
coatings

Review

Electroplating of Semiconductor Materials for
Applications in Large Area Electronics: A Review

Ayotunde Adigun Ojo * and Imyhamy Mudiy Dharmadasa

Electronic Materials and Sensors Group, Materials and Engineering Research Institute, Sheffield Hallam
University, Sheffield S1 1WB, UK; sciimd@exchange.shu.ac.uk
* Correspondence: a8031624@my.shu.ac.uk; Tel.: +44-114-225-6910; Fax: +44-114-225-6930

Received: 26 June 2018; Accepted: 25 July 2018; Published: 27 July 2018
����������
�������

Abstract: The attributes of electroplating as a low-cost, simple, scalable, and manufacturable
semiconductor deposition technique for the fabrication of large-area and nanotechnology-based
device applications are discussed. These strengths of electrodeposition are buttressed experimentally
using techniques such as X-ray diffraction, ultraviolet-visible spectroscopy, scanning electron
microscopy, atomic force microscopy, energy-dispersive X-ray spectroscopy, and photoelectrochemical
cell studies. Based on the results of structural, morphological, compositional, optical, and electronic
properties evaluated, it is evident that electroplating possesses the capabilities of producing
high-quality semiconductors usable for producing excellent devices. In this paper we will describe the
progress of electroplating techniques mainly for the deposition of semiconductor thin film materials
and their treatment processes, and fabrication of solar cells.
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1. Introduction

Electroplating has been well explored over the years especially for the purification, extraction,
protection, and coating of semiconductors, metals, and metalloids in the industrial sector [1] to
achieve diverse characteristic properties. The use of the electroplating technique in the deposition of
semiconductor materials dates back to the 1970s [2–4], with the deposition of semiconductors from the
II-VI group. The ascendance of the electrodeposition of semiconductor material led to the growth and
fabrication of CdS/CdTe-based solar cell devices within a decade afterwards [5]. The fabrication of
thin-film solar cells with photovoltaic conversion efficiency of ~10% was the stimulus for an intense
global research into electrodeposited semiconductor compounds. The research also spanned into the
electrodeposition of II-VI semiconductor materials such as ZnTe [6], ZnSe [6], ZnS [7], ZnO [8], etc.,
and spread into semiconductor material compounds in the binary (III-V, IV-VI), ternary (CuInSe2) [9,10],
and quaternary (Cu2ZnSnS4, CuInGaSe2) groups [11]. The electroplating of elemental semiconductors
and other wide bandgap nitrides has also been captured in the literature. This communication critically
appraises the strengths, weaknesses, potentials, and the state-of-the-art electroplating technique in the
fabrication of large-area electronics and other macro-electronic devices such as photovoltaic (PV) solar
panels and display devices.

2. An Overview of Electrodeposition Technique

Electrodeposition is the process of depositing elemental or compound metals or semiconductors
on a conducting substrate by passing an electric current through an ionic electrolyte in which metal
or semiconductor ions are present [12]. The passage of current is required due to the inability of
the chemical reaction resulting in the deposition of the solid material on the conducting substrate to
proceed on its own as a result of positive free energy change ∆G of the reaction.
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Electrodeposition can be categorised based on power supply source, working electrode,
and electrode configuration (as shown in Figure 1), but the basic deposition mechanism and setup
remains similar. The basic deposition mechanism entails the flow of electrons from the power supply
to the cathode. The positively charged cations are attracted towards the cathode and negatively
charged anions to the anode. The cations or anions are neutralised electrically by gaining electrons
(through reduction process) or losing electrons (through oxidation process) and being deposited on
the working electrode (WE), respectively [12].
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Figure 1. The main categories of electrodeposition technique.

