
loading conditions.
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Figure 4. Simply supported composite sandwich beam case study: Upper interface generic
configurations (a) for d + a ≤ l/2 and (b) for d + a > l/2.

Extending the solution procedure described in [14], it is reasonable to divide the beam domain
0 ≤ z ≤ l in four subdomains, l being the beam length: Each subdomain involves adjacent points
along the interfaces that behave accordingly to the same regime and are singled out by two distinct
discontinuity locations.

With reference to the generic configuration with a small debond (Figure 4a), we have: Portion
AD (0 ≤ z ≤ d) with a perfectly bonded upper interface; portion DE (d ≤ z ≤ d + a) with a fully
debonded upper interface; and portions EC (d + a ≤ z ≤ l/2) and CB (l/2 ≤ z ≤ l) with a perfectly
bonded upper interface. The solution of the equilibrium problem of such a configuration consists
of four sets of independent functions for displacements and internal forces, each one referring to a
portion of the composite beam. For portions AD, EC, and CB, the explicit expressions for the static
and kinematic variables are given by Equations (A10)–(A13) and (A15)–(A17), specialized for the
interfacial tractions of Equations (A8) and (A6). Each of these three sets of functions contains 6 arbitrary
constants. For portion DE, the explicit expressions for the static and kinematic variables are given by
Equations (A10)–(A12) and (A14)–(A17), specialized for the interfacial tractions of Equations (A9) and
(A6). This set of functions contains 8 arbitrary constants. The general solution then contains, in total,
26 arbitrary constants, which are determined by imposing the boundary conditions at the ends A and
B simply supported and the continuity conditions at the discontinuity locations C (where the point
load is applied), D, and E (where the regime experienced by the upper interface changes). In order to
do this, it is convenient to define the following static global quantities:

N123 = N1 + N2 + N3, Q123 = Q1 + Q2 + Q3, M22 = M1 + M2 + M3 −N2(hf + hc)/2 (1a)

M12 = M1 + M2 + M3 −N1(hf + hc) −N2(hf + hc)/2, N23 = N2 + N3 (1b)
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Then, the boundary conditions at end A can be written as:

wAD = uAD
3 = 0, MAD

12 = 0 (2)

and at end B as:
wCB = 0, NCB

123 = 0, MCB
12 = 0 (3)

where, as an example, wAD denotes the deflection function in portion AD. Furthermore, the continuity
conditions at D can be written as:

wAD = wDE, uAD
1 = uDE

1 , uAD
3 = uDE

3 , ϕAD = ϕDE, QAD
123 = QDE

123, NAD
123 = NDE

123, MAD
12 = MDE

12 (4)

at E as:

wDE = wEC, uDE
1 = uEC

1 , uDE
3 = uEC

3 , ϕDE = ϕEC, QDE
123 = QEC

123, NDE
123 = NEC

123, MDE
12 = MEC

12 (5)

and at C as:

wEC = wCB, uEC
3 = uCB

3 , ϕEC = ϕCB, QEC
123 = P + QCB

123, NEC
123 = NCB

123, MEC
12 = MCB

12 (6)

With reference to the generic configuration with a long debond (Figure 4b), we have: Portion AD
(0 ≤ z ≤ d) with a perfectly bonded upper interface; portions DC (d ≤ z ≤ l/2) and CE (l/2 ≤ z ≤ d + a) with
a fully debonded upper interface; and portion EB (d + a ≤ z ≤ l) with perfectly bonded upper interface.
The solution of the equilibrium problem of such a configuration consists of four sets of independent
functions for displacements and internal forces, each one referring to a portion of the composite beam.
For portions AD and EB, the explicit expressions for the static and kinematic variables are given by
Equations (A10)–(A13) and (A15)–(A17), specialized for the interfacial tractions of Equations (A8) and
(A6). Each of these two sets of functions contains 6 arbitrary constants. For portions DC and CE,
the explicit expressions for the static and kinematic variables are given by Equations (A10)–(A12) and
(A14)–(A17), specialized for the interfacial tractions of Equations (A9) and (A6). Each of these two sets
of functions contains 8 arbitrary constants. The general solution then contains, in total, 28 arbitrary
constants, which are determined by imposing the boundary conditions at the ends A and B, simply
supported and the continuity conditions at the discontinuity locations C (where the point load is
applied), D, and E (where the regime experienced by the upper interface changes). Also for this
configuration, the boundary conditions at ends A and B are given by Equations (2) and (3), while the
continuity conditions at D are given by Equation (4). The other conditions differ from those written
above. Namely, the continuity conditions at C can be written as:

wDC = wCE, uDC
1 = uCE

1 , uDC
3 = uCE

3 , ϕDC = ϕCE (7a)

