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Abstract: Polysilazane (PSZ) have been used for many years as precursors for the development of
ceramic materials. Recently, hydrocarbon-substituted polysilazane, which is called organopolysilazane
(OPSZ), has been proposed as possible alternative to silanes for the corrosion protection of metals
by the sol gel route. In this work, polymethyl(hydro)/polydimethylsilazane-derived coatings were
deposited on low-carbon steel for corrosion protection purposes. The effect of the OPSZ precursor
concentration (10–40 v/v %) in butyl-acetate on the final properties of the coatings was investigated.
Coatings in the thickness range of 1 to 3.5 µm were obtained. The experimental results showed that the
concentration of OPSZ in the solvent affects the structural properties as well as the dry film thickness
of the hybrid layer. In particular, the network arrangement seems to be influenced by the dilution
of the OPSZ precursors solution. The electrochemical characterization revealed that a minimum
thickness of about 2 to 3 µm is needed to provide the mild steel substrate with enhanced corrosion
protection properties compared to the bare substrate. Comparing the obtained results with literature
data, it seems that OPSZs are a potential alternative to coatings derived from organisilicon precursors.
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1. Introduction

Thin ceramic coatings have been extensively studied for the protection of steel against corrosion and
degradation. These protective layers are commonly applied by means of different techniques: Vacuum
technology (such as physical vapor deposition, PVD [1,2]; chemical vapor deposition, CVD [3,4];
and atomic layer deposition, ALD [5,6]), inductively coupled radio frequency plasma [7], and metal
alkoxides-based sol-gel route [8–12]. As far as the latter deposition technique is concerned, silicon
alkoxides, zirconium alkoxides, and titanium alkoxides have been extensively investigated for the
development of hybrid films for the protection of different metals, in particular mild steel, stainless
steel, zinc, aluminum, and magnesium. Among the different hybrid molecules that have been object of
investigation, only very few literature reports deal with the use of polyorganosilazanes (OPSZs) [13–15]
to develop protective films for the corrosion protection of low-carbon steel. OPSZ are polysilazanes
(PSZs) in which hydrocarbon substituents are bound to silicon atoms. In this context, generally
speaking, OPSZs have not been the subject of extensive research in the field of corrosion protection
of metallic materials, as only a little investigation has been carried out [16,17]. Polyorganosilazanes
(OPSZs) consist of a class of materials characterized by a Si–N–Si structural framework where silicon
and nitrogen atoms are alternately connected. Reactive or inert side groups are bonded on the Si
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atoms [18,19]. In particular, along with hydrocarbon substituents, highly reactive Si–H and N–H are
present in the OPSZ backbone, thus making these materials suitable to form a dense silica network as
well as adherent films on diverse substrates. In fact, due to the high reactivity of the Si–N, N–H, and
Si–H bonds towards OH groups, OPSZs are recognized to be able to form Si–O–Me bonds [20,21] on a
metal surface thanks to the strong affinity with the metal hydroxides. It has been demonstrated that
by means of thermal or chemical curing, highly crosslinked networks can be obtained (accompanied
by the release of hydrogen and ammonia as by-products). In the last decades, these materials have
been extensively used as precursors for the production of SiO2, SixNy, and SixCyNz ceramics through
high-temperature thermal decomposition of the polymer in inert or reactive atmospheres [22–26] or by
exposure to reactive species, such as ammonia [27] or boron chloride [28]. However, OPSZs are moisture
curable polymers [29], which can also be used for the production of ceramic or hybrid materials by a
relatively low-temperature heat treatment (<240 ◦C) [18,19,30–32]. Under such curing conditions, the
obtained materials are recognized to combine good barrier properties and mechanical strength [33].
As far as carbon steel is concerned as the substrate to coat, analogously to the hybrid organic-inorganic
coatings derived from metal alkoxides precursors, OPSZs have potential as a metal pre-treatment prior
to painting or as a standalone protection system for mild environments. Although this class of materials
is not new and is already commercially available, novel alkoxysilyl-substituted polysilazane recently
attracted considerable interest [34]. In addition, to the best of our knowledge, an electrochemical
assessment of the corrosion protection properties of OPSZ films deposited on mild steel has not
been carried out yet. For this reason, in this work, an OPSZ, namely propyltriethoxysilyl-substituted
polymethyl(hydro)/polydimethylsilazane (PMDMS), has been employed to develop hybrid coatings
for the corrosion protection of mild steel. In previous works by the same authors, OPSZ was employed
to develop hybrid films on 1050 aluminum alloy [35,36]. By investigating the curing parameter (time
and temperature) and the concentration of the precursor it was possible to obtain protective films that
enhanced the durability of the substrate. Aiming to assess the potential of this material to develop
protective coatings on mild steel, in this work, different dilutions of the OPSZ in butyl-acetate were the
object of investigation. The hydrolysis of the S–H and S–N was carried out under controlled conditions
by exposing the samples in the climatic chamber at 80% R.H. during 24 h. The chemical-structural
changes induced by the curing procedure were assessed by means of FT-IR spectroscopy. The corrosion
protection properties were evaluated by means of electrochemical techniques, such as electrochemical
impedance spectroscopy (EIS) and polarization curves collected in 0.1 M NaCl solution. A scanning
electron microscope (SEM) was employed to measure the dry film thickness and an optical microscope
(OM) was used to evaluate the condition of the surfaces after exposure to 0.1 M NaCl.

