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Abstract: This article investigates the unsteady flow and heat transfer analyses of a viscous-based
nanofluid over a moving surface emerging from a moving slot. This new form of boundary layer flow
resembles with the boundary layer flow over a stretching/shrinking surface depending on the motion
of the moving slot. The governing partial differential equations are transformed to correct similar
form using the Blasius–Rayleigh–Stokes variable. The transformed equations are solved numerically.
Existence of dual solutions is observed for a certain range of moving slot parameter. The range of
dual solution is strongly influenced by Brownian and thermophoretic diffusion of nanoparticles.

Keywords: unsteady flow and heat transfer; nanofluid; Blasius–Rayleigh–Stokes variable; dual
solutions; numerical solution; correlation expressions

1. Introduction

The mechanism of drag and heat loss reduction [1] has been the focus of intensive analysis due to
its application in the prevention of loss of mechanical energy. Drag and heat loss reduction may create
energy savings, processing time reduction, enhancement in thermal rating, and make equipment more
durable. Several well-known methods have been proposed by researchers to reduce the drag and heat
loss in physical systems out of them utilization of stretching/shrinking surfaces [2] and enhancing the
thermal conductivity of the involved fluid are famous [3].

Nanofluids, an achievement of researchers and scientists of the developing world of
nanotechnology, exploit the thermal conductivity of solids to enhance the thermal conductivity
of a fluid by adding nano-sized solid particles. Materials commonly used for nanoparticles
include oxides such as alumina, silica, titania and copper oxide, and metals such as copper and
gold. Carbon nanotubes and diamond nanoparticles have also been used to realize nanofluids.
Nanoparticles vary from 1 to 100 nm in diameter. Thermal conductivity can be increased up to two
times by adding small amount of nanoparticles. Popular base fluids include water and organic fluids
such as ethanol and ethylene glycol. The volumetric fraction of the nanoparticles is usually below 5%.

A wide range of nanofluids exist in nature, like blood, which is a complex biological compound,
made up of different nanoparticles that perform various functions at molecular level. A number
of natural processes occurring in atmosphere and biosphere have wide variety of composition of
different fluids and nanoparticles. Manufacturing and industrial waste materials are also composed of
nanoscale particles and fluids. Various self-assembly processes for nanostructures generate from the
addition of nanoparticles in base fluid. Considering the wide-ranging uses of nanofluid in industry
and science, and the model of nanofluid presented by Buongiorno [4], many experimentalists and
researchers have showed great interest in the study of nanofluids in the last few years [5–12].
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Keeping the fact in view that the unsteady flows are more generalized, and the applications
of nanofluids and stretching surfaces in drag and heat loss reduction, this article analyzes the
unsteady flow of nanofluid over a moving surface. The study of flow over a linearly stretching
sheet was initiated by Crane [13]. He derived the analytical solution of two-dimensional momentum
equations. This notable work of Crane [13] has been studied by many researchers in many directions.
Some recent works on the topic of stretching/shrinking surfaces are References [14–18] and the
references given therein.

In 1997, Todd [19] introduced a new family of unsteady boundary layer flow over a moving
surface emerging from a moving slot. He proposed a new set of transformations containing the
Blasius–Rayleigh–Stoke variable to write the governing unsteady partial differential equations
in similar form. Fang et al. [20] conducted the heat-transfer analysis for this boundary layer
flow. In this article, we carry out the numerical analysis of unsteady flow of nanofluid past
a movable surface emerging from a moving slot by converting the governing coupled unsteady partial
differential equations into similar form using the transformation involving the Blasius–Rayleigh–Stoke
variable. The results are presented graphically and the effects of nanoparticles on skin friction,
Nusselt number and Sherwood number are discussed in detail. Dual solutions are observed for
a specific range of moving slot parameter and are found to be altered due to the presence of
nanoparticles. Furthermore, the numerical data is used to write the correlation expressions for
certain important flow quantities by performing linear regression. Correlation expressions enable
the readers to obtain the values of numerical results for different values of involved parameters from
analytical expressions.

