Supplementary Materials: Electrochemical Corrosion of Nano-Structured Magnetron-Sputtered Coatings

Sebastian Calderon 12,*, Cristiana F. Almeida Alves 1,2, Noora K. Manninen 3, Albano Cavaleiro 3 and Sandra Carvalho 2,3

¹ INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; cristiana.alves@inl.int

² CFUM-UP, Physics Department, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal; sandra.carvalho@fisica.uminho.pt

³ SEG-CEMMPRE, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra, Portugal; noora.kristiina.m@gmail.com (N.K.M.); albano.cavaleiro@dem.uc.pt (A.C.)

* Correspondence: secave44@gmail.com

Coating	Test	Electrolyte	Main Remark/Reference
0		<u> </u>	Stainless Steel 316 (L)
a-C:H	OCP, EIS, PTD	0.9% NaCl	The hydrogenated coatings performed best when compared with the non-hydrogenated coatings, which may be attributed to the lower density of superficial defects, more compact morphology, and lower amount of graphitic bonds, which gave rise to a decrease in coatings' conductivity [47].
a-C	OCP, EIS, PTD	3.5% NaCl	The potentiodynamic curves showed an improve corrosion protection of the films, by reducing the density current; in addition, the corrosion potential shifted to higher potential compared to both SS316l and pure a-C coatings. However, when silver rose to 8.4 at.%, the corrosion resistance decreased with respect to that for a middle content of silver [51].
Ti/a-C	OCP, EIS, PTD	0.89% NaCl	The corrosion resistance of SS 316L was enhanced. Corrosion resistance of coatings is dependent on the porosity level of the coatings [11].
Cr-C	OCP, PTD	1 mM H ₂ SO ₄	Higher Cr content (74 at.%) shows higher corrosion resistance; however, it is less noble. It is evidenced that carbon is also oxidizing, as demonstrated by XPS [50].
a-C:Ti and a-C:Cr	OCP, EIS, PTD	SBF	Both coatings reveal an improved corrosion performance due to the Ti and Cr oxides on the surface. Yet, Cr-doping increases the corrosion resistance of a-C coatings through a decrease of the <i>sp</i> ² / <i>sp</i> ³ ratio [12].
TiN, AlN and Ti1- xAlxN	OCP, EIS, PTD	SBF and 3.5% NaCl	Ti1-xAlxN films have an improve corrosion performance due to the addition of Al into the TiN coating, which causes microstructure densification and subsequently a decrease in the grain size and reduced surface roughness [92].
TiN, TiALN and TiN/TiAlN	OCP, EIS, PTD	3.5% NaCl	Both TiAlN and TiN/TiAlN have better corrosion resistance than the single TiN layer and bare substrate. For the TiAlN, the incorporation of Al passivates the surface and blocks the pores, increasing the resistance to corrosion [27].
TiN, TiAlN, CrN	OCP, PTD	9% NaCl, 3.4% HCl	In TiN _x film, the conversion from a rich Ti film to a pure TiN film increases the dissolution rate of the system, which is accompanied by a clear modification of the films morphology, from compact to more porous films [28].

Table S1. Electrochemical corrosion studies of magnetron sputtered films.

