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Abstract: This paper presents the influence of an inorganic Al2O3 layer over MoS2 particles on the
tribological performance of electroless Ni–P–MoS2/Al2O3 composite coatings fabricated without
using surfactants. The Al2O3-coated MoS2 particles were prepared by a heterogeneous nucleation
process. The dry sliding tests of the composite coatings were tested against a WC ball. SEM was used
to observe the surface morphology of particles, composite coatings, and worn surfaces. The results
indicate that the coverage of an Al2O3 coating on MoS2 particles significantly affects the surface
morphology, frictional coefficient and wear loss of the composite coatings. The incorporation of
Al2O3-coated MoS2 particles with lower coverage (up to 7% of Al2O3) could obtain compact surface
structure of composite coatings, which contribute to reduced wear loss. However, higher coverage
would lead to loose surface structure of the composite coatings, and thus increase their wear loss.

Keywords: electroless composite coating; Al2O3-coated particles; MoS2 particles; wear
resistance; surfactant

1. Introduction

Electroless Nickel (EN) composite coatings containing submicro/nano-sized particles in a nickel
matrix have received increasing attention in recent years [1–3]. The incorporation of solid particles
into the matrix could remarkably improve the mechanical and physiochemical properties of composite
coatings. For example, hard particles such as Al2O3 [4,5], SiC [6,7], SiO2 [8], TiO2 [9], and diamond [10]
enhance the hardness and wear resistance of composite coatings. Solid lubricant particles such as
MoS2 [11,12], PTFE [13], and BN(h) [14] lower the frictional coefficient of composite coatings and
consequently reduces wear loss. It was found that these superior properties highly rely upon a
homogeneous distribution of particles in the coating matrix. However, most of the particles have
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a strong tendency towards agglomeration in an EN solution [15–18]. To prevent agglomeration,
surfactants are in particular added into the EN plating bath [19–21].

Surfactants (or surface active substances) are usually organic compounds that are amphiphilic.
These lower the interfacial tension between particles and the EN solution by improving the wettability
of particles [22]. These additives are very important in the incorporation of second phase particles,
especially for water-repellent ones (e.g., MoS2, PTFE) [23]. Without them, these hydrophobic particles
would not be well immersed in the EN plating solution [22–24].

However, the adverse effects of using surfactants to produce composite coatings have recently
been reported. Sudagar et al. [25] stated that the deposition of coating would be delayed (by as much
40 min) at the early stage due to the indirect contact of electrolytes with substrate caused by surfactant
coverage. Zielinska et al. [26] discovered the coverage of surfactants on Ni ions and hypophosphite
ions reduced the amounts of nickel and phosphorus in coatings by hampering the reduction process of
nickel ions. The surfactant coverage on substrates also provided a barrier for the deposition of the
coating, and thus decreased the deposition rate of composite coatings [27–31]. Mai et al. [32] argued
that the introduction of additives weakens the interfacial bonding of particles and matrix, fading the
properties of composite coatings. Furthermore, due to the complexity and selectivity of surfactants,
numerous extra steps are required to identify suitable types and concentrations of surfactants for
electroless composite plating [33–36]. Unfortunately, it is quite challenging to choose an appropriate
surfactant for a specific plating configuration.

Recently, surface modification of inorganic coatings on particles has received considerable
attention in several fields [37–39]. Our previous work [40] indicated that Al2O3 loading on the
particles could improve the wettability of hydrophobic MoS2 particles. As a result, we successfully
incorporated the coated MoS2 particles into a nickel matrix by the electroless plating method in the
absence of surfactants [41–43], as shown in Figure 1. The resultant composite coatings showed
improvements in wear property compared to those incorporated uncoated MoS2 with aids of
surfactants. These results indicated that the environmentally hazardous surfactants could be reduced
or even excluded. In keeping with the nature of particles, an excessive coverage over particles is
not expected. However, there are as yet only a few reports on the influence of particle coverage on
composite coating performance.
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Figure 1. Diagram of the comparison between the codeposition of bare MoS2 particles with surfactant
and Al2O3-coated MoS2 particles without surfactants into an electroless nickel matrix.