QDC
123 = P + QCE

123, NDC
1 = NCE

1 , NDC
23 = NCE

23 , MDC
22 = MCE

22 (7b)

at E as:

wCE = wEB, uCE
1 = uEB

1 , uCE
3 = uEB

3 , ϕCE = ϕEB, QCE
123 = QEB

123, NCE
123 = NEB

123, MCE
12 = MEB

12 (8)

When the arbitrary constants have been determined, the maximum deflection wmax exhibited
by the composite beam at midspan under the load point can be evaluated by considering the proper
deflection function. For the configuration shown in Figure 4a, wmax is given indifferently by the
deflection function wEC or wCB evaluated at C. For the configuration shown in Figure 4b, wmax is given
indifferently by the deflection function wDC or wCE evaluated at C. It is straightforward that the value
of wmax depends on those of all the geometrical and physical parameters of the model, as discussed
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in Section 3, where the solution described above is employed to analyze the effects of an interlayer
debond at the upper interface of three-layer beams on their flexural behavior.

3. Results

With reference to the sandwich beam shown in Figures 3 and 4, the effects due to the presence
of the debond along the upper interface on the flexural stiffness of the system were investigated by
performing a parametric analysis. As a measure of the reduction of the flexural stiffness due to the
presence of the debond, the maximum deflection at the load point was calculated for different values
of the geometrical and mechanical parameters and compared with that of the beam with the same
geometry and layer materials but both intact interfaces. In fact, the increase in the displacements due
to the presence of the debond results in a decrease in the flexural stiffness of the composite beam.

The following dimensionless parameters which control the response of the composite beam
are defined:

Λ = l/hc, η = hf/hc, Ω = Ef/Ec (9)

which characterize the geometry and layer materials, and:

ξ = a/hc = Λa/l, δ = d/hc = Λd/l (10)

which characterize the configuration of the upper interface. It is worthwhile to note that the particular
case of a composite beam with three equal thickness layers made of the same material corresponds to
η = 1 and Ω = 1; ξ = 0 corresponds to the particular case of perfectly bonded layers; and for δ = 0,
the system reduces to a standard end notched flexural specimen, analyzed in many analytical models
within fracture mechanics (see, e.g., [15]).

The results shown in what follows were obtained assuming a beam length-to-core thickness ratio
Λ = 100 and varying face-to-core thickness ratio η = 0.05, 0.15, and 0.25, and face-to-core Young’s
modulus ratio Ω = 1.5, 2.5, 5, and 10 for debonds of different length ξ = 0–Λ (0 ≤ a < l) and position
δ = 0–Λ/2 (0 ≤ d < l/2). Such results are presented in terms of the ratio wmax/w0, where for each set
of results, wmax and w0 are the maximum deflections in the cases of upper interface with an initial
debond and intact upper interface, respectively. It is well known that for a simply supported beam
under a point load at midspan:

w0 = 1/48Pl3/K (11)

where P is the point load and K is the section flexural modulus which depends on both the section
geometry and material. For the composite section shown in Figure 3, we have, for perfectly
bonded layers:

K =
1

12
b
(
2Ef h3

f + Ec h3
c

)
+

1
2

bEfhf(hf + hc)
2 (12)

that reduces to:
K =

1
12

b
(
2Ef h3

f + Ec h3
c

)
+

1
4

b(hf + hc)
2 EfhfEchc

Efhf + Echc
(13)

for a fully debonded upper interface, b being the beam width. It is straightforward that dividing
Equation (12) by Equation (13) gives another limit value for the dimensionless maximum deflection,
say wlim/w0, which corresponds to the case of fully debonded upper interface; it results in:

wlim

w0
= (1 + Ωη)

(
1 + 2Ωη3

)
+ 6Ωη(1 + η)2(

1 + 2Ωη3
)
(1 + Ωη) + 3Ωη(1 + η)2

(14)