2. Mathematical Formulation

Consider the unsteady two-dimensional flow and heat transfer of an incompressible viscous-based
nanofluid over a heated moving semi-infinite plate. The surface is emerging out along the x-axis
from a moving slot (see Figure 1 for geometry of the problem). At time t = 0, the fluid is at rest.
The governing boundary layer [21] equations are given as:
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where U and V are the velocity components in X and Y directions. T is the fluid temperature, C is the
nanoparticles volume fraction, ν is the kinematic viscosity, σ is the thermal diffusivity of the fluid, ε is
the ratio of heat capacities of the nanoparticles (ρc)p and base fluid (ρc) f , DB and DT are the Brownian
and thermophoretic diffusion coefficients respectively. For water nanofluids at room temperature
with nanoparticles of 1–100 nm diameters, the Brownian diffusion coefficient ranges from 4 × 10−10

to 4 × 10−12 m2/s. For alumina/water and copper/water (ρc)p is 3.1 and 3.4 MJ/m3 respectively.
The thermophoretic diffusion is equal to 6 × 10−5 for aluminum/water nanofluid and 6 × 10−6 for
copper/water nanofluid.
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Figure 1. Systematic diagram of the problem. δ, δc, δT represent the thicknesses of momentum,
thermal and nanoparticles concentration boundary layers respectively.

The corresponding boundary conditions are:

U(X, Y, t) = 0, V(X, Y, t) = 0, T(X, Y, t) = 0, C(X, Y, t) = 0 at t = 0,
U(X, Y, t) = UW , V(X, Y, t) = 0, T(X, Y, t) = TW , C(X, Y, t) = CW at Y = 0,

U(X, Y, t)→ 0, T(X, Y, t)→ T∞, C(X, Y, t)→ C∞ as Y → ∞.
(5)

Since the unsteady flow is a generalized case of steady flow, Todd [19] generalized the Blasius
and Rayleigh–Stokes variables to get similar equations for the boundary layer flow of viscous fluid
over a moving surface, termed as the Blasius–Rayleigh–Stokes variable:

η = Y/
√

cos(α)νt + sin(α)(νX/UW). (6)

This variable depicts that the slot at Y = 0 is moving with a constant speed −Uw cot α. To obtain
similarity solutions for the system of Equations (1)–(5), we introduce the following similarity variables

ψ(x, y, t) = UW
√

cos(α)νt + sin(α)(νx/UW) f (η),
θ(η) = T−T∞

TW−T∞
, φ(η) = C−C∞

CW−C∞
,

(7)

in the governing equations to get the following ordinary differential equations:
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subject to boundary conditions:

f (η) = 0, f ′(η) = 1, θ(η) = 1, φ(η) = 1 at η = 0,
f ′(η)→ 0, θ(η)→ 0, φ(η)→ 0 as η → ∞,

(11)

where prime represents the differentiation with respect to variable η. Pr is Prandtl number, Nt is
thermophoresis diffusion parameter, Nb is Brownian diffusion parameter and Le is Lewis number
given by the following expressions:

Pr =
ν

σ
, Nb =

εDB(CW − C∞)

σ
, Nt =

εDT(TW − T∞)

TWσ
, Le =

ν

DB
. (12)



Coatings 2019, 9, 211 4 of 13

The range of the parameters of interest, namely thermophoresis diffusion parameter and Brownian
diffusion parameter is given as: Nb∈ (0.0, 0.5) and Nt∈ [0.0, 0.5).

