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Abstract: In the present study, the influence of multi-pass friction stir processing (FSP) of AISI 420
martensitic stainless steel on the microstructure, hardness, and corrosion behavior was investigated.
Similar to single-pass FSPed 420, the multi-pass FSPed specimens with different overlapping ratios
incurred microstructural change at the center and retreating side of the second track with martensite,
retained austenite, and chromium carbides. Overlapping of the two successive tracks in the multi-pass
FSPed 420 led to back-tempering and a local drop in hardness at the advancing side of the second
track. The precipitation of chromium carbides in the tempered regions of the multi-pass FSPed
specimens became the active sites for preferential corrosion attack in the 3.5 wt.% NaCl solution
at 25 ◦C.
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1. Introduction

Friction stir welding (FSW) is a solid-state joining technology, which was invented at The Welding
Institute (TWI), United Kingdom (UK) in 1991 [1,2]. Friction stir processing (FSP) was developed
based on the working principle of FSW by Mishra et al. [3]. In FSP, a non-consumable rotating tool is
plunged into a workpiece and moves along the required regions [2]. The translation of the rotating tool
creates a characteristic asymmetry between the two sides of the processed zone, one is the advancing
side (AS), where the direction of the tool rotation is the same as that of the tool translation, and the
other one is the retreating side (RS), where the direction of the tool rotation is opposite to that of the
tool translation [4]. FSP is applied for various purposes including fabricating surface composites [5],
microstructural homogeneity [6,7], surface modification or hardening [8], and grain refinement [9].

Martensitic stainless steels (MSSs) are commonly used for manufacturing components with
excellent mechanical properties but moderate corrosion resistance. MSSs are mainly used for mixer
blades, offshore platforms for oil extraction, and cutting tools [10]. However, the annealed MSSs are
not supposed to be used directly due to the presence of comparably soft and low-strength ferrite
and carbides [11]. Consequently, MSSs are commonly used after conventional heat treatment, and
their hardness can be enhanced. However, conventional hardening inside a furnace may not be
suitable for large components. Moreover, brittleness and cracking are common problems in the
heat-treated parts quenched at a very high cooling rate. As only the localized regions of an engineering
component in tribological contact require high hardness and wear resistance, its surface has to be
thermally treated while the internal core should be kept tough. Hardening using flame, induction,
laser beam, and FSP are the alternative methods for improving the hardness and wear resistance of the
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surface. Nevertheless, the shortcoming of flame hardening is the possibility of part distortion, while
high-frequency induction hardening requires close and precise coupling between the part and the
coil [12]. Although laser transformation hardening can avoid thermal distortion, the size of hardened
depth is limited by the dwell time and laser power density [13]. For achieving larger hardened depth,
the problems of oxidation, melting, or vaporization of the surface often accompany the increasing laser
power density and dwell time. Compared with these methods, FSP can accurately control hardness of
the processed zone by optimizing the tool design and processing parameters [14].

In practice, a certain degree of overlapping of consecutive single passes (i.e., multi-pass) is required
in FSP for achieving large area coverage [15]. The impact of multi-pass FSPed high-carbon steel (AISI
1080) on the friction and wear performance was investigated by Aldajah and his co-workers [15].
Improvement in wear resistance of the high-carbon steel by FSP was due to reduced plasticity of
the near-surface material during sliding contact. Puli and Janaki Ram [16] reported that a single
track of friction-surfaced AISI 440C coating exhibited superior corrosion resistance as compared to
the conventional heat-treated sample, but no report on the corrosion behavior of the multi-pass can
be found in the literature. On the other hand, the effect of multi-pass FSP on the microstructure
and corrosion behavior of pure Ti in 0.5 M H2SO4 solutions was reported by Fattah-Alhosseini [17].
It was found that the grain size could be decreased to submicron size upon increasing the number of
successive FSP passes because of severe plastic deformation and continuous dynamic recrystallization.
Potentiodynamic polarization tests of the FSPed pure Ti showed that grain refinement resulted in a
decrease in both corrosion and passive current densities, as well as a noble shift in corrosion potential.