2. Materials and Methods

Standard matt finish Q-Panel steel (C < 0.15, Mn < 0.60, P < 0.03, S < 0.035, Fe bal.) was
used as the substrate to coat. Prior to coating, the substrates were degreased in acetone under
ultrasounds for 6 min. A commercially available OPSZ, namely propyltriethoxysilyl-substituted
polymethyl(hydro)/polydimethylsilazane (namely Durazane 1500, supplied by Merck, Merck KGaA,
Darmstadt, Germany) was used as precursors of the hybrid films (Figure 1).
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The OPSZs precursor was diluted to 10, 20, 30, and 40 v/v % in butyl acetate. Regardless of the
concentration of OPSZ in the solvent, the obtained sol was always completely transparent, and no
phase separation was observed. The films were obtained by the conventional dip-coating method:
A deposition time of 20 s and withdrawal rate of 2 mm/s were employed. After deposition, the
coated plates were conditioned in a climatic chamber at 25 ± 2 ◦C and 80% ± 2% R.H. during 24 h.
According to the OPSZs’ chemistry, the exposure in the climatic chamber aims to promote the hydrolysis
of the Si–O–CH2CH3, Si–N, N–H, and Si–H bonds in order to form silanol groups as short-living
intermediates that are responsible for the subsequent condensation and cross-linking reactions [16].
Finally, the films were cured at 100 ◦C for 60 min. According to the dilution of the OPSZ precursor in
the organic solvent, the labels Psz10/Psz40 were used thorough the paper.

The cured coatings were analyzed by a JEOL JSM-IT300 scanning electron microscopy (Tokyo,
Japan) in order to evaluate the surface morphology and the dry thickness. For this purpose, the samples
were fractured in liquid nitrogen in order to promote a brittle fracture and to observe the cross section.
FT-IR analysis was recorded on a Varian 4100 FTIR Excalibur Series instrument (Palo Alto, CA, USA),
exploiting the attenuated total reflectance (ATR) geometry in the wavenumber range 4000–500 cm−1

(64 scans, 4 cm−1 resolution) using a diamond crystal as the internal reflective element (IRE). The
corrosion protection properties of the films were assessed by means of electrochemical techniques,
such as polarization curves and electrochemical impedance spectroscopy (EIS). The electrochemical
measurements were carried out using a classic three electrode configuration. The coated steel plate
was the working electrode; a platinum ring counter electrode and an Ag/AgCl (+210 mV vs SHE)
reference electrode were used. The investigated area was 6 cm2 and 0.1 M NaCl was used as the
testing solution. The polarization curves were collected by sweeping the potential from the open
circuit potential (OCP) to +350 mV and from the OCP to −350 mV for the anodic and cathodic branch
of the curve, respectively. The sweep potential was set to 0.166 mV/s. The polarization curves were
collected after 1800 s of immersion in the electrolyte, in order to reach a stable value of the OCP. As far
as the EIS measurements are concerned, a frequency range of 105 to 10−2 Hz with a signal amplitude of
10 mV (rms) were used. The evolution of the EIS spectra was assessed during 168 h of continuous
immersion. All the electrochemical measurements were at least duplicated to assess the repeatability
of the analytical methods.

3. Results

Figure 2 shows the appearance of the cross-section of the coatings obtained with a brittle fracture
in liquid nitrogen. No pores or noticeable cracks were observed by SEM investigation, regardless of
the thickness of the coatings. All the investigated coatings appeared as quite homogeneous. Notice
that due to the sample preparation, the coatings are partially detached from the metal surface. The
surface of the coatings seems smooth and the thickness looks quite homogenous. No cracks, defects,
and pores were observed in all cases.Coatings 2019, 9, x FOR PEER REVIEW 4 of 15 
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the coatings was assessed by means of FT-IR spectroscopy. Figure 4 shows the comparison of the 
infra-red spectra of the PSZ coatings. The two weak peaks at 2966 and 2910 cm−1 are attributed to the 
CH asymmetric and symmetric stretching vibrations of CH3 and CH2 groups [38]. The corresponding 
bending vibration appears at 1268 cm−1 (Si–CH3) [39] and at about 1408 cm−1 (CH3) [40]. All the spectra 
exhibit two intense absorption peaks in the 1200 to 1000 cm−1 range, which is attributed to the 
existence of a silsesquioxane network. The main signals, which are observed at 1112/1137 and 
1009/1045 cm−1, are assigned to Si–O asymmetric stretching vibrations. According to the literature 
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Figure 2. SEM images of the cross section of the investigated samples: PSZ-10 v/v % (a), PSZ-20
v/v % (b), PSZ-30 v/v % (c), and PSZ-40 v/v % (d). The arrows in each figure highlight the OPSZ coating.