This work aims to evaluate the influence of particle coverage on the wear properties of the
EN composite coatings. We prepared the Al2O3-coated MoS2 particles with various coverages,
and then used them to fabricate electroless composite coatings without using surfactants. The surface
morphology, friction coefficient and wear loss of these composite coatings were investigated as well.
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2. Materials and Methods

2.1. Preparation of Coated Particles

MoS2 particles with an average particle size of Φ0.5 µm (supplied by Shanghai Haochem
Company, Shanghai, China) were used to prepare the Al2O3-coated particles. In this process,
the heterogeneous nucleation method was used (the detailed procedure may be found in our previous
work [40]). Firstly, MoS2 powder was etched 30 min with 20 wt %. H2SO4 solution at 80 ◦C to eliminate
the oxide surface, and then cleaned with deionized (DI) water. Three grams of MoS2 powder were
added into 300 mL of NaOAc and HOAc-buffered solution with a pH of 4.5 to produce suspension.
Al(OH)3-coated MoS2 particles were obtained by adding, via drops, 0.2 M Al(NO3)3 solution to the
suspension, at an estimated rate of 0.05 mL/s. The reaction temperature was 60 ◦C. The pH was
subjected to the addition of Al(NO3)3 solution, and kept at 4.5 ± 0.2. The loading of Al(OH)3 on the
particles was controlled by the reaction time. The reaction production was dried at 120 ◦C for 12 h,
and subjected to dehydration in air at 350 ◦C for 2 h to produce Al2O3-coated particles. We designed a
series of Al2O3-coated particles with amounts of coating ranging from 5% to 20% in increments of 5%,
and a coating amount of 40% of the layer. However, we finally obtained the samples with loadings of
3%, 7%, 11%, 24% and 42%, respectively. The differences were attributed to the pH variability with the
increased total volume of the suspension, which significantly affected the loading amount of Al(OH)3.

The amounts of coating were determined by total water loss rate after being heated from 30 to
1200 ◦C at the heating rate of 20 K/min under Ar atmosphere condition. The decomposing reaction
equation of Al(OH)3 into Al2O3 and H2O reveals that H2O accounts for 34.6%, Al2O3 65.4%. Given
the total water loss rate λ, then the coverage of Al2O3 can be determined by the following equation
(Equation (1)),

Al2O3 (wt %) = 65.4%/34.6% λ = 1.89 λ. (1)

2.2. Preparation of Ni–P Matrix Composite Coatings

2.2.1. Substrate Preparation

Medium carbon steel specimens with the size of Φ 50 mm × 2 mm were used as substrates.
Each substrate was polished using a 2000 grade abrasive paper and ultrasonically cleaned in
acetone. All the substrates were degreased with an alkaline solution (Na2CO3 30 g/L, NaOH 30 g/L,
Na3PO4·12H2O 10 g/L, Na2SiO3 10 g/L, OP-10 2 mL/L) at 70–80 ◦C for 60 min, and then cleaned up
with deionized water. After that, the substrates were activated in a 20 wt % H2SO4 aqueous solution
for 90 s and rinsed with deionized water twice prior to plating.

2.2.2. Electroless Plating Bath and Operating Conditions

The commercial electroless plating solution (HK350 from Haibo Co. Ltd., Nanjing, China) was
used to produce EN composite coatings. The composition of the plating solution mainly consists
of NiSO4 25 g/L, NaH2PO2·H2O 22 g/L, buffer agents, and stabilized agents. The plating process
took place in a 500 mL thermostated vessel. For comparison, Ni–P–MoS2 composite coating was
fabricated as well. The pre-treated particles were first added to a separate portion of EN solution and
dispersed by an ultrasonic cleaner for 20 min. In this step, it is easy to produce MoS2 suspension for
the coated particles without the aids of surfactant (see Figure 2a). However, the uncoated ones must
use the surfactant of Cetyltrimethylammonium Bromide (CTAB) for this purpose (see Figure 2b). Then,
the suspension was transferred to the main EN solution to produce a composite plating bath with a
concentration of 1 g/L of particles. All the samples were pre-plated with an active layer of Ni–P alloy
at 88 ◦C for 10 min before applying the composite coating plating. After that, the samples were placed
vertically into the composite plating bath under these conditions: A pH of 5.0, a magnetic stirring rate
of 700 rpm, and a duration of 90 min at 88 ◦C.
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2.3. Post-Treatment of Electroless Coatings