The typical electrodeposition (ED) setup of a two-electrode (2E) configuration, as shown in
Figure 2a, consists of a deposition container (beaker), deposition electrolyte, magnetic stirrer, hotplate,
power supply, a working electrode, a counter electrode, and an optional reference electrode (RE) in
the case of a three-electrode (3E) configuration (see Figure 2b). The use of a potentiostatic power
source was due to the effect of deposition voltage on the atomic percentage composition of elements
in the electrodeposited layer, which is one of the factors determining the conductivity type [13,14].
Cathodic deposition is mainly utilized due to its ability to produce stoichiometric thin-films with good
adherence to the substrate as compared to anodic deposition [15]. Conversely, the galvanostatic
electrodeposition is controlled and measured by maintaining constant current density through
an electrolytic cell disregarding the changes in the resistance due to the deposited electroplated layer.Coatings 2018, 8, x FOR PEER REVIEW  3 of 17 
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Figure 2. Typical (a) two-electrode and (b) three-electrode electrodeposition setups.
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The 2E configuration, as shown in Figure 2a, was utilised due to its industrial applicability,
process simplification, and also to eliminate possible Ag+- and K+-ion doping [16,17], which may
emerge from the Ag/AgCl or saturated calomel electrode (SCE) reference electrodes (see Figure 2b).
Taking the electrodeposition of n-CdS and n-CdTe layers which are respectively utilised as the main
window and absorber layers in this work into perspective, both K+ and Ag+ from group I of the
periodic table are considered as p-type dopants. Therefore, any leakage of K+ and Ag+ into the
electrolytic bath may result in compensation leading to the growth of highly resistive material which
has a detrimental effect on the efficiency of fabricated solar cells. This has been experimentally shown
and reported in the literature [16].

The two-electrode electrodeposition configurations are not without challenges, with the main
challenge being the fluctuation or drop in the potential measured across the cathode and the
anode during deposition. This is due to the alteration in resistivity of the substrate with increasing
semiconductor layer thickness and the change in the ionic concentration of the electrolyte. For the
three-electrode configuration, the potential difference is measured across the working and the
reference electrodes, while the measured current is between the working and the counter electrodes.
In general, other factors such as the pH of the electrolyte [18], applied deposition potential [13,14],
deposition temperature [19], stirring rate [20], deposition current density, duration of deposition and
thickness [21], underlying substrate [22], and concentration of ions in the deposition electrolyte [18]
affects the electrodeposition process and the properties of the deposited layers. Recent publications
have demonstrated the similarities between electrodeposited semiconductors using three-electrode
and two-electrode electroplating configurations [23,24]. The electrodeposition of both elements
and compounds is governed by Faraday’s laws of electrodeposition as mathematically depicted
in Equation (1).

T =

(
1

nF
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)
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where T is the thickness (cm), J is current density (A cm−2), t is the deposition time (s), M is the
molecular mass (g mol−1), n is the number of electrons transferred in the chemical reaction for the
formation of 1 mole of substance in g cm−3, F is Faraday’s constant (96,485 C mol−1), and $ is the
density (g cm−3). It should be noted that Faraday’s law of electrolysis assumes that all electronic
charges passing through the electrolyte contribute to the deposition of deposited material layer
without any consideration of the resistance losses in the system and electronic charge contribution to
the decomposition of solvent into its constituent ions [25].

3. Factors Influencing Electrodeposition

3.1. Solutes, Solvents, and Deposition Electrolytes

The effects of the incorporated solute and solvent utilised are of importance in electrodeposition.
Taking the electrodeposition of CdS into consideration, sodium-(Na)-based precursor (Na2S2O3) has
been often utilised [26,27]. Although sodium (Na) ions are not electrodeposited at low cathodic
voltages, the incorporation of Na in CdS films is achievable through adsorption, absorption or chemical
reactions as a result of increased Na accumulation in the electrolytic bath. It should be noted that Na
is a p-type dopant in CdS [28] resulting in increasing electrical resistivity of subsequent CdS layers
due to Na accumulation. Further to this, the Na-based precursor (Na2S2O3) is also associated with
the precipitation of sulphur during the electroplating. Recent understanding has shown that the
replacement of the well-established sulphur precursor with thiourea (NH2CSNH2) (which is more
associated with chemical bath deposition (CBD) technique) results in the reduction/elimination of
sulphur precipitate [29,30].

