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Abstract: In-Sn-Zn oxide (ITZO) thin films have been studied as a potential material in flat panel
displays due to their high carrier concentration and high mobility. In the current work, ITZO thin
films were deposited on glass substrates by high-power impulse magnetron sputtering (HiPIMS)
at room temperature. The influence of the sputtering power on the microstructures and electrical
performance of ITZO thin films was investigated. The results show that ITZO thin films prepared
by HiPIMS were dense and smooth. There were slight variations in the composition of ITZO thin
films deposited at different sputtering powers. With the sputtering power increasing from 100 W
to 400 W, the film’s crystallinity was enhanced. When the sputtering power was 400 W, an In2O3

(104) plane could be detected. Films with optimal electrical properties were produced at a sputtering
power of 300 W, a carrier mobility of 31.25 cm2

·V−1
·s−1, a carrier concentration of 9.11 × 1018 cm−3,

and a resistivity of 2.19 × 10−4 Ω·m.

Keywords: ITZO film; high power impulse magnetron sputtering; sputtering power;
electrical properties

1. Introduction

Transparent conducting oxides (TCOs) have recently received much attention because of several
of their advantages, such as high transmittance in the visible light range, good chemical stability, good
electrical conductivity, compatibility, and adhesion to typical glass substrates [1–3]. Because of their
unique and excellent properties, they have been adopted in numerous applications. Flat panel displays,
energy-efficient windows, transparent semiconductor components (thin film transistors and memories),
solar cells, and organic light emitting diodes are some of the application examples of TCOs [4–6].
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Nowadays, in order to satisfy demand for a constantly updated display technique, issues regarding
the smoothness, optical, and electrical properties of TCOs are attracting immense attention [7].

Recently, significant interest has emerged around oxide semiconductor film materials which
can be applied in optoelectronic devices, such as panel displays and solar cells. These kinds of
materials can possess excellent optical and electrical properties [8–11]. One material in particular,
indium-tin-zinc oxide (ITZO), has received attention because of its high carrier mobility and high
carrier concentration [12]. The bottom of the conduction band of ITZO is composed of In5s and Sn5s
orbitals, which are divergent and symmetrical. The direct spatial overlap of these orbitals is beneficial
to the carrier transportation [13]. Besides this, the substitution of In3+ ions by Zn2+/Sn4+ pairs leads to
lattice distortion, the existence of ZnIn (i.e. the substitution of In3+ by Zn2+) is beneficial in forming VO

(oxygen vacancies), and SnIn (i.e. the substitution of In3+ by Sn4+) donor defects, which improve the
carrier concentration [14,15].

Spin coating [16,17] and magnetron sputtering [18,19] are the most widely used technologies for
the fabrication of ITZO thin films. Of the various magnetron sputtering methods, high-power impulse
magnetron sputtering (HiPIMS) is superior for the preparation of oxide films [20–22] due to its higher
ionization degree of the sputtered species [23,24]. Thin films grown by this process feature a dense,
smooth, and uniform surface [25,26]. Rezek et al. successfully prepared indium-gallium-zinc-oxide
(IGZO) thin films with high optical and electrical properties using HiPIMS technology in 2018 [27].
They found that strong target peak power density could result in the formation of a very dense structure
with reduced defect content, which leads to an increase in carrier movement and Hall mobility. It is
therefore reasonable to expect that ITZO thin films with enhanced electrical properties can be achieved
through the HiPIMS deposition method. In the current work, the influence of sputtering power on the
microstructural and electrical properties of ITZO thin films was investigated.

2. Materials and Methods

ITZO thin films were deposited on glass and silicon substrates (7 mm × 7 mm) by HiPIMS
using a ceramic ITZO target (99.9% purity, Φ76.2 mm, In:Sn:Zn:O = 18.46:10.77:10.77:60.00 at %,
Zhongnuoxincai (Beijing) Technology Co., Ltd., Beijing, China) at room temperature. The deposition
system (MGS-500, Junsun Tech. Co., Ltd., New Taipei) as shown in Figure 1) was pre-pumped to a
base pressure below 7 × 10−4 Pa. The working pressure and Ar (purity of 99.99%) flow rate were
maintained at 0.7 Pa and 20 mL/min, respectively. The magnetron was fabricated by Junsun Tech. Co.,
Ltd. and the target was powered by SPIK2000A pulse supply (Shen Chang Electric Co., New Taipei)
with a constant power of 300 W. The pulse on-time (ton) and the pulse off-time (toff) were 50 µs and
500 µs, respectively. The duty cycle, which is defined as the ratio between the ton and the sum of ton