All the as-prepared coatings have a similar coating thickness of 22–25 µm under the operation
condition mentioned above. After preparation, these samples were first heated at 200 ◦C for 1 h to be
dehydrogenated, and then heated at 400 ◦C for 1 h in air to reinforce the Ni–P matrix of composite
coating [4].

2.4. SEM/EDS/XRD/LSCM Characterization

SEM (Hitachi S-4800, Tokyo, Japan) was used to observe the surface morphology of the coated
MoS2 particles and the composite coatings. EDS (Bruker EDS QUANTAX, Billerica, MA, USA) was
employed to analyze the surface chemical composition of the coated particles. XRD (X’Pert PRO,
Malvern Panalytical, Almelo, The Netherlands) with Cu Kα radiation was utilized to characterize the
phase structure of the coated particles and composite coatings after heat treatment. The Laser-Scanning
Confocal Microscope (LSCM, Olympus, OLS4100, Tokyo, Japan) was used to obtain the surface
roughness of composite coatings.

2.5. Friction and Wear Tests

The friction and wear tests were carried out on a tribometer (CFT-1, Lanzhou, China) with a
pin-on-disc contact configuration under dry sliding conditions. The composite coating specimens
were used as rotating discs, and a tungsten carbide (WC) ball with a diameter of 6 mm was used as
a fixed counterpart. For all the tests, the sliding velocity was fixed at 0.5 m/s with a contact radius
of 12 mm, duration time of 4 h and normal load of 9.3 N. The worn scar was observed by using SEM
(Hitachi S-4800) as well.

3. Results and Discussion

3.1. Al2O3-Coated MoS2 Particles

Figure 3 illustrates the typical SEM morphologies of bare MoS2 particles and the Al2O3-coated
ones with the coverage of 7%, 24%, and 42%. The morphology of pristine MoS2 particles is flat and
smooth [40]. However, the surface of the coated particles became very rough, and the roughness varies
with the amounts of Al2O3 loading. A lower amount of coating produces a partial cover on particles
while a higher one produces an entire cover. It is worth mentioning that currently it is difficult to
obtain a homogeneous coating layer over MoS2 particles due to the strong hydrophobic feature of their
pristine surfaces.
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Figure 3. SEM morphology of MoS2 particles (a) pristine particles [40], (b) Al2O3-coated particles
with coverage of 7%, (c) Al2O3-coated particles with coverage of 24%, (d) Al2O3-coated particles with
coverage of 42%, respectively. Adapted with permission from [40]. Copyright 2015 Elsevier.

The chemical compositions of the surface for the coated particles are determined by EDS and the
structure is characterized by XRD, as discussed elsewhere [40]. EDS scanning over the surface of the
as-coated particles with the coverage of 42% shows the Mo, S, O, and Al element is about 32 wt %,
16 wt %, 43 wt %, and 9 wt %, respectively. This result indicates the formation of aluminum hydroxide
on the surface of particles. Figure 4 shows the XRD diffraction pattern of the coated particles with
the coverage of 7% and 42% respectively after calcination at 350 ◦C. The XRD pattern reveals that the
surface coating on particles is essentially an amorphous structure. Apart from MoS2, no diffraction
peak corresponding to alumina or aluminum hydroxide could be found. For comparison, the XRD
diffraction pattern of Al(OH)3 and Al2O3 are presented in our previous work [40]. The main reason is
that the calcining temperature of 350 ◦C is insufficient to crystallize the as-amorphous structure of the
aluminum hydroxide [44].
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3.2. Ni–P Matrix Composite Coatings

Figure 5 shows the XRD patterns of the composite coatings containing Al2O3-coated MoS2

particles with various coverage after heat treatment at 400 ◦C. The commercial electroless plating
solution used in this study produces an amorphous Ni–P alloy matrix according to the indication of the
manufacturer although the percentage of P cannot be evaluated. As a result, the transformation of the
amorphous Ni–P matrix into Ni and Ni3P phases took place after the heating treatment as most of the
previous works have reported [4,45,46]. The phases transformation is independent of incorporation
MoS2 particles. This study reveals that the transformation is not affected whether the MoS2 particles
coated with Al2O3 or not.
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coverage after heat treatment at 400 ◦C.