The choice of solvent to be utilised also possesses as an important factor in electroplating
as demonstrated by the deposition of CdTe from ethylene glycol (C2H6O2) electrolyte containing
cadmium iodide (CdI2) [31]. Using aqueous solution as solute, Cd-I complexes such as CdI+, CdI2,
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CdI−3 , and CdI2−
4 are formed in aqueous solution [32,33] debarring the deposition of Cd and the

co-deposition of CdTe. It is noteworthy that CdTe from other Cd precursors have been explored and
reported in the literature [34,35]. Therefore, the choice of solute and solvent for electroplating purposes
is a factor to reckon with in addition to a number of other factors inherent in the electrodeposition
process to achieve superior qualities of electroplated semiconductor materials. This understanding has
been accrued for over two decades of exploration, and careful examination of grown semiconductors
at Solar Energy Group within Sheffield Hallam University (SHU), in addition to the literature.
A large number of semiconductors explored in SHU and documented in the literature [9,29,36–47] is
summarised in Table 1.

Table 1. Summary of explored electronic materials to date at authors’ research group using
electroplating from aqueous solutions.

Material
Electroplated Eg (eV) Precursors Used for Electroplating Comments Ref.

CuInSe2 ~1.00 CuSO4 for Cu ions, In2(SO4)3 for In ions
and H2SeO3 for Se ions

Ability to grow both p-
and n-type material [9]

CdTe 1.45 CdSO4 or Cd(NO3)2 or CdCl2 for Cd ions
and TeO2 for Te ions

Ability to grow both p-
and n-type CdTe using

Cd-sulphate, nitrate, and
chloride precursors

[40,41]

CuInGaSe2 1.00–1.70
CuSO4 for Cu ions, In2(SO4)3 for In ions,
Ga2(SO4)3 for Ga ions and H2SeO3 for Se

ions

Ability to grow both p-
and n-type material [42]

CdSe 1.90 CdCl2 for Cd ions and SeO2 for Se ions – [43]

InSe 1.90 InCl3 for In ions and SeO2 for Se ions – [44]

GaSe 2.00 Ga2(SO4)2 for Ga ions and SeO2 for Se ions – –

ZnTe 1.90–2.60 ZnSO4 for Zn ions and TeO2 for Te ions Ability to grow both p-
and n-type material [45]

CdS 2.42 CdCl2 for Cd ions and Na2S2O3, NH4S2O3
or NH2CSNH2 for S

Conductivity type is
always n-type [29,46,47]

CdMnTe 1.57–2.50 CdSO4 for Cd ions, MnSO4 for Mn ions
and TeO2 for Te ions – –

ZnSe 2.70 ZnSO4 for Zn ions and SeO2 for Se ions Ability to grow both p-
and n-type material [36]

ZnO 3.30 Zn(NO3)2 for Zn ions – [37]

ZnS 3.75 ZnSO4 for Zn and (NH4)2S2O3 for S ions Ability to grow both p-
and n-type material [38]

Polyaniline
(PAni) – C6H5NH2 and H2SO4

To use as a pinhole
plugging layer [39]

3.2. Electrolytic Bath pH Value

The composition of an electrolytic bath naturally determines the pH of the bath.
Basically, the acidity (pH < 7.00) of an electrolyte can be increased by the introduction of an acid.
The hydrogen ions (H+) from the dissociated acid reacts with water in aqueous solution to form
hydronium ions (H3O+). On the other hand, the alkalinity of a solution increases (pH > 7.00) with
the reduction in the H3O+ concentration. This is caused by the reaction of dissociated hydroxide ions
(OH−) from introduced alkaline with H+ ions from water dissociation to form water (H2O) rather than
hydronium ions. It is well documented that elemental and compound deposition responds to this
chemical dynamic mainly in wet deposition techniques such as chemical bath deposition (CBD) [48]
and electrodeposition techniques [49]. With emphasis on electrodeposition, the effect of pH on the
bath and the deposited layers vary from selective deposition/etching of element [50], alteration of
the characteristic properties of the deposited layers [51,52], elemental/compound precipitation [53],
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and increase in the deposition current density [54]. Furthermore, the effect of pH on the dissociation
of common solvent such as water is also well documented in the literature [55], with the notion
that an increase in the acidity of an electroplating bath results in the increase in the concentration of
dissociated ions in the aqueous solution [55]. Due to the increased ionic concentration, the deposition
current density increases until it stabilises or continues to increase, depending on the composition of
the solution.