According to a previous study on single-pass FSPed AISI 420 done by the present authors [18],
the heat input was found to be higher in the AS and center than that in the RS. In the whole processed
area, RS was more active in the corrosive medium due to some undissolved carbides dispersed in the
martensite matrix. The region which was depleted in Cr acted as the initiation site for pitting. As
a result, pitting corrosion was more severe in the RS of the FSPed zone because of a micro-galvanic
effect [18]. On the other hand, Leal et al. reported that the defects including the tunnel or cavity
left in single-pass FSWed aluminum alloys could be removed by a second overlapping pass [19].
However, the effect of multi-pass FSP on corrosion behavior and hardness change of MSSs cannot be
found in the literature. Overlapping ratio was reported to be a key parameter of laser transformation
hardening of AISI 420 for achieving required surface hardness and maintaining corrosion resistance of
overlapped regions [20]. In this study, the effect of overlapping ratio on the microstructure, hardness,
and corrosion properties of the multi-pass FSPed AISI 420 was investigated. The results for as-received,
conventionally heat-treated, and single-pass FSPed AISI 420 were also included for comparison.

2. Experimental details

2.1. Materials

In this work, an annealed AISI 420 martensitic stainless-steel plate (with dimensions of 50 mm ×
100 mm × 6 mm) was used for FSP. The composition of AISI 420 in weight percentage (wt.%) is shown
in Table 1. In addition to FSPed 420, annealed 420 (designated as AR420) and conventional hardened
420 (heated at 1000 ◦C for 1 h, followed by water quenching) (designated as AQ420) were investigated
for comparison purposes.

Table 1. Nominal chemical compositions of AISI 420 (wt.%).

Material C Cr Si Mn Fe

AISI 420 0.30 ± 0.05 15.4 ± 0.26 0.50 ± 0.07 0.45 ± 0.12 Balance
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2.2. Friction Stir Processing (FSP)

FSP of AISI 420 was conducted using an FSW machine (FSW-TS-M16, Beijing, China) manufactured
by China FSW Center. The stirring tool for FSP was made of W–Re alloy with a 15-mm-diameter
shoulder without pin. It was tilted at 1.5◦ and plunged into the AISI 420 plates at a depth of 0.1 mm.
To avoid oxidation of the surface of the specimens, FSP was carried out in an Ar shielding atmosphere
with a flow rate of 15 L/min. The experimental set-up for FSP was reported elsewhere [18]. A rotational
speed of 2000 rpm and traverse speed of 250 mm/min of the stirring tool were used as the processing
conditions for achieving higher hardness and corrosion resistance [18]. The schematic diagram for
multi-pass overlapping of two FSPed tracks is shown in Figure 1a. After the first pass and cooling,
the second track was overlapped with the first one. The overlap ratio (OR) of the multi-pass FSPed
specimen is defined as follows [21]:

OR = 1−
[

l
dsingle−pass

]
(1)

where d is the width of the single-pass track, and l is the distance between centers of the successive
passes. In this study, ORs of 25%, 50%, and 75% were achieved, and the specimens fabricated in these
processing conditions were designated as FSP25%, FSP50%, and FSP75%, respectively. The effect of
OR on the properties of the multi-pass FSPed specimens was investigated.
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2.3. Metallographic and Microstructural Studies

The specimens were cross-sectioned, mounted, and polished with 1-µm diamond paste and then
etched with acidified ferric chloride solution for revealing the microstructure. The microstructure was
investigated using an optical microscope (OM) and a scanning electron microscope (SEM, Hitachi
S-3400N, Tokyo, Japan). The phases were identified using an X-Ray diffractometer (XRD, Rigaku
MiniFlex 600, Tokyo, Japan) with a Cu Kα source. The scan rate used was 1◦/min with 2θ ranging
from 40◦ to 100◦. The analysis of grain size and content of retained austenite of the FSPed samples
was carried out using a field-emission SEM (Zeiss Sigma, Oberkochen, Germany) equipped with
an electron backscatter diffraction (EBSD) detector. Aztec HKL from Oxford Instruments software
(Oxford, England), Channel 5-Tango, was used for indexing and post-processing EBSD maps. EBSD
can distinguish different phases through different diffraction patterns which occur when a stationary
electron beam interacts with a tilted crystalline sample.