The diffraction patterns corresponding to MoS2 phase on all the composite coatings indicate that
the MoS2 particles have been successfully incorporated into the Ni–P matrix, have not involved in the
transformation of the Ni–P matrix when heated. Very weak diffraction peaks of Al2O3 can be found for
the composite coatings with coated MoS2. The results are mainly attributed to a further dehydration
and crystallization of aluminum hydroxide into alumina after the heating treatment at 400 ◦C as it
exceeds the calcination temperature of 350 ◦C. However, the very small amount results in the weak
diffraction intensity.

Figure 6 indicates the surface morphology and 3D images of EN composite coatings containing
the coated MoS2 particles with various Al2O3 coverage after heat treatment. The Ni–P–MoS2 composite
coating prepared using CTAB shows a spherical nodular structure, which is in line with most of the
other literature [25,47,48]. The surface roughness Sa is 6.528 µm, as shown in Figure 6(a-2). A similar
structure can also be seen on the surface of the composite coating with Al2O3 coverage of 3%. However,
the latter shows a finer and homogeneous surface, whose surface roughness Sa is 3.135 µm, much less
than the former. The increase of the coverage up to 7% could lead to a more compact surface structure
of composite coating. The surface roughness decreased to Sa = 1.501 µm, as can be seen in Figure 6(c-2).
The reason might be attributed to the role of Al2O3 loading on MoS2 contributing to the fine grain
size of the composite coatings. The Al2O3 loading could remarkably enhance the wettability of MoS2

according to our previous findings [40]. This result indicates that less coverage of Al2O3 on particles
could make it feasible to produce composite coatings without using surfactants.

The further increase of the coverage, however, would induce a reverse change of the surface
morphology. The coatings show a loose surface structure with small nodules, large bumps and deep
micropores, as shown in Figure 6e,f. The surface roughness also increases from Sa = 2.838 µm to
Sa = 9.511 µm with the increase of coverage. This result might be attributed to the split of alumina
from MoS2 particles due to a large difference in elastic modulus between brittle Al2O3 and soft MoS2.
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The broken MoS2 tends to form a film on the interface of plating bath, especially in the case of particles
with high coverage. The MoS2 film would hamper the escape of the hydrogen produced in the plating
reaction, and result in the large bumps and deep micropores of the composite coating. On the other
hand, the naked MoS2 might be codeposited into the composite coating, as shown in Figure 6e,f (naked
MoS2). The incorporation of MoS2 particles with highest loading of Al2O3 could lead to so very loose
coating strucuture that the cross section of it could not obtained. Therefore, the higher coverage on
particles is not recommended.
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3.3. Friction Coefficient

Figure 7 shows the evolution of friction coefficients for the EN composite coatings incorporating
Al2O3-coated MoS2 particles with various coverage while running against WC. Due to the very high
hardness of its counterpart (WC), the Ni–P coating has a friction coefficient of approximately 0.6 at
steady state after the running-in stage. Compared with the Ni–P alloy, the Ni–P–MoS2 composite
coating shows a significant decrease in the friction coefficient due to the lubricant effect of the MoS2.
However, its friction coefficient could not reach a steady state until it reached a sliding distance of up
to 850 m, which is similar to that in the literature [49]. After that, its frictional coefficient tends to be
stable at 0.4. This result is much smaller than that in the literature [11], which might be attributed to
the submicro-sized particles used in this study.
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The composite coatings with the coated MoS2 indicate a relative steady evolution in the friction
coefficients, which might be attributed to the fabrication without surfactants. The friction coefficients
increase with the increase of Al2O3 coverage of the particles accordingly. Higher coverage corresponds
to the higher friction coefficients. This result might be caused by the Al2O3 on the particles. The Al2O3

might be involved in friction behavior and lead to an increase in the friction coefficient.