3.3. Deposition Temperature

It is a known fact that an increase in the temperature of a matter increases the motion of the
molecules inside it. As such, the electrolytic bath temperature increases solubility of the solvent,
catalyses the reactions, energizes the ions, and increases the transport number, which results in
an increase in the deposition current density and rate of deposition of constituent elements or
compounds. Further to this, the work performed on electrodeposition depicted that an increase in the
crystallinity of as-deposited semiconductor material is achievable at higher growth temperature [3,56].
For electroplated semiconductor materials from aqueous solution, there is a limitation on the growth
temperature due to the boiling temperature of water at 100 ◦C under standard atmospheric pressure,
while the electroplating from other electrolytic baths can go as high as 160 ◦C [31]. Deposition of
materials at higher temperature provides energy required for ions/atoms to move around and deposit
in a regular crystalline pattern.

3.4. Deposition Current Density

With regards to Faraday’s law of electrodeposition, the deposition current density is directly
related to the thickness of the deposited layer. Thus, the deposition current density is dependent
on factors effecting the energizing of the inherent ions in the electrolyte such as stirring rate,
bath temperature, concentration of constituent [57], and electrical conductivity of the substrate amongst
other constraints. While a gradual alteration in the deposition current density is expected depending
on the electrical conductivity of the electroplated layers.

With respect to semiconductor materials such as CdTe, the literature depicts the effect of current
density on the morphological, compositional and the structural properties of the deposited layer [58,59].
Based on the deposition configuration, it can be inferred that the deposition current density of
three-electrode configuration and two-electrode deposition configuration vary. CdTe with optimal
characteristic properties deposited from a three-electrode deposition is known to lie between ~(0.3–0.6)
mA cm−2 [57,60]. While two-electrode electrodeposition has been documented to produce CdTe
layers with an optimal characteristic property of ~(0.15–0.18) mA cm−2 [61]. Under potentiostatic
mode, Basol (1988) clarified that the deposition current density for CdTe electroplating depends on
the tellurium concentration in the electrolyte [57]. The incorporation of excessive Te can alter the
composition of the deposited CdTe, conduction type to p-CdTe due to Te-richness [62], and reduce
adhesion on the underlying substrate. Reduction in the adhesion of CdTe may also occur due to the
deficiency of Te concentration in the electrolytic bath. In either condition (excess or deficiency of Te
concentration in the electrolyte), the crystallinity, morphology, and adhesion of the ensued CdTe layer
suffer. In addition, current density during co-deposition of competing ions such as Ga3+ and Fe2+ in
the electroplating of Fe–Ga alloys is a determinant of the Fe:Ga elemental composition ratio of the
resultant alloy [63].

3.5. Duration of Deposition and Thickness

Electroplating of materials with main emphasis on semiconductor commences by the nucleation
of the most electropositive element on the points on the conducting substrates with the highest
electric field. Therefore, it can be categorically stated that the nucleation and nucleation modes of
semiconductor material is conductive substrate dependent [1,22,64]. Consequential to the surface
roughness of the underlying working electrode such as glass/fluorine-doped tin oxide (g/FTO),
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the highest electric field is experienced at the peaks of the rough surfaces. The nucleation of the
electroplated material spreads out through to the lowest valley from the initiation rough surface peaks
resulting into columnar nature of the deposited layers [14]. The potency of this mechanism is highly
influential at the initial stages of deposition due to unevenness of the deposited layer thickness
characterised by pin-holes, voids, gaps, and high dislocation density within the semiconductor
material [21]. This characteristic property is detrimental when a thin semiconductor layer with
a thickness of <100 nm is required [21].