The effect of the processing parameters and of the dilution in butyl acetate on the dry film thickness
is reported in Figure 3. All the OPSZ layers have a dry thickness higher than 1 µm. After increasing the
concentration in OPSZ, the thickness increases, as predicted by the Landau–Levich relationship [37],
due to the rise in viscosity. However, this effect is not observed when the OPSZ concentration is
increased from 10 to 20 v/v %. It is not clear to the authors the reason behind the independency of
the thickness from the OPSZ concentration below 20 v/v %. It seems that the viscosity of the solution
below the concentration in the OPSZ of 20 v/v % is not the main mechanism to control the thickness of
the film. Except for the coating derived from solutions in the concentration range 10–20 v/v %, the
thickness of the deposits follows an increasing trend that is almost linear.
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The effect of the different dilutions of PSZ in the organic solvent on the structural properties of
the coatings was assessed by means of FT-IR spectroscopy. Figure 4 shows the comparison of the
infra-red spectra of the PSZ coatings. The two weak peaks at 2966 and 2910 cm−1 are attributed to the
CH asymmetric and symmetric stretching vibrations of CH3 and CH2 groups [38]. The corresponding
bending vibration appears at 1268 cm−1 (Si–CH3) [39] and at about 1408 cm−1 (CH3) [40]. All the spectra
exhibit two intense absorption peaks in the 1200 to 1000 cm−1 range, which is attributed to the existence
of a silsesquioxane network. The main signals, which are observed at 1112/1137 and 1009/1045 cm−1,
are assigned to Si–O asymmetric stretching vibrations. According to the literature [41], these signals
are likely related to ladder-like polymers and closed oligosilsesquioxane cycles, respectively. The
signal at 1009/1045 cm−1 shows a slight shift towards lower wavenumbers as the dilution in the organic
solvent is increased (10 v/v %→ 40 v/v %), as indicated in Table 1. Notice that the investigated samples
differ for the intensity and relative ratio of the Si–O-related peaks: The relative intensity of the peaks
at 1112/1137 and 1009/1045 cm−1 (attributed to ladder-like polymers and oligosilsesquioxane cycles,
respectively) exhibit little changes when increasing the PSZ concentration in the solution. The ratio
between the intensity of the peak related to the oligosilsesquioxane cycles and to the ladder-like
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polymers is reported in Table 1 as the “Si–O–Si relative ratio”. Notice that the ratio increases with OPSZ
concertation in the dipping solution, thus suggesting that the relative amount of closed structures
seems to rise with the OPSZ concentration.

Table 1. Si–O–Si asymmetric stretching band shift and relative intensity of the Si–O–Si peaks.

Sample Peak Position Si–O–Si Relative Ratio

PSZ-10 1045 0.954
PSZ-20 1022 1.370
PSZ-30 1018 1.577
PSZ-40 1008 1.807

The presence of residuals of the Si–N–Si network is confirmed by the presence of the weak
shoulder at 1177 cm−1 (NH deformation in Si–N–Si) [42] and by the peak at 910 cm−1 (Si–N stretching
in Si–N–Si) [43]. The strong absorption band at 774 cm-1 is attributed to the Si–C bond [40] of the
hydrocarbon substituents bonded to the Si atoms. The presence of the absorption band related to the
Si–H bond was not observed. The FT-IR investigation indicates the presence of peaks, which can be
attributed both to the Si–O–Si as well as to the Si–N–Si network. These findings suggest that: (1) The
curing condition employed in this study does not promote a complete curing (hydrolysis of all the
NH is not achieved) of the film; (2) the hydrolysis of the Si–H bonds seems to be almost completed;
and (3) a sort of two-phase material, consisting of non-converted polysilazane domains (Si–N–Si) and
polysilsesquioxane (Si–O–Si) domains seems to have formed.
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Figure 4. FT-IR spectra of the investigated coatings.

The anodic and cathodic polarization curves collected upon immersion of the samples in 0.1 M
NaCl are reported in Figure 5a,b, respectively. Notice that the presence of the coating promotes a
shift toward higher values of the open circuit potential (OCP), which increases from about −0.60 V
to about −0.42/−0.46 V. The different thicknesses seem not to remarkably affect the OCP value. The
increase in OCP is likely to be related to the presence of the film, which reduces the anodic activity
of the substrate. Regardless of the OPSZ dilution, anodic and cathodic current densities are shifted
toward lower values compared to the bare substrate. More precisely, the increase in film thickness
promotes a decrease in both anodic and cathodic current density. The effect appears to be more marked
in the anodic part of the curve as the current density is reduced of about three orders of magnitude.
This current density decrease is likely to be related to the ohmic drop due to the presence of a dielectric
coating. The electrochemical activity detected is probably related to the local electrochemical activity,
which can be measured where the coatings are not completely protective (i.e., in correspondence with
the defects, such as micro-pores or cracks).
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EIS measurements were performed to evaluate the electrochemical properties of the investigated 
coatings during immersion time in 0.1 M NaCl solution. Figure 7a–h show the time evolution of the 
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Figure 5. Anodic (a) and cathodic (b) polarization curves collected over the investigated samples in
0.1 M NaCl.