3.4. Wear

Figure 8 demonstrates the mass loss of EN composite coatings incorporating Al2O3-coated
MoS2 particles with various coverage after wear. The mass loss of Ni–P–MoS2 composite coating,
about 0.63 mg/km, is lower than that of the Ni–P coating, which is approximately 0.70 mg/km.
The less mass loss might be resulted from its remarkably decreased friction coefficient. Compared with
Ni–P 6=MoS2 composite coating, the composite coatings containing the coated MoS2 with the coverage
of 3% and 7% show a further reduction in mass loss in the range of 0.52–0.54 mg/km. The result could
mainly be attributed to their fine and compact structures, which avoid the side-effects of surfactants.
However, the composite coatings with higher coverage of MoS2 show very large mass loss. The one
with the coverage of 42% can reach 0.73 mg/km, exceeding the Ni–P alloy. The reason is mainly
because it has a deteriorated surface structure and results in weak wear resistance.
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various coverage.

Figure 9 presents SEM of the worn tracks for the composite coatings incorporating the coated
MoS2 with various coverage. The Ni–P–MoS2 composite coating shows a rough worn surface with
more ploughing and scuffing tracks. This is attributed to its relatively coarse structure, which provides
severe wear and thus leads to an increasing friction coefficient when against the hard pair of WC
materials, as shown in Figure 7. Both the composite coatings with the coverages of 3% and 7%
show a relatively smooth and flat worn surface without obvious ploughing tracks. The results are in
accordance with their respective steady evolution of the friction coefficient, and are mainly attributed
to their respective fine and compact microstructures. However, the composite coatings containing
MoS2 with higher coverage of Al2O3 indicate a remarkably rough worn surface with numerous fine
and closed-packed scuffing tracks. One main reason is that the loose coating structure has a lower
bearing capacity for shear load during the sliding test. The other reason is that the free Al2O3 stripping
from the surface of MoS2 could turn into abrasive particles and accordingly intensify the interface
destruction of both parts. As a result, these composite coatings show higher friction coefficients and
worse wear resistance.
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Figure 10 reveals the worn scar of the WC counter after sliding against the electroless Ni–P coating
and the composite coatings containing MoS2 with various coverage of Al2O3. The worn scar sliding
against Ni–P coating shows a small and regular area with numerous ploughing tracks. Due to the
MoS2 lubricant, the worn scar sliding against Ni–P–MoS2 composite coating is relatively smooth.
A similar result is shown on the surface of counter-sliding against the composite coating with 3%
coverage MoS2 as well, which indicates the lesser coverage of Al2O3 does not change the lubricant
property of MoS2. When the coverage is up to 7%, the corresponding worn scar of the counter appears
to be slightly rough. The further increase of the coverage of Al2O3 on MoS2 would lead to a rougher
worn surface on the counter, sliding against them. The numerous scuffing tracks on the worn scars can
be seen. Apart from the loose surface of the composite coating, the stripping free Al2O3 from MoS2

particles might be another reason for the deterioration of the worn surface.
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4. Conclusions

The Al2O3-coated MoS2 particles with various coverages were obtained by using the
heterogeneous nucleation process. The composite coatings with the coated particles were fabricated
successfully in the absence of surfactants. The Al2O3 loading on MoS2 particles shows significant
influence on the friction and wear performance of composite coatings under dry sliding configuration.
The composite coatings containing MoS2 with lower Al2O3 loading show a fine roughness and compact
structure, and thus correspond to higher wear resistance. Those containing MoS2 with higher Al2O3

loading show a loose structure, and have less wear resistance. This study reveals that up to 7% Al2O3

coverage can achieve a quality composite coating without using surfactants. The small amount of
Al2O3 offers the advantage of affecting the lubricant nature of MoS2 particles much less, which in turn
improves the wear property of the composite coating.
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