2.4. Hardness Test

The hardness profiles of the specimens were evaluated using a Vickers hardness tester (Wilson
VH3100, Lake Bluff, IL, USA) at a load of 1 kg and load time of 10 s, conforming to ASTM standard
E384 [22]. At least three trials along the centerlines of the FSPed zones in the transverse direction, and
0.2 mm below the top surface in the longitudinal direction were carried out for every specimen.

2.5. Corrosion Test

Potentiodynamic polarization tests in 3.5 wt.% NaCl solution were done with a Princeton Applied
Research VersaStat II potentiostat conforming to ASTM Standard G61-86 [23]. The solution was open to
air, and the temperature was kept constant at 25 ± 1 ◦C using an electronic water bath. The specimens
were ground with the 1000-grit emery papers. A saturated calomel electrode (SCE) was used as the
reference electrode, and two parallel graphite rods served as the counter electrodes. An initial delay of
120 min prior to polarization was adopted for the specimen to reach a steady-state condition at free
corrosion potential (Ecorr vs. SCE). Then, the potential scan began at 200 mV below the Ecorr vs. SCE
and was increased in the noble direction at a rate of 0.167 mV/s and terminated at a current density of
1 mA/cm2. From the polarization curves, the free corrosion potential (Ecorr vs. SCE) and the corrosion
current density (Icorr) were extracted by Tafel extrapolation, and the pitting potential (Epit vs. SCE) was
determined at the inflection point. At least three polarization tests were carried out for all specimens.

3. Results and Discussion

3.1. Microstructure

Figure 1b shows the typical single-pass FSPed specimen (FSP250) and multi-pass FSPed specimen
(FSP50%). After a first track was produced, a second parallel pass was processed in the same direction
by shifting in a distance (l) away from center of the first track. The AS of the second track was
overlapped over the RS of the first one, and both tracks were produced in the same direction. According
to Gandra et al. [24], the characteristics of the FSPed surface are highly influenced by the overlapping
direction because of the asymmetric nature of material flow. The aim of overlapping the AS of the
second track over the RS of the first track is to compensate for the inadequate heat produced at the RS
of the first track [18].

From the previous study of the present authors, AR420 was found to mainly contain α-ferrite
and precipitated carbide particles (M23C6) [18]. When AR420 was heated above the austenitizing
temperature, the α-ferrite and M23C6 were transformed into austenite (α), which was then transformed
into needle-shaped martensite (α’) after water quenching (designated as AQ420 with small undissolved
M23C6 dispersed in the martensitic matrix [18]. The grain sizes of ferrite in AR420 and martensite
in AQ420 were found to be 4 µm and 2 µm [18]. Figure 2a shows the cross-sectional view of the
single-pass FSPed 420 (FSP250) fabricated at 2000 rpm and 250 mm/min. The width and depth of
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the FSPed zone were 14.7 and 1.7 mm, respectively. The FSPed zone was basin-like, and the AR and
RS were not symmetric. The AS was deeper than that of the RS because the heat generation of the
stirring tool at the AS was more than that at the RS. The flow of material at the AS around the stirring
tool underwent more thermal exposure and severe deformation because the tangential component
of rotation and translational speeds were in the same direction. Avila et al. reported that the peak
temperature at the AS was slightly higher than that at the RS [25]. Moreover, the difference between
AS and RS becomes more significant as the translational speed increases [18].

The cross-sectional views of the multi-pass overlapped specimens (FSP75%, FSP50%, and FSP25%)
are shown in Figure 2b–d. No pore or crack was found in the cross-sections of the specimens due to
sufficient heat generation for softening the material and strong plastic flow in the FSPed zones [26].
An overlap ratio of 75% produced a larger overlapped area (indicated by white dashed lines in
Figure 2b), but promoted an FSPed layer with more uniform hardened depth. On the contrary,
the specimen processed with an overlap ratio of 25% showed a small overlapped area (indicated by
white dashed lines in Figure 2d) with a non-uniform hardened depth.
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(a) FSP250; (b) FSP75%; (c) FSP50%; and (d) FSP25%.