plus toff, was maintained at 9.09% during the deposition. One-hundred-nanometer-thick ITZO thin
films were prepared at different sputtering powers of 100, 200, 300, and 400 W.
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I-V characteristics of HiPIMS power output were monitored using an oscilloscope (Rigol DS5202CA,
Rigol Technologies. Inc., Beijing, China). The films’ thicknesses were measured using a step profiler
(KosakaSurfcoder, Kosaka Laboratory Ltd., Tokyo, Japan). The chemical compositions were analyzed
by an electron probe X-ray microanalyzer (EPMA, JEOL JXA-8200, JEOL, Tokyo, Japan). The phase
structure was characterized using an X-ray diffractometer (XRD, X’Pert PRO MPD, Philips PANalytical
Almelo, Netherlands). The films’ morphology and roughness were observed using a field emission
scanning electron microscope (FE-SEM, JEOL JSM-6701F, JEOL, Tokyo, Japan) and via atomic force
microscopy (AFM, DI-Dimension 3100, Digital Instruments, Bresso, Italy), respectively. The films’
electrical properties were obtained using a Hall effect measurement system (AHM-800B, Agilent
Technologies, Santa Clare, CA, USA).

3. Results and Discussion

ITZO thin films were deposited by HiPIMS with a duty cycle of 9.09%. Figure 2 shows the target
current and voltage under different sputtering powers. The peak power densities are calculated and
compared in Figure 3. When the sputtering power increases from 100 to 400 W, the instantaneous target
peak current increases, resulting in the target peak power density rising from 50.0 to 270.1 W·cm−2.
The improvement in the deposition rate is due to the enhanced sputtering power providing more
energy to Ar ionization, which causes more atoms to be sputtered from the target.
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Figure 3. Peak power density and deposition rate at different sputtering powers.

Table 1 shows the relationship between the sputtering power and the film’s composition. With
an increase in sputtering power, the concentration of In, Sn, Zn, and O changes slightly. The results
indicate that the sputtering power does not much affect the atomic concentration of ITZO thin films
deposited by HiPIMS. Meanwhile, all the films are oxygen deficient, under which condition oxygen
vacancies are easily formed, contributing to the film’s conductivity.

Table 1. Atomic concentration of ITZO films deposited at different sputtering powers.

Power
W In Sn Zn O

100 52.13 (±0.1) at % 4.03 (±0.1) at % 1.12 (±0.1) at % 42.71 (±0.1) at %
200 52.72 (±0.1) at % 3.40 (±0.1) at % 1.06 (±0.1) at % 42.82 (±0.1) at %
300 52.91 (±0.1) at % 3.56 (±0.1) at % 1.03 (±0.1) at % 42.50 (±0.1) at %
400 51.02 (±0.1) at % 4.33 (±0.1) at % 1.15 (±0.1) at % 43.51 (±0.1) at %

An X-ray diffractogram of the ITZO thin films fabricated at various sputtering powers is shown in
Figure 4. For the ITZO thin films deposited at sputtering powers between 100 and 300 W, there is no
obvious diffraction peak that can be detected, indicating the amorphous nature of the films. As the
sputtering power increases to 400 W, a crystallization peak emerges at around 30.97◦ (JCPDS: 22-0336),
which we believe comes from In2O3 (104). As detected by EPMA analysis, In content is much higher
than that of Sn and Zn. As the sputtering power increases, the atom migration ability is enhanced
and In2O3 tends to precipitate to form a crystal phase. As a result, the crystallinity of the ITZO
thin films improves [28,29]. It has been reported that post-annealing can further enhance the film’s
crystallinity [30]. However, considering the heat resistivity of the flexible substrate where ITZO is
potentially used in the flexible display, we did not conduct this experiment in this work.
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Figure 4. XRD patterns of ITZO films deposited at different sputtering powers.

FE-SEM analyses were performed to obtain the top surface appearance of ITZO thin films.
The observations at a magnification of 2 × 105 are shown in Figure 5. From the SEM images, we can see
that ITZO thin films prepared using HiPIMS technology are uniform and smooth. With the sputtering
power increasing from 100 to 400 W, the films become more homogeneous, and their roughness
decreases from 2.10 to 1.18 nm. Compared with the published ITZO films [31], the grain size of ITZO
thin films deposited by HiPIMS is smaller and the films are more uniform and denser, which would be
beneficial for avoiding carrier losses and defect states in ITZO-based devices [32].
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Figure 5. SEM and atomic force microscopy (AFM) images of ITZO films deposited on silicon substrates
at sputtering powers of (a,a1) 100 W and (b,b1) 400 W.