The evolution of the open circuit potential versus immersion time during one week of continuous
immersion in the 0.1 M NaCl solution is reported in Figure 6. Compared to the bare substrate, all
the coated steel panels except PSZ-10 show a higher potential value, at least in the very first hours
of immersion. The PSZ-20, PSZ-30, and PSZ-40 samples maintain remarkably higher values of the
open circuit potential at least for 24 h of continuous immersion. As time elapsed, a gradual decrease in
OCP was observed for all the investigated samples. In particular, the samples derived from 10 v/v %
OPSZ show a steep drop in the OCP after the very first hours of immersion in the electrolyte, behaving
almost like the bare sample.
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EIS measurements were performed to evaluate the electrochemical properties of the investigated
coatings during immersion time in 0.1 M NaCl solution. Figure 7a–h show the time evolution of the
impedance modulus and phase for the coating object of the present study during 168 h of continuous
immersion. The spectra of the bare low-carbon steel are reported for comparison. Notice that the
Lissajous plots related to the experimental point located in the low frequency range highlight a
non-linear response. This is evident also from Figure 7a, where the experimental points in the low
frequency range looks scattered for all the investigated samples. For this reason, the results of the
fitting of the experimental spectra in the low frequency range are not strictly reliable. The spectra are
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therefore discussed also in qualitative terms by considering the modulus of the impedance in the low
frequency range as a rough estimation of the overall protection properties of the coatings.

As far as the EIS response after 1 h of immersion is concerned (Figure 7a,b), remarkable differences
were observed among the coatings under investigation. PSZ-40 shows the highest impedance modulus
in the low frequency range (|Z|0.01 Hz ≈ 6 × 105 Ωcm2), thus suggesting the best protection efficiency
among the studied coatings (Figure 7a). The bare sample shows a |Z|0.01 Hz ≈ 5 × 102 Ωcm2 while
the samples PSZ-10, PSZ-20, and PSZ-30 of about 3 × 103, 3 × 104, and 2 × 105 Ωcm2, respectively.
As far as the impedance modulus after 1 h of immersion is concerned, all the coatings are at least
slightly protective to the substrate. Considering the phase angle plot for the sample PSZ-40 (Figure 7b),
three relaxation processes can be observed: A high frequency time constant at about 104 Hz, a middle
frequency time constant at about 101 Hz, and a low frequency time constant at 10−1 Hz. According to
the literature [8,44], the high frequency relaxation process has been attributed to the hybrid coating.
The low frequency time constant is expected to be related to the faradic process occurring at the metal
substrate, while the physical meaning of the relaxation process occurring in the middle frequency
range is not clear. According to the literature [40], it is likely to be related to the metal/hybrid network
interface and/or to the corrosion products accumulating at the metal/solution interface. On the other
hand, the samples derived from 20 and 30 v/v % OPSZ solutions show two relaxation processes located
at about 103/104 and 100 Hz, which are attributed to the contribution of the coating and the faradic
process, respectively. The sample PSZ-10 shows an impedance spectrum very close to the bare substrate,
thus proving a very low extent of corrosion protection. In fact, the relaxation process corresponding to
the presence of the coating (located in the 103/104 Hz frequency range) is not observed in the phase
angle plot in Figure 7b.

Coatings 2019, 9, x FOR PEER REVIEW 7 of 15 

 

linear response. This is evident also from Figure 7a, where the experimental points in the low 
frequency range looks scattered for all the investigated samples. For this reason, the results of the 
fitting of the experimental spectra in the low frequency range are not strictly reliable. The spectra are 
therefore discussed also in qualitative terms by considering the modulus of the impedance in the low 
frequency range as a rough estimation of the overall protection properties of the coatings. 