A first set of results refers to the composite sandwich beam having a debonded portion at one end
of the upper interface between the core and the upper face layers (d = 0). Such results are shown in
Figures 5 and 6, where the dimensionless maximum deflection is plotted versus the dimensionless
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debond length. As expected, the longer the debond, the lower the flexural stiffness of the composite
beam in bending is; this leads to an increase in deflections. It is worthwhile to note that for a tending
towards l, the dimensionless maximum deflections tend towards the limit value (Equation (14)).
However, a minimum debond length for which an additional debond extension induces an important
flexural stiffness decrease higher than 1% can be defined. A maximum debond length for which an
additional debond extension induces a moderate flexural stiffness decrease lower than 1% can be
also defined. Such limit values depend on both the face-to-core stiffness and thickness ratios. Active
debonds are in the length range a = 20hc–80hc = 0.2l–0.8l for face layers little stiffer than the core (Ω = 1.5
and 2.5) and a = 15hc–85hc = 0.15l–0.85l for face layers much stiffer than the core (Ω = 5 and 10).Coatings 2019, 9, x FOR PEER REVIEW 7 of 12 
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Figure 5. Simply supported sandwich beam with a debond at one end of the upper interface: Midspan
deflection vs. debond length for varying layer material and thickness (Ω = 1.5 and 2.5).
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Figure 6. Simply supported sandwich beam with a debond at one end of the upper interface: Midspan
deflection vs. debond length for varying layer material and thickness (Ω = 5 and 10).

A second set of results refers to the composite sandwich beam having an interfacial defect within
the upper interface (d , 0). These results are shown in Figures 7 and 8, where the dimensionless
maximum deflection is plotted versus the dimensionless length of the intact ligament ahead the
interfacial debond. According to these results, for a prescribed debond length, the debond position
only moderately affects the composite beam behavior in bending. The decrease in flexural stiffness due
to an interfacial debond centered on the beam (e.g., d = 30hc = 0.3l for a = 40hc = 0.4l, d = 35hc = 0.35l
for a = 30hc = 0.3l, and d = 40hc = 0.4l for a = 20hc = 0.2l) is minimum independently of layer materials
and geometry. Such a decrease becomes more significant for the debond approaching one end of the
beam and is maximum for an end debond (d = 0). However, in many cases, the stiffness reduction with
respect to that of three perfectly bonded layers results in being independent of the debond position
unless the debond approaches midspan. As an example, for faces moderately stiffer than the core
(Ω = 1.5), significant reductions are induced by 20hc = 0.2l (circular markers in Figure 7) and 30hc =

0.3l (triangular markers in Figure 7) long debonds at a distance from the end longer than 30hc = 0.3l



Coatings 2019, 9, 258 8 of 12

and 20hc = 0.2l, respectively. Analogous considerations follow from the results related to faces much
stiffer than the core (Ω = 10).Coatings 2019, 9, x FOR PEER REVIEW 8 of 12 
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Figure 7. Simply supported sandwich beam with a debond within the upper interface: Midspan
deflection vs. debond distance from the left end for varying layer thickness and debond length
(Ω = 1 and 5).
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Figure 8. Simply supported sandwich beam with a debond within the upper interface: Midspan
deflection vs. debond distance from the left end for varying layer thickness and debond length (Ω = 10).

4. Discussion and Conclusions

This study deals with the simulation of the mechanical behavior in the bending of three-layer
composite beams. The boundary and loading conditions considered are those of standard three
point bending tests usually used to measure the flexural Young’s modulus of a material in the shape
of a beam: The beam is simply supported at both ends and subjected to a point load at midspan.
For simplicity’s sake, a symmetric sandwich beam was analyzed. Its related equilibrium problem was
solved by employing a more general model proposed and validated previously by the author; such a
fundamental solution actually permits one to also consider sandwich beams with face layers having
different thickness, as well as beams composed of three different layers made of different materials.

The attention is focused on the change in flexural stiffness due to the presence of an interface
defect. The main aim of the work was to correlate such change with the length and possibly the position
along the interface of the defect that caused it. Secondly, the possibility of investigating the presence of
interfacial damage and estimating its amount on the basis of a comparison between theoretical results
and experimental measures of the maximum deflection was also explored. This is central during a
monitoring program for the verification of a manufacturing process of composite beams.