4. Strengths and Weaknesses of Electrodeposition

4.1. Strengths of Electrodeposition

4.1.1. Electrolytic Bath Life Longevity and Self -Purification

At the start of an electrolytic bath, electro-purification of the bath is highly essential to reduce and
eliminate the impurity level, which is mostly incorporated in the precursors amongst other impurity
sources. It should be noted that even with a high purity precursor with 99.999% purity, it can carry
an impurity level of 10 ppm. Purification is essential due to the effect of impurities even in ppm
levels [65] on the characteristic properties of electroplated semiconductor materials. It should be noted
that electro-purification of a bath must be performed using similar deposition parameters (such as bath
temperature, pH, stirring rate, etc.) to the semiconductor deposition. The electro-purification potential
utilised should be lower than the deposition potential range of the required elements established
using cyclic voltammetry. Based on this characteristic property of electroplating technique, the more
layers deposited, the purer the electrolyte and the electroplated semiconductor gets due to the gradual
reduction of background impurities and improved material property. This property not only increases
the purity of the electrolyte and the deposited semiconductor, but also increases the longevity of the
bath as compared to the batch process of chemical bath deposition (CBD) technique.

To further mitigate other sources of impurities, a fraction of researchers choose two-electrode over
the three-electrode configuration to avoid possible impurities from the reference electrode. While the
usage of Teflon-ware (polypropylene beaker) is necessitated to house the electrolyte due to possible
leaching of elemental sodium and other dopants from glass-wares [66] into acidic electrolytes.

4.1.2. Ease of Doping Intrinsic and Extrinsic

With the effective purification of the electrolyte, intrinsic doping has been demonstrated in
the literature for binary [38,67], ternary [68], and quaternary [69,70] semiconductor materials by
changing the deposition voltage. Taking an example of a I–III–VI2 semiconductor materials such as
CuInGaSe2, the stoichiometric semiconductor layer consists of 25% of the group I element, 25% of
the group III elements, and 50% of group VI element. Due to the positive reduction potential of Cu
(Eo = 0.52 V), at low deposition voltages, high elemental composition of Cu (group I) is incorporated
in the semiconductor resulting into p-type conduction type. But an increase in the cathodic voltage
increases the elemental composition resulting in an n-type semiconductor material, as in the case of
CuInSe2 (see Figure 3a). While at intermediate voltages, the material exhibits insulating or intrinsic
properties. This electrical characteristic property, as demonstrated in the literature [68–70], signifies the
ability of growth of p-, i-, and n-type materials from the same bath by cathodic voltage variation
(see Figure 3). The incorporation of Ga in CuInGaSe2 [42] increases the bandgap and also makes
the material p-type. This must be due to the formation of acceptor-like defects in the material
(see Figure 3b).
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same electrolyte, simply by varying the deposition voltage. Reproduced from [68,70] with permission;
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The effect of cathodic voltage on the elemental composition of binary semiconductors has also
been demonstrated and documented in the literature [14,62]. The effect of alteration in the growth
voltage on the elemental composition of electroplated materials even for as low as 1 mV step has been
documented [29] (see Figure 4).
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The ease of intrinsic doping and the effect of extrinsic doping of electroplated semiconductor
materials have been well established in the literature [65,71]. Due to the simplicity of ED, doping at
the ppm level is made possible [65,71,72].