ZrN-Ag	PTD	3.5% NaCl	The results showed that better corrosion resistance was obtained for higher bias potentials, associated with the change of the film structure due to bias-induced ion bombardment [32].
			Low Ag content in ZrCN coatings improves the electrochemical properties, controlled by the coating's
ZrCN and	OCP, EIS, PTD	0.89% NaCl	microstructure. Higher levels of Ag reduce polarization resistance, suggesting an active electrochemical
ZrCN:Ag	, ,		behavior due to silver presence [37, 87].
			Ti or Ti6Al4V Alloy
			The corrosion protection is improved using graphite-methane in comparison to graphite-hydrogen.
DLC	EIS, PTD	3% NaCl	% NaCl The results showed that better corrosion resistance was obtained for higher bias potentials, asc with the change of the film structure due to bias-induced ion bombardment [32]. Low Ag content in ZrCN coatings improves the electrochemical properties, controlled by the comic microstructure. Higher levels of Ag reduce polarization resistance, suggesting an active electroche behavior due to silver presence [37, 87]. Ti or Ti6Al4V Alloy The corrosion protection is improved using graphite-methane in comparison to graphite-hydr 6 NaCl Modeling the EIS results demonstrate that the resistance simulating the pores is higher for DLC or to a-C:H [49]. Iank's a-C films with lower than 3.1 at.% Ti are stably passive. However, when Ti content increases to 1. duition the a-C film exhibits dynamic passivation, being susceptible to crevice pitting corrosion [52 rode's aulated a-CN::Ti coatings with low amount of Ti, inhibit graphitization, revealing lower current densit higher corrosion potential as compared with Ti6Al4V, improving their corrosion behavior [5 SBF) Si addition in low amounts increases the corrosion resistance of films. For a Si content around 8 a film achieves the best corrosion resistance [38]. Although both coatings reveal superior anticorrosive properties related to the substrate, corre behavior was improve the electrochemical properties of β-Ti. However, TiAlN showed a sup corrosion protection without visible surface dissolution, when compared with WC:C coatings aliva on the deposition conditions [19].
	-,		to a-C:H [49].
		Hank's	a-C films with lower than 3.1 at.% Ti are stably passive. However, when Ti content increases to 15.2 at.%,
a-C:11	OCP, PID	solution	the a-C film exhibits dynamic passivation, being susceptible to crevice pitting corrosion [52].
		Tyrode's	
a-CNx and	OCD DTD	Simulated	a-CNx:Ti coatings with low amount of Ti, inhibit graphitization, revealing lower current density and
a-CNx:Ti	OCP, PID	Body Fluid	higher corrosion potential as compared with Ti6Al4V, improving their corrosion behavior [53].
		(SBF)	
7N.C:	OCD FIC	$0.00/N_{\rm e}C^{1}$	Si addition in low amounts increases the corrosion resistance of films. For a Si content around 8 at.%, the
ZriN:51	OCP, EIS	0.9% NaCI	film achieves the best corrosion resistance [38].
Z-CN 1		D'	Although both coatings reveal superior anticorrosive properties related to the substrate, corrosion
ZrCN and	OCP, PTD	Kinger	behavior was improved by adding Hf to the basic ZrCN coating, being enhanced by the increase of the
ZICN:HI		Solution	non-metal/metal ratio [10].
TiAlN and	OCD	Artificial	Both coatings improve the electrochemical properties of β -Ti. However, TiAlN showed a superior
WC:C	OCP	saliva	corrosion protection without visible surface dissolution, when compared with WC:C coatings [101].
7.N	OCP, PTD	Artificial	ZrN coating improves corrosion behavior of Ti substrate. Its corrosion properties are strongly dependent
ZriN		saliva	on the deposition conditions [19].
			NiTi Alloy
		Turada's SPE	Si/SiC-graded interlayers play an important role in improving the adhesion and subsequently the
51/51C/DLC	OCF, FID	Tyrode's SBF	corrosion resistance of DLC coating and match the substrate performance [127].
Ti/TiC	OCP FIS	SBE	Ti/TiC films provide significantly better corrosion resistance and stability compared to the uncoated NiTi
11/11C	001, 115	501	substrate, reducing corrosion rates [106].
ZrN	OCP PTD	Artificial saliva	7rN coating has better performance toward corresion than uncoated NiTi [102]
	OCF, FID		Zity coating has bener performance toward corrosion than uncoated-with [102].
DI C	OCP FIS	PBS	DLC coatings match NiTi corrosion performance. Polarization and pore resistance increase as the film
	OCI , E15	100	thickness increases [94].
			Al Alloys
Si-DLC	PTD	0.3% NaCl	The incorporation of Si into DLC improves the corrosion resistance due to the reduction of the internal
		0.570 11001	stress [54].

TiN	PTD	3% NaCl	The columnar growth of TiN films is avoided by applying a bias potential that creates defects and
			generates new nucleation sites [7].
AlN	PTD	3.5% NaCl	It is demonstrated that the main corrosion source of PVD coatings is represented by pores and pinholes.
			Stopinaces Staal 204
TiN	PTD	3.5% NaCl	products, resulting in increased local stress [70].
Ti/TiN	OCP, PTD	3% NaCl	Ti/TiN multilayers improve the corrosion performance of SS 304 better than TiN monolayers, since Ti/TiN
			multilayers enhance the impermeability of the columnar film [71].
CrN	Scanning electrochemical	3.5% NaCl	The main cathodic reaction of the pitting region is the reduction of dissolved oxygen, producing hydroxyl ions and resulting in increased pH [17].
	microscopy		
C N		2 E0/ NJ C1	The films deposited at lower pressures snowed lower density currents but an active benavior in the PTD
Crin	EIS, PTD	3.5% NaCI	test. The Kp tends to decrease for coatings deposited at lower pressures, due to the reduction of porosity [62]
			Glass
	OCP, EIS, PTD	0.9% NaCl	The PDT test demonstrated that, as nitrogen is increased, the area in contact with the electrolyte increases
TiNx			by creating a more porous structure [21].
	OCP, EIS, PTD	Synthetic	The Rp is reduced as silver increases, down to values close to the one of Ag, related to the oxidation of Ag
TiN-Ag		sweat	and formation of AgCl [33].
			Silicon
DLC,			
DLC:N		Hank's	N incorporation into a DLC matrix does not change significantly the corrosion behavior of DLC control.
and	OCP, PID	solution	Yet, Pt and Ru increase the anodic potential resistance and subsequently inhibit pitting corrosion [57].
DLC:PtRu			
NiTi and	OCD FIG DED	DBC	
NiTi/TiN	OCP, EIS, PTD	PBS	The film shows better corrosion performance that NTTT film, due to the increase of surface area [81,105].
			AISI M2 or High Speed Steel
TiNx	OCP, EIS, PTD	Artificial	Stoichiometric composition (50 at.% N) shows the lower thermodynamic tendency to corrode. Best
		sweat	corrosion resistance is found for films containing low percentages of N, due to a denser structure [24,25].
WTiN	OCP, EIS, PTD	0.1 M KCl	Coated steel always presents better corrosion resistance than uncoated steel. The OCP of the coated
			samples shows a tendency to decrease as a function of time, tending to the values of the steel [34].
NbN	PTD	4.7% NaCl	Niobium passivates by an oxide layer of Nb2O5, which protects the system against corrosion. Sudden
			delamination of the coatings material is observed, which may be due to the pitting corrosion or the
			generation of corrosion products within the pores [20].
CrN/NbN	PTD	4.7% NaCl	Etching is used to improve the films electrochemical performance showing opposite consequence on CrN
			and NbN coatings, improving and deteriorating the resistance, respectively [128].