3. Results and Discussions

In this special case of unsteady flow, the slot is moving with constant speed −Uw cot(α).
For α = π/2, the surface velocity is zero as in the case of Sakiadis flow [22]. For 0 < α < π/2,
the slot is moving with the constant speed Uw cot(α) in the opposite direction of stretching surface
and the situation is termed as leading-edge accretion. For α ∈ (αL , 0) ∪ (π/2 , αU), the direction of
slot motion is same as stretching sheet and the situation is termed as leading-edge ablation. As α→ 0 ,
the speed of slot approaches infinity in opposite direction to the stretching surface, which correspond
to the Rayleigh starting-plate problem. The analytical solution for this case has been obtained using
the perturbation method (see Appendix A). Since the exact analytical solution of the system (8)–(11) is
not available for general α, we adopt the numerical method for the solution. In Table 1, the comparison
of numerical results of skin friction with results of Fang [20] is tabulated. In Table 2, the comparison
of the analytical result for α = 0 is given with the numerical solution. Tables 1 and 2 establish the
reliability of our results.

Table 1. Comparison of Fang [20] and Present study for values of different moving slot parameters.

α(◦) −f”(0) (Fang [17]) Present Study

90◦ 0.443748 0.443872

60◦ 0.576684 0.576685

30◦ 0.613527 0.613526

0◦ 0.564190 0.564189

−30◦ 0.416304 0.416303

−48◦ (upper solution) 0.239052 0.239055

−48◦ (lower solution) 0.00150569 0.00149961

Table 2. Comparison of analytical and numerical solutions for Nusselt and Sherwood number for α = 0.

Parameters Values −θ
′
(0)

(Analytical)
−θ

′
(0)

(Numerical)
−φ

′
(0)

(Analytical)
−φ

′
(0)

(Numerical)

Pr = 1, Le = 0.5, Nb = 0.01, Nt = 0.01 0.5541896 0.5603877 0.0884477 0.0718526

Pr = 1, Le = 0.5, Nb = 0.05, Nt = 0.0 0.5541896 0.5532004 0.39894228 0.39894228

Pr = 1, Le = 1.0, Nb = 0.05, Nt = 0.0 0.55418958 0.5502023 0.56418958 0.56418958

Pr = 1, Le = 2.0, Nb = 0.02, Nt = 0.01 0.55418958 0.5551755 0.67603707 0.68467843

The numerical solution domain of α, (αL < α < αU), for the skin friction and Nusselt number
mentioned by Fang [20] also hold for Sherwood number. In this study, we focus on the effects of
nanoparticles on the heat transfer and behavior of nanoparticles concentration for the surface accretion
and ablation.

Figure 2 demonstrates numerical solutions of velocity profile for various values of slot moving
constant α ranging between −π/4 < α < αU . In Figure 3 the dual solution for the velocity profile is
plotted for α = −48◦. The thickness of boundary layer is much greater for lower solution branch as
compared to upper solution branch.
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Figure 4 represents the dual solution for a fixed value of moving slot parameter α = −48◦,
with two distinct values of Prandtl number. For the above-mentioned values of parameters,
both solutions show maximum temperature gradient which can be viewed in the region away from
the wall. The change of heat transfer at the wall is less for lower solution as compared to the upper
solution. The thermal layer thickness is greater for lower solution as compare to upper solution branch.
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Figures 5 and 6 illustrate the numerical solution domain of reduced Nusselt number as a function
of α for different values of Brownian and thermophoretic diffusion parameters, Nb and Nt respectively.
For Nusselt number, the correlation expression in the form of Nb and Nt has also been written by
applying the linear regression on the set of 2401 numerical values. The values of coefficients and
constant of the correlation expression in the form

− θ′(0) = C + CBNb + CT Nt

for Nb ∈ (0.01, 0.5) and Nt ∈ (0.0, 0.5) is given in Table 3 with maximum percentage error for different
Prandtl number and moving slot parameter.
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Figure 6. Effects of slot moving parameter α on reduced Nusselt number for varying Nt with
Pr = Le = 1.0 and Nb = 0.1.

Table 3. Correlation expression for reduced Nusselt number and maximum percentage error
defined for varying Prandtl number and moving slot parameter considering values of Brownian
and thermophoresis diffusion parameters in the interval (0.01, 0.5).