4.1.3. Bandgap Engineering Capability

The control or alteration of the bandgap of materials (with emphasis on semiconductor) is easily
achievable in electrodeposition techniques. Typically, this can be achieved by controlling the atomic
composition of the elemental component of the semiconductor material. Intrinsically, electrodeposition
has the ability to change the composition of growing material by a simple alteration of the cathodic
voltage [38,68–70]. An ensuing alteration in the bandgap of grown semiconductor material due to
change in the growth cathodic voltage has been documented in the literature [42]. It is well known that
an increase in the atomic concentration of Ga in CuInGaSe2 by increasing the cathodic voltage increases
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the bandgap of CuInGaSe2. While a reduction in the cathodic voltage of the CuInGaSe2 results in
the reduction of bandgap due to the richness of Cu [42] (see Figure 5). This ability provides the ease
of bandgap engineering of semiconductor material such as CuInGaSe2 between ~1.00 and 2.20 eV.
Extrinsically, this observation has also been documented for electroplated binary semiconductor
materials such as CdTe doped with Ga [65] amongst others. The bandgap of the resulting doped
semiconductor directly affected the incorporated dopant even at the parts per million level [65,71].
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4.1.4. Low Cost and Simplicity

There are over 14 different and well-established techniques to grow thin-film semiconductor
materials [73] which can be broadly categorised under physical or chemical deposition. Physical deposition
refers to the technologies in which material is released from a source and deposited on a substrate using
thermodynamic, electromechanical or mechanical processes [1,74]. Chemical deposition techniques
are accomplished by the utilisation of precursors either in their liquid or gaseous state to produce
a chemical reaction on the surface of a substrate, leaving behind chemically deposited thin-film coatings
on the substrate. Electrodeposition falls under chemical deposition techniques which can be carried out
in an uncontrolled environment and without a vacuum system. The setup for electroplating which is
mainly constituted of a computerized potentiostat and hotplate/magnetic stirrer with a cost implication
of less than £5000 as compared to other techniques such as the well-established metallorganic
chemical vapour deposition (MOCVD) or close space sublimation (CSS) system with a high initial
cost implication of about £1 million for a laboratory setup. In addition, these systems have limitations
as concerning the materials that can be grown. Furthermore, the relatively low heat energy required
during growth and post-growth treatment makes electroplating a more energy-economic deposition
technique as compared to a large number of other techniques. More importantly, grown semiconductor
layers using cost-effective electroplating techniques are comparable to semiconductor layers grown
using highly expensive techniques [29,75], and they all require post-deposition treatments [76,77].

4.1.5. Scalability and Manufacturability

The scalability and manufacturability of electroplating has been demonstrated on an industrial
scale by British Petroleum (BP) Solar in the 1980s and 1990s [78,79]. BP Solar manufactured CdTe-based
solar cells with a solar panel area ~1 m2 with a conversion efficiency of ~10% [78,79]. As compared
to the laboratory scale setup as shown in Figure 2, scaling up requires a larger tank to contain the
electrolyte and multi-plate cathode attached to multiple conducting substrates. The use of larger tanks
and multi-plate cathode increases the throughput of deposited layers and an added advantage of
electroplating on intricate shapes and designs.
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4.2. Weaknesses of Electrodeposition

One of the main disadvantages of electrodeposition includes comparatively low rates of deposition
and the need for a conducting substrate as the working electrode in the electroplating setup. Due to
this requirement, using conventional characterisation techniques such as the Hall effect to determine
the electrical properties of the deposited layers on FTO, for example, will not be possible due to the
underlying conducting layer.

4.2.1. Instability of Current Density during Deposition

The control of the electrodeposition process due to the alteration of current density with increasing
deposition layer thickness is a challenge (under potentiostatic condition). The electroplating of
materials with electrical conductivity levels lower than the primary substrate results in the reduction
of current density with a direct relationship with the thickness of the deposited material [80].
This observation is common for both 2E and 3E electroplating configurations, but the applied voltage
can vary slightly in 2E configuration.

4.2.2. Control and Regulation of Ions within the Electrolytic Bath

The chemical concentration of ionic species in an electrolytic bath is defined during bath creation,
but the control, regulation and measurement of ionic concentration within the electrolytic bath during
electroplating remains a challenge. This is as a result of the depletion in the ionic concentration
and the inability to gauge/measure the concentration change during and after initial deposition,
therefore replenishing the bath with the appropriate chemical concentration becomes difficult and
thereby reducing reproducibility tendencies of electroplated layers.