The films’ electrical properties including Hall mobility and carrier concentration were measured
and are shown in Figure 6. With sputtering power increasing from 100 to 300 W, high-energy particles
have more energy to migrate and diffuse on the film’s surface and thus the film’s quality improves [33],
i.e. the denser structure ensures the smooth transfer of the carriers and enhances the film’s carrier
mobility [34]. As a result, the Hall mobility rises significantly from 0.93 to 31.25 cm2

·V−1
·s−1 with the

sputtering power increase. However, an obvious decrease in Hall mobility can be observed when
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the sputtering power rises further to 400 W. We believe that the formation of In2O3 increases the
grain boundary scattering and reduces the carrier mobility [35]. A similar phenomenon has also been
reported in ITZO:N films [36].

As for the carrier concentration, when the sputtering power is 100 W, the crystallinity of ITZO
films deposited by the low-energy sputtered particles is relatively poor, resulting in large numbers of
defects (such as oxygen vacancies) in the films [27]. The film’s carrier concentration reaches a high
value of 1.03 × 1020 cm−3 at this sputtering power. With the sputtering power increasing to 200 W,
the increment in the oxygen amount reduces the oxygen vacancy (VO) content, while the reduced Sn
amount lowers the substitution of In by Sn (SnIn). The decrement in those donor defects of VO and SnIn

leads to a significant decrease in the carrier concentration to 8.13 × 1018 cm−3. In addition, the decrease
in Zn content also makes it harder to from donor defects such as VO and SnIn due to the presence
of ZnIn lowering the formation energy of VO and SnIn [7]. Upon further increasing the sputtering
power to 300 W, the Zn content remains almost unchanged while O content slightly decreases and Sn
content rises a little, resulting in the donor defects of VO and SnIn increasing moderately. The carrier
concentration then increases marginally to 9.11 × 1018 cm−3.

As the sputtering power reaches 400 W, the higher sputtering power is conducive to the ionization
of the working gas Ar [14,37,38], which could transfer sufficient energy to the sputtering species (In,
Sn, and Zn atoms or clusters) and improve their activity. This causes ZnIn, SnIn, and VO to form easily,
enhancing the carrier concentration (ZnIn lowering the formation energy of SnIn and VO, while SnIn

and VO are the donor defects in ITZO films). On the other hand, In, Sn, and Zn species with higher
activity easily react with oxygen, leading to increased oxygen content, which reduces the number of
VO defects. Under the combined effect of the above two conflicting factors, the carrier concentration
further increases to 2.12 × 1019 cm−3.

The variation in the films’ resistivity is influenced by the Hall mobility and carrier concentration,
as shown in Equation (1) [34], i.e.

ρ = 1/(e×N × µ) (1)

where ρ is the film’s resistivity, e is the electron charge, N is the carrier concentration, and µ is the
Hall mobility. According to Figure 6, resistivity values of ITZO thin films decrease with increasing
sputtering power. For the films deposited at sputtering powers of 100, 200, 300, and 400 W, their
resistivities are 6.55 × 10−4, 3.17 × 10−4, 2.19 × 10−4, and 1.94 × 10−4 Ω·m, respectively.
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Figure 6. Electrical properties of ITZO films deposited at different sputtering powers.

4. Conclusions

In this work, ITZO thin films were deposited at different sputtering powers using HiPIMS
technology. The microstructures and electrical properties of the films were investigated. The results
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showed that all the films were uniform with dense structures. As the sputtering power increased, the
deposition rates of the ITZO films rose and the film’s composition altered slightly. The film’s Hall
mobility peaked at 31.25 cm2

·V−1
·s−1 when the sputtering power was 300 W. This is a relatively high

carrier mobility compared to the ITZO films deposited by other technologies and is a very important
feature for improving the response speed of the switch. The corresponding film’s carrier concentration
and resistivity were found to be 9.11 × 1018 cm−3 and 2.19 × 10−4 Ω·m, respectively. This result is
attributable to highly ionized plasma, which leads to improved film quality and excellent electrical
properties. Overall, ITZO thin films deposited by HiPIMS have been found to have superior uniformity
and higher carrier mobility, with increased response speed and reduced power consumption, which we
expect will improve the performance of devices incorporating ITZO films.
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