Pr Le α C CB CT Max. % Error Solution Curve

0.5 1.5 30 0413 −0.226 −0.132 2.60% –
1.0 1.0 30 0.605 −0.261 −0.168 1.760% –
1.0 1.0 0.0 0.601 −0.253 −0.161 2.650% –
2.0 1.5 30 0.877 −0.305 −0.21 0.986% –
1.0 1.0 −49 0.235 −0.101 −0.075 2.430% Upper Solution
1.0 1.0 −49 0.004 −0.002 −0.002 7.970% Lower Solution

It is observed that the Nusselt number decreases with an increase in parameters Nb and Nt,
since higher temperatures correspond to higher Brownian and thermophoretic diffusion which
resultantly reduces the surface heat flux. The same observation can be made from the correlation
expressions since the coefficients of Nb and Nt are negative for all value of Pr and α. Furthermore, it is
seen that dual solutions exist for a certain interval of slot moving parameter α and that interval can be
viewed in Figures 5 and 6. The important observation is that the range of α reduces dramatically with
an increase of Nt and the duality of solution vanishes for Nt = 0.05. For this reason, the correlation
expression for α = −49o is derived for Nt∈ (0.0, 0.01). The variation of Nb has no effect on the duality
of the solution.

For a fixed value of moving slot parameter α = −49o, Figures 7 and 8 show the dual solution
for the variation of Nb and Nt. The thickness of concentration boundary layer is greater for the
smaller solution branch. As the value of Nb increases, the concentration boundary layers become
thinner for upper as well as for lower solution domains. The concentration thickness of boundary
layer is less for the lower solution branch. As the value of Nt increases, the concentration boundary
layers become thicker for upper and lower solution domains. In Figures 9–11, the effects of Lewis
number, thermophoretic diffusion and Brownian diffusion on the nanoparticles concentration flux
at the surface are plotted. The Sherwood number is plotted against the moving slot parameter α.
Dual solution for Sherwood number is observed in the interval (−53◦, −49.5◦). Figure depicts that
Sherwood number is growing function of α in the interval (−49.5◦, 30◦), and decreasing function in
the interval (30◦, αU). As Le increases, i.e., the dominancy of viscous diffusion increases over the
Brownian diffusion, the mass flux at the surface increases. Similar effects of Brownian diffusion and
opposite effects of thermophoretic diffusion on Sherwood number are observed. In dual solution range,
the effects of thermophoretic and Brownian diffusions on Sherwood number are found negligible.
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4. Conclusions

In this work, the unsteady flow and heat transfer of a viscous-based nanofluid over a moving
surface emerging from a moving slot has been considered. The effects of involved parameters on
the temperature and concentration profiles are illustrated graphically. Furthermore, the variation
of reduced Nusselt and Sherwood numbers with the involved parameters; namely Lewis number,
Brownian motion parameter and thermophoretic diffusion parameter; are presented graphically.

The obtained results are concluded as follows:

• With the increase in the value of Brownian diffusion parameter Nb, the temperature enhances
while the nanoparticles volume fraction decreases.

• By increasing the thermophoretic diffusion parameter Nt, both temperature and nanoparticles
concentration are increased.

• Concentration of nanoparticles reduces with the enhancement of Lewis number Le.
• Dual solutions exist for both thermal and concentration boundary layers. The mass flux rate

attains the maximum value of slot moving parameter α, as the Lewis number is increased.
• Heat flux at the surface −θ′(0) reduces with the increase of Nb and Nt in the upper solution

branch. The reduced Sherwood number −φ′(0) is enhanced when Nb is increased, whereas it
reduces with increasing Nt.
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Nomenclatures

U Velocity component in X direction
V Velocity component in Y direction
Uw Plate velocity
ψ Stream function
T Temperature
T∞ Ambient temperature
TW Wall temperature
C Nanoparticles concentration
C∞ Ambient nanoparticles concentration
CW Wall nanoparticles concentration
η Similarity variable
α Moving slot parameter
DB Brownian diffusion coefficient
DT Thermophoretic diffusion coefficient
Le Lewis number
Nb Brownian diffusion parameter
Nt Thermophoretic diffusion parameter
Pr Prandtl number