TiN	OCP. EIS. PTD	3.5% NaCl	The porosity of the films is altered by using a two-grid attachment magnetron type, due to the increment
			of the ion bombardment, decreasing the current density of the films [63].
			Other Steels
Ti/C	OCP. EIS. PTD	3% NaCl	The Ti/C gradient layers decrease the corrosion current and consequently the corrosion rate of Rex 734
11/0	CCI, LIO, I ID	070 INACI	alloys, as well as increase the polarization resistance [4].
TiN/NbN	OCP, PTD	0.5 M HCl 3%	The number of interfaces in the TiN/NbN system shows that by increasing the number of layers, the
		NaCl	corrosion current is reduced, and less pits are observed on the surface [72].
TIN TICN	PTD	3.5% NaCl	TiCN coatings demonstrate better corrosion resistance compared to TiN, due to a smoother surface and
IIIN, IICIN			more compact morphology [61].
TIN/SiaNI	EIS, PTD	3.5% NaCl	TiN corrosion resistance improves as an Si ₃ N ₄ amorphous phase is incorporated in the coatings, which
111N/3131N4			may be explained by the dielectric character of the phase and the denser morphology of this phase [39].
TiCN/NbC		0.5% NJ 61	It is demonstrated that by lowering the multilayer period, a lower porosity is attained, improving the
Ν	EIS, PTD	3.5% NaCI	corrosion resistance of the coatings [73].
CrN, TiN,			TiAlN presents better corrosion resistance as compared to TiN and CrN single layers, due to the
TIAIN	EIS, PTD	3.5% NaCI	formation of an Al_2O_3 layer that passivates the films surface [29].
			Cr–CrN multilayer coating improves substrate corrosion resistance, due to the multilayers' interfaces
Cr-CrN	OCP, EIS, PTD	3% NaCl	blocking the propagation of cracks and dislocations and avoiding the continuity of pinholes and pores
			[78,103].
<u></u>	PTD	H ₂ SO ₄	CrN and Cr ₂ N coatings in sulfuric acid show a more protective behavior when compared to pure Cr films.
CrN		NaCl	On the contrary, in saline solutions, CrN films do not confer protection [129].
~		3.5% NaCl	When Al content increases in the CrAIN, the polarization resistance decreases, explained by the oxidation
CrAIN	EIS, PTD		of Al [35].
		3.5% NaCl	The polarization resistance of the coating decreases when the bias voltage is increased, growing also the
VN	EIS, PTD		number of defects on the surface [130].
			Others
TiAlCN/C		SBF	The multilaver coating shows an enhanced general corrosion protection related to the Cr–Co–Mo allov
Nx	OCP, PTD		alone, and pitting corrosion is avoided [107].
TiN	OCP, PTD	0.9% NaCl	TiN coating matches the substrate performance showing a much lower passivation current density [100].
	OCP, EIS, PTD	Artificial	Slight improvement in the polarization resistance is observed when NdFEB is coated with TiN films, the
Ti/TiN		saliva	increment of the number of layers also increases Rp up to a value that remains constant [8]
BCN	Dissolution rate	1 M HCl	BCN dissolution rate varies in each electrolyte with NaOH>NaCl>HCl showing a correlation between
		1 M NaCl	the dissolution and the pH In addition the coatings show a lower dissolution rate as carbon increases in
		1 M NaOH	the coatings [41].
		1 111 140011	PT = Potentiodynimic test
			OCP = Open circuit potential
			FIS = Flectrochemical impedance spectroscopy
			Lio Electronica impedance specifoscopy

© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).