Within this context, a final conclusion can be drawn by examining the distribution of the numerical
results shown in Figures 7 and 8. It is evident that a lot of configurations (each one corresponding to a
single value of each physical or geometrical parameter Ω, η, ξ and δ) lead to very close results which
differ less than 1%. This could make it difficult to distinguish one configuration from the other only
on the basis of a measure of the maximum deflection. Then, the accuracy of the test machine plays a
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fundamental role. This point is worth further investigations through ad hoc test programs on ad hoc
designed specimens. In fact, even recent experimental investigations found in the literature focus the
attention on other mechanical properties (see, e.g., [16]).
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Appendix A

The formulation proposed in [7] to solve the equilibrium problem of three-layer beams with
interlayer slip assumes that: (i) The layers have constant cross-sections and are made of linearly elastic
and homogeneous materials; (ii) the bonds are perfect in the transverse direction, while ensuring
partial composite actions in the longitudinal direction so that only interlayer slips are allowed at
both interfaces. Under the assumption of small strains, displacements, and rotations, each layer is
modeled as a linearly elastic Euler–Bernoulli beam subjected to the action of uniformly distributed
loads, related internal forces, and interfacial tractions. Imperfect bonds are described through linear
nonproportional relationships between interlayer shear tractions and slips which depend on two
coefficients. As underlined by the author in previous papers [7,8,14], this choice makes it possible to
describe different types of interfacial regime depending on the values of the two coefficients and to
derive explicit solutions as well. Different identification procedures can be adopted to calibrate such
an interface constitutive law on the basis of the results of suitable tests (see, e.g., [17]), but this is not of
interest to this paper.

According to such a formulation, as detailed in [7], the problem is governed by a system of three
coupled linear differential equations with constant coefficients for the three unknowns rotation ϕ and
shear tractions ptj at the interface between layers j and j + 1 (j = 1,2). The first equation follows from the
bending problems of the three layers which undergo equal deflections w, and then equal rotations ϕ =

−w′, because of the assumption of perfect connections in the transverse direction, and can be written
as:

ϕ′′′ = −K−1
χ

[(
h+1 + h−2

)
p′t1 +

(
h+2 + h−3

)
p′t2 + qy

]
(A1)

where primes denote differentiation with respect to z and having defined:

Kχ = Kχ1 + Kχ2 + Kχ3 and qy = qy1 + qy2 + qy3 (A2)

The second and third equations are the bond conditions at the two interfaces. For perfect bonds,
we have

∆s′′t1 =
(
K−1
ε1 + K−1

ε2

)
pt1 −K−1

ε2 pt2 −
(
h+1 + h−2

)
ϕ′′ + K−1

ε1 qz1 −K−1
ε2 qz2 = 0 (A3a)

∆s′′t2 = −K−1
ε2 pt1 +

(
K−1
ε2 + K−1

ε3

)
pt2 −

(
h+2 + h−3

)
ϕ′′ + K−1

ε2 qz2 −K−1
ε3 qz3 = 0 (A3b)

Alternatively, for imperfect bonds, described through the following linear nonproportional
relationship between interlayer shear traction ptj and slip ∆stj at the j-th interface with interfacial
coefficients Aj and Bj (j = 1, 2):

pt j = A j ∆st j + B j (A4)

we have:
p′′t1 = A1

[(
K−1
ε1 + K−1

ε2

)
pt1 −K−1

ε2 pt2 −
(
h+1 + h−2

)
ϕ′′ + K−1

ε1 qz1 −K−1
ε2 qz2

]
(A5a)

p′′t2 = A2
[
−K−1
ε2 pt1 +

(
K−1
ε2 + K−1

ε3

)
pt2 −

(
h+2 + h−3

)
ϕ′′ + K−1

ε2 qz2 −K−1
ε3 qz3

]
(A5b)

In Equations (A1)–(A5), h−i and h+i measure the distance between the axis of layer i and its top
and bottom interfaces with layers i − 1 and i + 1 (i = 1, . . . , 3); Kεi and Kχi are, respectively, the axial
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and bending stiffnesses of the i-th layer to which uniformly distributed axial and transverse loads,
respectively, qzi and qyi, are applied (i = 1, . . . , 3). The system of differential Equations (A1), (A3),
and (A5) admits closed form solutions for all possible combinations of the regimes experienced by
the two interfaces. In [7], the solution to the case of three-layer beams uniformly loaded and having
two imperfect interfaces or only one imperfect interface is detailed. Closed form expressions for
axial displacements, interlayer slips, and all the remaining kinematic and static unknowns (deflection,
internal forces, and interfacial normal tractions) are derived as well.

This general formulation was then specialized to the special equilibrium problem considered in
this paper of three-layer beams subjected to point loads and having a perfect lower interface between
layers 2 and 3 also in the longitudinal direction, whereas an imperfect upper interface between layers
1 and 2. Namely, two different regimes in the longitudinal direction for the upper interface were
analyzed: A perfect bond, so that no interlayer slips can occur, and an imperfect bond with vanishing
interfacial stiffness, then incapable of transmitting shear tractions. The solution procedure for this
special problem is detailed in what follows.