For the single-pass FSPed specimen (FSP250), the SEM micrographs of the AS, center, and RS, and
the XRD pattern of the center are shown in Figures 3 and 4, respectively. Figure 3b shows the EBSD
band contrast superimposed with the phase maps (the red phase is austenite) at the AS. By analyzing
the EBSD phase map, the AS of FSPed was found to contain 17.6% retained austenite. The AS and
center mainly contained martensite and some retained austenite [18]. In addition to martensite,
some undissolved carbides (M23C6) could be clearly seen in the RS due to incomplete austenization
(Figures 3d and 4) [27]. Compared with AQ420, the average grain size at the center of FSP250 was
reduced from 2 to 0.74 µm as reported in the authors’ previous work [18]. As the austenite formed
during FSP at austenitizing temperature was also dynamically recrystallized and then transformed into
martensite during cooling, ultimately, the average grain size of the martensite formed after quenching
at the center of processed zones of the FSPed specimen was reduced.
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Figure 3. SEM micrographs of single-pass friction stir processed (FSPed) 420 (FSP250): (a) advancing
side (AS); (b) electron backscatter diffraction (EBSD) band contrast imposed by phase maps (the red
phase is austenite) at the AS; (c) center (C); (d) retreating side (RS).
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Figure 4. X-ray diffraction (XRD) spectra of annealed 420 (AR420), conventional hardened 420 (AQ420),
single-pass specimen (FSP250), and multi-pass specimens (at the middle of two overlapped tracks)
fabricated at different overlapping ratios.

Microstructural analysis of the multi-pass FSPed specimen (FSP75%) was focused at four regions:
AS1, AS2, C2, and RS2, as shown in Figure 5a. The microstructures of AS1, C2, and RS2 were
very similar to the AS, C, and RS of the single-pass FSPed specimen (FSP250). AS1 and C2 mainly
contained martensite and retained austenite, while RS2 consisted of some undissolved carbides (M23C6).
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The brighter globular regions were presumed as carbides, and the darker regions were regarded as
martensite as shown in Figure 5f(ii). In particular, AS2 contained tempered martensite, which showed
the darkest contrast among the other three regions reflecting its lowest corrosion resistance (Figure 5c).
As the second pass was applied on the first track during FSP, the subsequent heating cycle imposed on
the quenched martensite led to the formation of tempered martensite at the red region, as shown in
Figure 6 [28].
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Figure 6 shows the schematic of back-tempering in multi-pass FSP. The thermal field generated
by the heat-affected zone of track 2 interacted with the processed region of track 1 (martensite +

retained austenite). As a result, the interacted region (tempered region) was transformed to tempered
martensite. Giorleo et al. [29] reported this phenomenon as back-tempering, which leads to a reduction
in hardness [30].

Through austenitizing and rapid cooling, the martensite formed in AISI 420 is supersaturated with
carbon and has a high dislocation density [10]. As the tempering temperature increases, the carbon
from interstitial sites diffuses out of the martensite during tempering (Figure 7), which leads to the
reduction of tetragonality of martensite and formation of chromium carbides, i.e., forming the tempered
martensite [31]. After tempering, the martensite becomes cubic ferrite as the carbon atoms leave.
In addition, the loss of carbon would induce a reduction in hardness [32]. In the tempered region
(AS2) of the multi-pass FSPed specimens, precipitation of chromium carbides occurs at prior austenitic
grain boundaries and also at the martensitic lath boundaries [31]. Chromium will deplete at the
interface of the carbide and the surrounding metal matrix. Tempering is a diffusion-controlled phase
transformation from a quenched martensite to a tempered martensitic structure containing ferrite and
carbides. The precipitation and growth of carbides are strongly related to both tempering time and
temperature [33]. As the tempering time was very short during FSP, the chromium carbides could
not be clearly observed in Figure 5c due to their presumed nano size. Similar observations were
reported by Hufenbach and his co-workers, who found that the size of precipitated carbides in the
high-strength FeCrMoVC was in the range of 60 to 100 nm after short-term tempering [32]. In addition,
Abbasi-Khazaei and Mollaahmadi [34] also observed fine carbides (<200 nm) in the reheated AISI 420
(700 ◦C for 2 min) using TEM.
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For the heat-treatable steels, however, the drawback of overlapping is back-tempering of the
hardened regions leading to non-uniform hardness distribution [30]. According to Mahmoudi’s
work [13], multi-pass treating led to tempering the phases in the overlapped zones. For AISI 420, the
range of tempering temperature is from 205 to 370 ◦C [35]. After tempering, the metastable quenched
martensite and retained austenite will transform to ferrite and chromium carbides, which are the stable
forms. Tempering causes the precipitation of chromium carbides at the grain boundaries of the ferritic
phases, which may be harmful to the corrosion resistance of the multi-pass FSPed samples.