φ
Nondimensional nanoparticles
concentration

θ Nondimensional temperature
ν Kinematic viscosity
σ Thermal diffusivity
ε Ratio of heat capacities of the nanoparticles
ρc) f Heat capacity of fluid
(ρc)p Heat capacity of nanoparticles

Appendix A

For α = 0, the governing equations reduce to

f ′′′ +
1
2

η f ′′ = 0, (A1)

θ ′′ +
Pr
2

ηθ′ + Nbθ′φ′ + Ntθ
′2 = 0, (A2)

φ′′ +
Le
2

ηφ′ +
Nt
Nb

θ ′′ = 0. (A3)

We derive the analytical expressions for the skin friction, Nusselt number and Sherwood number subject to
the boundary conditions in Equation (A1). The exact solution of Equation (A1) is:

f ′(η) = 1− er f
(

1
2

η

)
(A4)

It is noted that the magnitude of thermophoretic and Brownian diffusion parameters for nanoparticles is very
small [1,9], therefore we consider Nb and Nt of O(ε), ε→ 0 . We expand θ and φ in small parameter ε and write

θ = θo + εθ1 + . . .
φ = φo + εφ1 + . . . (A5)

By substituting the expressions in Equation (A5) in Equations (A2) and (A3), the leading order boundary
value problem is given by

θ ′′o +
Pr
2

ηθ′o = 0, (A6)

φ′′o +
Le
2

ηφ′o +
τ

β
θ ′′ = 0, (A7)
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where β and τ are constants of O(1) such that Nb = βε and Nt = τε. The solution of above boundary value
problem can be written as

θ′o(y) =
√

Pr√
π

e−
1
4 Prη2

,

φ′o(y) = −
τPr
(√

Pre−
1
4 Prη2

−
√

Le e−
1
4 Leη2

)
+β(Le−Pr)

√
Le e−

1
4 Leη2

√
πβ(Le−Pr) .

(A8)

The first order system can be written as

∂2θ1
∂y2 +

1
2

Prη
∂θ1
∂y

+ β
∂θo

∂y
∂φo

∂y
+ τ

(
∂θo

∂y

)2
= 0 (A9)

∂2φ1
∂y2 +

1
2

Leη
∂φ1
∂y

+
τ

β

∂2θ1
∂y2 = 0 (A10)

with the boundary conditions
θ1 = 0, φ1 = 0 at η = 0

θ1 = 0, φ1 = 0 as η → ∞ (A11)

For the above boundary value problem, the exact solution is given by

θ′1(η) = e−
1
4 Prη2

(
1−
√

Pr√
π

βerf
(

1
2

√
Leη

)
−
√

Pr√
π

τ

Le− Pr

(
Le erf

(
1
2

√
Prη

)
− Prerf

(
1
2

√
Leη

)))
(A12)

φ′1(η) =
τ

β
√

π(Le−Pr) e−
1
4 Leη2

(
Pr
√

πe−
1
4 (Pr−Le)η2

+
τPrLe erf( 1

2

√
2Pr−Leη)√

2Pr−Le
−

√
Pr3
(
(Le−Pr)β−Prτ

Le−Pr

)(
erf
(

1
2

√
Leη
)

e−
1
4 (Pr−Le)η2 −

√
Le√
Pr

erf
(

1
2

√
Prη

))
+ ((Le− Pr)β− τPr)

√
Le erf

(
1
2

√
Prη

)
− τ

√
Le3Pr3

Le−Pr

(√
Le erf

(
1
2

√
Prη

)
e−

1
4 (Pr−Le)η2 −

√
Prerfi

(
1
2

√
Le η

)))
,

(A13)

where erf is the error function and erfi is the imaginary error function.
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