In the absence of distributed loads (qzi = qyi = 0 with i = 1, . . . , 3) and under the assumption of no
interlayer slip at the lower interface (∆st2 = 0), Equation (A3b) gives:

pt2 =
(
K−1
ε2 + K−1

ε3

)−1[
K−1
ε2 pt1 +

(
h+2 + h−3

)
ϕ′′

]
(A6)

from which Equation (A1) reduces to:

ϕ′′′ = −K−1
χ

[(
h+2 + h−3

)2
K−1
χ +

(
K−1
ε2 + K−1

ε3

)]−1[(
h+1 + h−2

)(
K−1
ε2 + K−1

ε3

)
+

(
h+2 + h−3

)
K−1
ε2

]
p′t1 (A7)

In the case of a perfect upper interface (∆st1 = 0), Equations (A3a) and (A6) give:

pt1 =
[(

K−1
ε1 + K−1

ε2

)(
K−1
ε2 + K−1

ε3

)
−K−2

ε2

]−1[(
h+2 + h−3

)
K−1
ε2 +

(
h+1 + h−2

)(
K−1
ε2 + K−1

ε3

)]
ϕ′′ (A8)

In the other case of imperfect upper interface with vanishing interfacial stiffness (A1 = B1 = 0)
we have:

pt1 = 0 (A9)

The stiffnesses being constant, introducing either Equation (A8) or (A9) in Equation (A7) leads to
a homogeneous third-order linear differential equation for rotation, whose general solution in both
cases is:

ϕ = C1 + C2z +
1
2

C3z2 (A10)

with Ch (h = 1, . . . , 3) as three arbitrary constants. It is straightforward that interfacial shear tractions
are obtained, substituting Equation (A10) in Equations (A6) and either (A8) or (A9).

Integration of Equation (A10) then gives deflection:

w = −

∫
ϕdz + C4 (A11)

where C4 is one more arbitrary constant and, for brevity, hereinafter,
∫
·dz indicates integration of ·

with respect to z.
Furthermore, the axial displacement of layer 1 was obtained, integrating the equation governing

the axial problem for the same layer. It results in:

u1 = −K−1
ε1

x
pt1dz + C5z + C6 (A12)
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where, for brevity, hereinafter,
s
·dz indicates integration of · twice with respect to z. As a consequence

of such integrations, the expression of the axial displacement contains two other arbitrary constants Ch
(h = 5, 6).

Moreover, if the upper interface is perfect, the axial displacement of layer 2 follows from the
condition ∆st1 = 0:

u2 = u1 +
(
h+1 + h−2

)
ϕ (A13)

whereas, if the upper interface is imperfect, this axial displacement is obtained, integrating the equation
governing the axial problem for layer 2:

u2 = K−1
ε2

[x
pt1dz−

x
pt2dz

]
+ C7 z + C8 (A14)

which contains two other arbitrary constants Ch (h = 7, 8).
Finally, the axial displacement of layer 3 follows from the condition ∆st2 = 0:

u3 = u2 +
(
h+2 + h−3

)
ϕ (A15)

When rotation, deflection, axial displacements, and interfacial shear tractions have been obtained,
closed form expressions for internal forces can also be derived. Through the compatibility and
constitutive equations for the three layers (i = 1, 3), axial forces and bending moments are obtained:

Ni = Kεiu′i and Mi = Kχiϕ
′ (A16)

Such results are then employed to derive shear forces through the rotational equilibrium equations
for the three layers (i = 1, 3):

Qi = M′i −
i(i− 3)

2
h+i pti −

(i− 1)(i− 4)
2

h−i pti−1 (A17)

To conclude, the set of Equations (A10)–(A13) and (A15)–(A17) specialized for the interfacial
tractions given by Equations (A8) and (A6) represents the solution for three-layer beams unloaded
along their axis and having two perfect interfaces; this set contains 6 arbitrary constants. On the
other hand, the set of Equations (A10)–(A12) and (A14)–(A17) specialized for the interfacial tractions
given by Equations (A9) and (A6) represents the solution for three-layer beams unloaded along
their axis and having a perfect lower interface whereas an imperfect upper interface with vanishing
interfacial stiffness; this set contains 8 arbitrary constants. To complete these solutions, all the arbitrary
constants were determined by imposing suitable conditions that depend on the specific problem
under consideration.
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