3.2. Hardness

Figure 8 shows the hardness profiles along the centerlines of the first track (C1) and the second
track (C2). It is observed that there was a decreasing trend of the hardness along the centerlines
until it reached the hardness of the substrate (i.e., AR420: 184 HV1). This was due to the generation
and transfer of frictional heat along the depth, affecting the effective transformation of martensite.
In addition, in the single-pass FSPed specimen (FSP250), the hardness was about 720 HV1 at a depth
of 0.1 mm beneath the surface and substantially higher than that of AQ420 (631 HV1) due to grain
refinement and severe plastic deformation.
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From Figure 8b, FSP50% (at C1) had a very distinct trend as compared to the other three profiles.
The hardness decreased from the surface (570 HV1) to a depth of 0.5 mm; then, the hardness became
constant (440 HV1) until the depth reached 1.5 mm. At last, the hardness gradually decreased along
the depth until it reached the hardness of the substrate. The surface hardness for FSP50% (570 HV1)
was lower than that of the single-pass FSPed specimen (720 HV1) by 21%. The lower hardness detected
at C1 of FSP50% was due to back-tempering. The hypothesis behind the occurrence of softening was
probably due to the diffusion of carbon atoms, reduction of dislocation density, and the martensite
becoming less tetragonal [36]. From Figure 8c, the hardness profiles along C2 for the three multi-pass
FSPed specimens demonstrated similar profiles (with surface hardness of 705–720 HV1) to that of the
single-pass FSPed specimens (at C2) because the microstructure at C2 consisted of mainly martensite
(Figure 5e).

The hardness profiles at 0.2 mm below the top surface in the longitudinal direction with different
overlapping ratios are shown in Figure 9. The distribution of hardness of the single-pass FSP250 was
not uniform in the longitudinal direction and decreased dramatically in the RS (Figure 9a), indicating
the asymmetric distribution of the microstructure due to the difference in generated heat at AS and
RS [18]. The heat generation was inadequate for complete martensitic transformation in RS. From
Figure 9b–d, there was a dramatic drop in hardness near the intersection of the two tracks (i.e., near
the AS2 of track 2). This was due to back-tempering [29], which caused a reduction in hardness at
the tempered region. The Hollomon–Jaffe parameter (Hp) describes the effect of a heat treatment at a
temperature for a certain time [37]. Specifically, it is used to describe the tempering of steels, and it is
also called the “tempering parameter”.

Hp = T(C + log(t)), (2)

where Hp is correlated to hardness, T is the temperature, and t is the time. C is a constant and varies
with composition. From Equation (2), the same effect can be achieved with a low temperature and a
long holding time, or with a higher temperature and a short holding time. During FSP, the holding
time is very short; thus, the high temperature is the dominant factor for tempering. Although the
reheating time was just a few seconds, it induced approximately 20% reduction in hardness, due to
high temperature. Consequently, this phenomenon would lead to non-uniformity in surface hardness
and deterioration of wear resistance [30].
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3.3. Electrochemical Behavior

Figure 10 shows the potentiodynamic polarization curves of AR420, AQ420, and the single-pass
and multi-pass FSPed specimens in 3.5 wt.% NaCl solution (open to air) at 25 ◦C. In the passive regions
of potentiodynamic polarization curves, metastable corrosion activities occurred [38]. This indicates
that the nucleation and propagation of pits happened before the onset of stable pitting [39]. As it was
below the pitting potential, the metastable pits then repassivated. The free corrosion potential (Ecorr)
and pitting potential (Epit) are summarized in Table 2. From Figure 10a and Table 2, the free corrosion
potential (Ecorr = −141 mVSCE) and pitting potential (Epit = +4 mVSCE) of AR420 were more active than
those of AQ420 and FSP250 because there were large amounts of carbide particles dispersed in the
ferritic matrix. The corrosion behavior of AISI 420 in the chloride solution mainly depends on the
amount of passivating element (Cr) in the solid solution [13]. The carbides are rich in Cr, leading to a
decrease in Cr content in the nearby regions. Therefore, the Cr depletion regions acted as the anodic
nucleation sites for pitting corrosion in the chloride medium [40]. From Table 2, the Epit of AQ420
(Epit = +154 mVSCE) was higher than that of AR420 because of the dramatic drop in carbide content
in the martensite matrix after water quenching. This led to more Cr dissolved in the matrix, and the
microstructure became more homogenous [10]. On the other hand, the highest Epit of FSP250 was due
to the presence of martensite/austenite and the removal or refinement of M23C6.