As far as the EIS response after 1 h of immersion is concerned (Figure 7a,b), remarkable 
differences were observed among the coatings under investigation. PSZ-40 shows the highest 
impedance modulus in the low frequency range (|Z|0.01 Hz ≈ 6∙105 Ωcm2), thus suggesting the best 
protection efficiency among the studied coatings (Figure 7a). The bare sample shows a |Z|0.01 Hz ≈ 
5∙102 Ωcm2 while the samples PSZ-10, PSZ-20, and PSZ-30 of about 3∙103, 3∙104, and 2∙105 Ωcm2, 
respectively. As far as the impedance modulus after 1 h of immersion is concerned, all the coatings 
are at least slightly protective to the substrate. Considering the phase angle plot for the sample PSZ-
40 (Figure 7b), three relaxation processes can be observed: A high frequency time constant at about 
104 Hz, a middle frequency time constant at about 101 Hz, and a low frequency time constant at 10−1 
Hz. According to the literature [8,44], the high frequency relaxation process has been attributed to 
the hybrid coating. The low frequency time constant is expected to be related to the faradic process 
occurring at the metal substrate, while the physical meaning of the relaxation process occurring in 
the middle frequency range is not clear. According to the literature [40], it is likely to be related to the 
metal/hybrid network interface and/or to the corrosion products accumulating at the metal/solution 
interface. On the other hand, the samples derived from 20 and 30 v/v % OPSZ solutions show two 
relaxation processes located at about 103/104 and 100 Hz, which are attributed to the contribution of 
the coating and the faradic process, respectively. The sample PSZ-10 shows an impedance spectrum 
very close to the bare substrate, thus proving a very low extent of corrosion protection. In fact, the 
relaxation process corresponding to the presence of the coating (located in the 103/104 Hz frequency 
range) is not observed in the phase angle plot in Figure 7b.  

10-2 10-1 100 101 102 103 104 105102

103

104

105

106

 

 

Im
pe

da
nc

e 
m

od
ul

us
, |

Z|
 / 

Ω
 c

m
2  

Frequency / Hz

 Bare Steel
 PSZ-10
 PSZ-20
 PSZ-30
 PSZ-40

a

10-2 10-1 100 101 102 103 104 105

0

-20

-40

-60

-80 b Bare Steel
 PSZ-10
 PSZ-20
 PSZ-30
 PSZ-40

 

 

Ph
as

e 
A

ng
le

 / 
D

eg
re

e

Frequency / Hz

Coatings 2019, 9, x FOR PEER REVIEW 8 of 15 

 

10-2 10-1 100 101 102 103 104 105102

103

104

105

106

 Bare Steel
 PSZ-10
 PSZ-20
 PSZ-30
 PSZ-40

 

 

Im
pe

da
nc

e 
M

od
ul

us
, |

Z|
 / 

Ω
 c

m
2

Frequency / Hz

c

10-2 10-1 100 101 102 103 104 105

0

-20

-40

-60

-80 d Bare Steel
 PSZ-10
 PSZ-20
 PSZ-30
 PSZ-40

 

 

Ph
as

e 
A

ng
le

 / 
D

eg
re

e

Frequency / Hz

10-2 10-1 100 101 102 103 104 105 106102

103

104

105

106

e Bare Steel
 PSZ-10
 PSZ-20
 PSZ-30
 PSZ-40

 

 

Im
pe

da
nc

e 
M

od
ul

us
, |

Z|
 / 

Ω
 c

m
2

Frequency / Hz
10-2 10-1 100 101 102 103 104 105

0

-20

-40

-60

-80 f Bare Steel
 PSZ-10
 PSZ-20
 PSZ-30
 PSZ-40

 

 

Ph
as

e 
A

ng
le

 / 
D

eg
re

e

Frequency / Hz

10-2 10-1 100 101 102 103 104 105102

103

104

105

106
 

 

Im
pe

da
nc

e 
M

od
ul

us
, |

Z|
 / 

Ω
 c

m
2

Frequency / Hz 

 Bare Steel
 PSZ-10
 PSZ-20
 PSZ-30
 PSZ-40

g

10-2 10-1 100 101 102 103 104 105

0

-20

-40

-60

-80

 

 

Ph
as

e 
A

ng
le

 / 
D

eg
re

e

Frequency / Hz

 Bare Steel
 PSZ-10
 PSZ-20
 PSZ-30
 PSZ-40

h

Figure 7. Modulus and phase spectra of the investigated coatings compared to the bare substrate 
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Figure 7. Modulus and phase spectra of the investigated coatings compared to the bare substrate
during immersion time: (a,b) 1 h, (c,d) 24 h, (e,f) 72 h, and (g,h) 168 h.

The evolution with immersion time further confirms the initial observations. According to the
polarization curves, the coating derived from 10 v/v % OPSZ solution does not provide the substrate
with any significant improvement in terms of corrosion resistance and it behaves approximately like
the bare substrate. Probably, the hybrid coating, which is present on the steel substrate, is defective
and/or porous, thus allowing the electrolyte to easily reach the metal interface and promoting the
corrosion of the substrate. The differences among the investigated samples are still noticeable after
24 h of continuous immersion (Figure 7c,d). The sample PSZ-40 still shows the highest impedance
among the studied samples. The samples derived from 20 and 30 v/v % OPSZ in the solution show
comparable values of the impedance modulus, slightly higher for the PSZ-20 sample. Notice that, even
if samples PSZ-10 and PSZ-20 have almost the same thickness (slightly higher than 1 µm), according
to the EIS spectra in Figure 7, the latter seems to be remarkably more protective. The reason for this
finding is not completely clear to the authors. The authors did not observe any macro-pore or defect in
the PSZ-10% coating. However, although not unequivocally proven by the experimental observation,
a possible explanation for the reduced extent of protection of the samples derived from 10 v/v % OPSZ
relies on the presence of micro-defects, micro-pores, and any heterogeneity, which can be more relevant
for the sample derived from 10 v/v % OPSZ with respect to the sample derived from 20 v/v % OPSZ.