4.2.3. Formation of Solution-Based Complexes

There is a possibility for the formation of complexes within the electrolyte which might be
debarring the deposition of an element and/or the co-deposition of a compound [32,33]. This is
the case for the deposition of CdTe from aqueous solution containing CdI2 as the Cd-precursor.
The literature shows that due to the formation of Cd-I complexes in aqueous solution, only p-CdTe
layers due to Te-richness is possible [32,33]. Unnecessary precipitation removes chemicals from the
electrolyte, changing the elemental concentration in the bath.

4.2.4. Extrinsic Doping of Electrolytic Bath by the Electrodes

Control of purity throughout the electrolytic bath lifespan if an electrolytic bath is essential. It is
well known that the purity of an electrolytic bath increases with the deposition aging of the bath but
there is a tendency of an influx of impurity which might be due to etching, corrosion or dissolution
of the electrode.For electrodeposition setup using carbon electrode, there has been observation of
increased carbon concentration in deposited semiconductor layers. The incorporation of carbon into
the electrolytic bath is due to the deterioration of the anode utilised in the electrolytic cell setup.

4.2.5. Non-Uniformity of Electrodeposited Semiconductor Layers

Due to the unevenness of the underlying conducting substrate such as transparent conducting
oxide (TCO), the highest electric field is experienced at the peaks of the rough conducting substrate
surfaces. Nucleation starts at the peaks and spreads out through to the lowest valley resulting into
layers with columnar nature [14].

4.2.6. Post-Growth Treatment

It is well documented that electrodeposited layers with an emphasis on semiconductors often
require post-deposition treatment to further improve their structural, morphological, compositional,
and optical properties [81–83]. It is, although, arguable that other semiconductor deposition techniques
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such as [77], MOCVD [84], and CSS [85] also require such treatments, as it is evident in the
performances of the applications utilised for References [81–83].

Asides semiconductors, other issues such as the influence of different process conditions on
mechanical properties of electroplated materials and the control of the integrity of the electroplated
layers as it relates to further processing have also been the raised [86,87], but not discussed in
this communication.

5. All-Electroplated Photovoltaic Devices

The comparability of the structural, morphological, compositional, optical, and other material
properties has been well documented in the literature [29,42,68,88]. Electrodeposited cadmium telluride
(CdTe) and copper indium gallium selenide (CIGS) are amongst the commonly used absorber layers in
all-electrodeposited photovoltaic applications [57,89]. The versatility of the technique in the growth
of all-electrodeposited configurations has been well documented [13,90–92]. The band diagrams
of possible n-p and n-n+ large Schottky barrier junctions are shown in Figure 6 fabricated using
CdS/CdTe configuration. The full characterisation process of both the CdS and CdTe are documented
in the literature [40,46]. The electronic properties of the fabricated photovoltaic cells obtained using
current–voltage (I–V) and capacitance–voltage (C–V) techniques are summarised in Table 2.
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Figure 6. Energy band diagrams representing (a) glass/FTO/n-CdS/p-CdTe/Au and (b) glass/FTO/
n-CdS/n-CdTe/Au device configurations.
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Table 2. Summary of device parameters obtained from I–V (both under illuminated and dark
conditions) and C–V (dark condition) for simple CdS/CdTe-based solar cells grown at different growth
voltages in the vicinity of Vi = 1370 mV.