Table 2. Corrosion parameters of various specimens. SCE—saturated calomel electrode;
AR420—annealed 420; AQ420—conventional hardened 420; FSP—friction stir processing.

Specimen Ecorr (mV) vs. SCE Epit (mV) vs. SCE

AR420 −141 ± 8 4.0 ± 6

AQ420 −92 ± 4 154 ± 7

FSP250 −55 ± 10 161 ± 23

FSP75% −314 ± 17 active

FSP50% −357 ± 15 active

FSP25% −360 ± 17 active
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(b) FSP75%, FSP50%, FSP25%, and AQ420 in 3.5% NaCl solution at 25 ◦C.

From Figure 10b, no significant passivity could be observed for the multi-pass FSPed specimens,
reflecting their low pitting corrosion resistance. In addition, the Icorr for the multi-pass FSPed specimens
increased sharply and was higher than that of AQ420. It is noticed that the increase in Icorr could be
attributed to the chromium carbide precipitation in narrow tempered regions, which acted as the anodic
sites with small areas for corrosion, while the other regions with large areas were cathodic. Candelária
and Pinedo [41] reported that the corrosion resistance of MSSs is highly sensitive to thermal tempering.
According to the study of Abbasi-Khazaei and Mollaahmadi [35], the corrosion rate increases sharply
at the reheating temperature of 700 ◦C due to the precipitated carbides.

The pit morphologies of AQ420 and FSP250 after polarization in 3.5 wt.% NaCl solution at 25 ◦C
were reported in a previous study of the present authors [18]. Pits with a size of 100 µm were found to
be dispersed uniformly on its surface. On the other hand, it was reported that the round pits with
a diameter of 90 µm were concentrated on the RS of the FSP250. This is because there was more Cr
tied up in the undissolved carbides at the RS where it was more anodic and selectively attacked [42].
The typical pit morphology of the multi-pass specimens was quite different from that of FSP250,
as shown in Figure 11. The pits only gathered at the overlapped (back-tempered) regions (i.e., AS2 of
track 2) in all specimens. Deep pits with big mouths were observed along the line of the tempered
region. Pantelis et al. [43] studied the corrosion behavior of laser-surface hardened structural steel.
They found that a higher overlapping ratio led to a high proportion of tempered martensite possessing
lower corrosion resistance. This is due to the precipitation and inhomogeneous distribution of carbide
in the low-carbon martensite [44]. According to the investigation of rapid tempering of AISI 420 by
Abbasi-Khazaei and Mollaahmadi, the formation of chromium carbides during tempering is harmful
to its corrosion resistance [34]. The matrix surrounded by the precipitated carbides was depleted in
Cr and became the initiation sites for pitting attack. Consequently, less defective passive films were
formed. Multi-pass FSPed 420 was susceptible to selective corrosion and caused a reduction in the
hardness owing to the precipitation of chromium carbides at tempered regions.
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4. Conclusions

From this study, the several conclusions can be drawn.
Similar to single-pass FSPed 420, the multi-pass FSPed specimens with different overlapping ratios

incurred microstructural change at the center and retreating side of the second track with martensite,
retained austenite, and chromium carbides.

Overlapping of the two successive tracks (multi-pass) in FSPed 420 led to back-tempering and
local reduction in hardness near the advancing side of the second track.

Compared with the single-pass FSPed specimen (FSP250), much higher corrosion current densities
were observed for the multi-pass FSPed specimens. This could be attributed to the precipitation of
chromium carbides near the advancing side of the second track.

The degree of overlapping of the FSPed tracks affects the position of the back-tempered region
with lower hardness and lower pitting corrosion resistance.
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