On the other hand, even if the coating derived from a 30 v/v % PSZ solution has approximately
double the thickness of PSZ-20, the anodic current density during polarization (Figure 5a) and the
impedance spectra (Figure 7) are very similar. With immersion time, the differences among the samples
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become less and less significant. Figure 7e,f shows the impedance modulus and phase, respectively,
after 72 h of continuous immersion: The impedance curve for the bare steel is almost stable (|Z|0.01 Hz ≈
2 × 102 Ωcm2) while the coated samples shows a decrease of the low frequency impedance to about
2/5 × 102 Ωcm2). The differences among the investigated coatings are very slight and the improvement
in terms of corrosion resistance compared to the bare substrate is strongly reduced compared to the
initial stage of immersion. After 168 h of exposure to the electrolyte (Figure 7g,h), the differences
among the studied coatings are further reduced.

The EIS spectra showed in Figure 7a,b were further investigated by means of electrical equivalent
circuits (e.e.c.s) in order to obtain a deeper knowledge of the properties of the OPSZ coatings in the very
first hours of immersion. According to the previous description of the observed relaxation processes,
the experimental spectra of samples derived from 20, 30, and 40 v/v % OPSZ were fitted employing a
Re(CPEcoat(Rcoat(CPEMFRMF))) electrical equivalent circuit (see Figure 8a). In the above-mentioned
circuit, Re stands for the resistance of the electrolyte. The time constant in the middle/high frequency
range is attributed to the OPSZ layer. A resistive element, Rcoat, which indicates the pore resistance
of the OPSZ layer, and a constant phase element, CPEcoat, which represents its dielectric properties,
were employed. The relaxation process in the middle frequencies (MF) is related to different processes
depending on the different samples: (i) For the sample PSZ-40, it is likely to be attributed to the
metal/hybrid network interface [40]; and (ii) for the samples PSZ-30 and PSZ-20, it is likely to be
attributed to the faradic process occurring at the metal interface. According to this explanation, a
resistance, RMF, and a constant phase element, CPEMF, were employed.

Coatings 2019, 9, x FOR PEER REVIEW 9 of 15 

 

The evolution with immersion time further confirms the initial observations. According to the 
polarization curves, the coating derived from 10 v/v % OPSZ solution does not provide the substrate 
with any significant improvement in terms of corrosion resistance and it behaves approximately like 
the bare substrate. Probably, the hybrid coating, which is present on the steel substrate, is defective 
and/or porous, thus allowing the electrolyte to easily reach the metal interface and promoting the 
corrosion of the substrate. The differences among the investigated samples are still noticeable after 
24 h of continuous immersion (Figure 7c,d). The sample PSZ-40 still shows the highest impedance 
among the studied samples. The samples derived from 20 and 30 v/v % OPSZ in the solution show 
comparable values of the impedance modulus, slightly higher for the PSZ-20 sample. Notice that, 
even if samples PSZ-10 and PSZ-20 have almost the same thickness (slightly higher than 1 µm), 
according to the EIS spectra in Figure 7, the latter seems to be remarkably more protective. The reason 
for this finding is not completely clear to the authors. The authors did not observe any macro-pore or 
defect in the PSZ-10% coating. However, although not unequivocally proven by the experimental 
observation, a possible explanation for the reduced extent of protection of the samples derived from 
10 v/v % OPSZ relies on the presence of micro-defects, micro-pores, and any heterogeneity, which 
can be more relevant for the sample derived from 10 v/v % OPSZ with respect to the sample derived 
from 20 v/v % OPSZ. 

On the other hand, even if the coating derived from a 30 v/v % PSZ solution has approximately 
double the thickness of PSZ-20, the anodic current density during polarization (Figure 5a) and the 
impedance spectra (Figure 7) are very similar. With immersion time, the differences among the 
samples become less and less significant. Figure 7e,f shows the impedance modulus and phase, 
respectively, after 72 h of continuous immersion: The impedance curve for the bare steel is almost 
stable (|Z|0.01 Hz ≈ 2∙102 Ωcm2) while the coated samples shows a decrease of the low frequency 
impedance to about 2/5∙102 Ωcm2). The differences among the investigated coatings are very slight 
and the improvement in terms of corrosion resistance compared to the bare substrate is strongly 
reduced compared to the initial stage of immersion. After 168 h of exposure to the electrolyte (Figure 
7g,h), the differences among the studied coatings are further reduced. 

The EIS spectra showed in Figure 7a,b were further investigated by means of electrical 
equivalent circuits (e.e.c.s) in order to obtain a deeper knowledge of the properties of the OPSZ 
coatings in the very first hours of immersion. According to the previous description of the observed 
relaxation processes, the experimental spectra of samples derived from 20, 30, and 40 v/v % OPSZ 
were fitted employing a Re(CPEcoat(Rcoat(CPEMFRMF))) electrical equivalent circuit (see Figure 8a). In 
the above-mentioned circuit, Re stands for the resistance of the electrolyte. The time constant in the 
middle/high frequency range is attributed to the OPSZ layer. A resistive element, Rcoat, which 
indicates the pore resistance of the OPSZ layer, and a constant phase element, CPEcoat, which 
represents its dielectric properties, were employed. The relaxation process in the middle frequencies 
(MF) is related to different processes depending on the different samples: (i) For the sample PSZ-40, 
it is likely to be attributed to the metal/hybrid network interface [40]; and (ii) for the samples PSZ-30 
and PSZ-20, it is likely to be attributed to the faradic process occurring at the metal interface. 
According to this explanation, a resistance, RMF, and a constant phase element, CPEMF, were 
employed. 

  

a b 

Figure 8. Electrical equivalent circuits employed to fit the experimental spectra (a) of samples PSZ-20,
PSZ-30, PSZ-40 and (b) of samples PSZ-10 and the bare steel.

As far as the bare substrate and the sample PSZ-10 are concerned, the experimental spectra were
fitted employing a Re(CPEMFRMF) electrical equivalent circuit (see Figure 8b). In the above-mentioned
circuit, Re stands for the resistance of the electrolyte, RMF for the resistance attributed to the faradic
process, and CPEMF for the constant phase element attributed to the dielectric properties of the
metal/solution interface.

Considering the mathematical representation of a CPE (i.e., ZCPE = 1/(Q(ωj)α), the parameters Q
and α were employed to describe the dielectric response of the electrodes. Table 2 shows the output of
the fitting.

Table 2. Fitting parameters: Rcoat, Qcoat, αcoat, RMF, QMF, and αMF of spectra at 1 h of immersion.

Sample Rcoat
Ω cm2

Qcoat
Ω−1 cm−2 sα αcoat

RMF
Ω cm2

QMF
Ω−1 cm−2 sα αMF

Bare – – – 4.6 × 102 5.6 × 10−4 0.87
PSZ-10 – – – 2.1 × 103 1.8 × 10−4 0.82
PSZ-20 3.4 × 104 3.4 × 10−7 0.76 1.9 × 105 1.7 × 10−6 0.77
PSZ-30 5.4 × 103 3.4 × 10−6 0.67 2.9 × 104 2.2 × 10−5 0.74
PSZ-40 2.4 × 104 2.5 × 10−7 0.67 6.3 × 105 2.0 × 10−7 0.82
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As far as Table 2 is concerned, notice that it is not possible to attribute to the pre-exponential
factors, Qcoat and QMF, any precise physical meaning since the parameters αcoat and αMF are quite far
from unity (range from 0.67 to 0.87). The fitting parameters reported in Table 2 suggest that the coatings
derived from more concentrated OPSZ solutions are more protective, even if the barrier properties
seem to be influenced by the presence of defects. In fact, the observed increase in coating thickness
with OPSZ concertation in the solution does not directly correspond to an enhancement in the pore
resistance of the coating (Rcoat).

The appearance of the samples (Figure 9) supports the EIS findings: No remarkable differences
were observed among the exposed surfaces after 168 h of continuous immersion. The amount of
corrosion products looks very similar regardless of the thickness of the PSZ coating, thus proving that
the protection of the steel substrate is not lasting for more than a few days in a chloride-containing
medium. Notice that the bare substrate shows a homogeneous corrosion attack over all the surface
while for the coated samples it is not the same. When the coating is present, the attack seems to be
more localized: Again, it is likely that micro-defects or micro-pores act as weak points through which
the electrolyte can pass, thus reaching the metal surface.
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Figure 9. Visual appearance of the investigated samples after one week (168 h) of immersion in the 0.1
M NaCl solution: (a) PSZ-10, (b) PSZ-20, (c) PSZ-30, (d) PSZ-40, and (e) bare steel.

4. Discussion

The extent of corrosion protection of the hybrid coatings investigated in the present study
was compared with literature data related to sol-gel based protective coatings for mild steel in
chloride-containing environments. Table 3 shows a comparison between the low frequency impedance
|Z|0.01 Hz in the first hours of immersion in chloride media for sol-gel-derived coatings based mainly
on polysiloxanes. The low frequency impedance was selected for the comparison as it is a rough
but reliable estimation of the overall protection properties of the coatings. The literature data were
compared with the result of the present study related to the PSZ-40 sample.
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Table 3. Literature data comparison of the impedance modulus at 0.01 Hz (|Z|0.01). Only neat hybrid
sol-gel coatings were considered, without the addition of any inhibitor, pigment, or dye. “NP” stands
for “not provided”. [*] Abbreviations report the acronyms.

Precursors* Electrolyte and Time |Z|0.01 (Ωcm2) Thickness (µm) Ref.

TEOS-MTES 3.5 wt.% NaCl (1 h) 9 × 104 3–4 [45]
TEOS-MTES-GPTMS 0.1 M NaCl (8 h) 104 NP [46]

TEOS-MTES 3.5 wt.% NaCl (2 h) 3 × 105 1.14 [47]
TEOS-GPTMS 3.5 wt.% NaCl (48 h) 3 × 106 20–40 [10]

APTES 3.5 wt.% NaCl (2 h) 7 × 102 1.8/2.0 [48]
TEOS-GPTMS-DMODS 3.5 wt.% NaCl (20 days) 6 × 104 13 [49]
TEOS-GPTMS-MTES 0.1 M NaCl (6 h) 104 ≈0.5 [50]

TEOS-MTMS 3.5 wt.% NaCl (1 h) 1.26 × 105 7.6 [51]
MTES-TEOS 3.5 wt.% NaCl (2 h) 3.2 × 104 NP [52]

APTES-Epoxy 3.5 wt.% NaCl (3 h) 2 × 103 2/10 [53]
TEOS-GPTMS-MTES 0.1 M NaCl (2 h) 3 × 104 ≈0.34 [11]
TEOS-GPTMS-MTES 0.1 M NaCl (8 h) 104 ≈0.26 [9]

PSZ-40
PSZ-40

0.1 M NaCl (1 h)
0.1 M NaCl (24 h)

6 × 105

8 × 104 3.4 This work

The thickness of the coating objects of the comparative evaluation are reported for the sake of
clarity. Notice that the |Z|0.01 Hz of the PSZ-40 coating is at least competitive with the most protective
silicon alkoxide-derived coatings, at least as far as the initial electrochemical properties are concerned.
Based on the comparison reported in Table 2, OPSZ-derived coatings seem to be considered as a
potential alternative to silicon alkoxides for the protection of mild steel in chloride-containing media.
On the other hand, the long-term corrosion protection properties of the investigated coatings seem
to be not noteworthy. However, notice that most of the literature data related to the EIS response
with immersion time are provided only for relatively short immersion time: This is often after a few
hours (2 h [48], 3 h [53], 6 h [50], 8 h [46], 24 h [52]), occasionally after a few days (48 h [10,51] and
120 h [52]), and only on rare occasions after a few weeks (1 month [49]). For these reasons, it is not
possible to properly compare the long-term stability of the investigated coatings with other findings in
the literature. In any case, one should consider that the OPSZ-derived coatings are designed to be
employed as a pre-treatment prior to painting or for exposure in mild environments. Accordingly, the
long-term stability upon direct exposure to an aggressive electrolyte is not of major importance for
such kinds of applications.

5. Conclusions

The effect of the dilution in butyl-acetate on the final properties of hybrid coatings derived from
polyorganosilazane precursors based on polymethyl-(hydro)/polydimethylsilazane was investigated
for the corrosion protection of mild steel in a chloride medium. FT-IR spectroscopy seems to suggest
that the hybrid coating structure consists of a combination of non-converted polysilazane domains
(Si–N–Si) and polysilsesquioxane (Si–O–Si) domains. The corrosion protection properties, assessed by
means of polarization curves and EIS, remarkably increase for thicker coatings, in particular for OPSZ
precursor concentrations of about 40 v/v % (|Z|0.01 Hz ≈ 6 × 105 Ωcm2 after 1 h of immersion in 0.1 M
NaCl). All the OPSZ-derived coatings were proven to be protective to the mild steel substrate, even
if a clear relationship with the thickness of the coatings was not observed. A possible explanation,
even if not unequivocally proven by the experimental results, relies on the presence of defects, which
affects the electrochemical response of the coatings. Compared to literature data related to silicon
alkoxide-based coatings applied by means of the sol-gel method on mild steel, the PSZ-40 coating
was proven to show competitive corrosion protection properties (evaluated in terms of |Z|0.01 Hz), at
least as far as the initial immersion hours are considered. On the other hand, further investigation
is needed in order to improve the durability of the coatings upon direct exposure to an aggressive
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environment. A possible strategy to overcome the long-term durability issue is to work with more
concentrated solutions and/or to change the conditioning atmosphere (T, t, and r.h.) in order to obtain
more protective coatings.
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TEOS Tetraethyl-orthosilicate
MTES Methyltriethoxysilane
GPTMS Glycidyloxypropyltrimethoxysilane
APTES (3-Aminopropyl)triethoxysilane
DMODS Dimethyl octadecylsilane
MTMS Trimethoxymethylsilane
PMDMS polymethyl(hydro)/polydimethylsilazane
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