Parameters Values

CdTe Growth Voltage (mV) 1340 1360 1370 1380 1400

I–V under dark condition

Rsh (Ω) 1016 >105 >105 >105 >105

Rs (kΩ) 0.21 0.80 0.50 1.43 1.50
log (RF) 0.4 3.5 3.9 3.3 3.0

Io (A) 2.5 × 10−5 3.9 × 10−9 1.0 × 10−9 3.2 × 10−9 5.0 × 10−9

n >2.00 1.95 1.86 1.58 1.86
Φb (eV) >0.52 >0.76 >0.81 >0.77 >0.77

I–V under AM1.5 illumination condition

Isc (mA) 0.53 0.62 0.65 0.82 0.57
Jsc (mA cm−2) 16.88 19.75 20.70 26.11 18.15

Voc (V) 0.23 0.49 0.72 0.60 0.57
Fill factor 0.31 0.46 0.50 0.45 0.48

Efficiency (%) 1.20 4.45 7.50 7.05 4.97

C–V under dark condition

σ × 10−4 (Ω cm−1) 1.41

–

2.85

−

6.03
NA or ND (cm−3) 7.74 × 1016 3.10 × 1014 9.10 × 1014

µ (cm2 V−1 s−1) 0.01 5.74 4.14
Co (pF) 1630 330 370
W (nm) 187.6 926.7 826.5

It is well known that intrinsic CdS is n-type and remains n-type due to the inherent defect
as a result of the presence of S vacancies and Cd interstitials in the crystal lattice of the deposited
CdS layers [93]. The devices are fabricated by incorporating CdTe deposited at the vicinity of the
transition voltage (Vi) from p-type to n-type CdTe or vice versa. Electroplated CdTe can either be
p-type (when Te rich) or n-type (when Cd rich) material under as-deposited condition. Retention or
transition of electrical conduction type is possible after cadmium chloride treatment. It is noteworthy
that the conversion of the electrical conduction type after post-growth treatment may be attributed
to the doping effect as a result of the heat treatment temperature, duration of treatment, initial
atomic composition of Cd and Te, the concentration of CdCl2 utilised in treatment, defect structure
present in the starting CdTe layer, and the material’s initial conductivity type as documented in the
literature [40,41,94]. Therefore depending on the final electrical conduction type, the possible device
configurations are possible, and the analysis of device results must be performed with extreme care.

Table 2 summarises the results of CdS/CdTe solar cells made with CdTe layers grown in the
vicinity of Vi = 1370 mV. Below the Vi, the CdTe layers are p-type and therefore the devices made are
p-n junctions (see Figure 6a). Above the Vi, the CdTe layers are n-type and hence the device structures
are n-n+ Schottky barrier (see Figure 6b). As shown in Table 2, the devices fabricated with n-CdTe
performs better than those made with p-CdTe layers.

CdTe-based devices assuming p-CdTe in CdS/CdTe devices has been documented in the
literature [27,95]. But based on recent observations, the incorporation of Cd-rich CdTe absorber
layers produce high efficiencies. These effects have been independently observed and reported [96,97]
and mainly attributed to the reduced defects in Cd-rich CdTe (the layers are deposited using physical
deposition processes).

Using mainly n-CdTe absorber layers, few devices incorporating all-electrodeposited from the
SHU group have been documented in the literature and summarised in Table 3.
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Table 3. Summary of device parameters obtained from I–V (both under illuminated and dark conditions)
and C–V (dark condition) for glass/FTO/n-CdS/n-CdTe/Au and glass/FTO/n-ZnS/n-CdS/n-CdTe/Au
solar cells.

Properties

Configuration

g/FTO/n-CdS/
n-CdTe/Au

(Two-Layer Device)

g/FTO/n-CdS/
n-CdTe/p-CdTe/
Au (Three-Layer

Device)

g/FTO/n-CdS/
n-CdTe/p-CdTe/

Cu-Au (Three-Layer
Device)

Glass/FTO/n-ZnS/
n-CdS/n-CdTe/Au

(Three-Layer
Device)

I–V under dark condition

Rsh (Ω) >105 >7.2 × 105 106 >105

Rs (kΩ) 0.50 0.50 0.92 0.47
log (RF) 3.9 4.1 3.5 4.8

Io (A) 1.0 × 10−9 1.0 × 10−9 3.16 × 10−9 1.0 × 10−9

n 1.86 1.86 1.68 1.60
Φb (eV) >0.81 >0.80 >0.80 >0.82

I–V under 1.5 AM illumination condition

Isc (mA) 0.65 1.06 1.85 1.07
Jsc (mA cm−2) 20.70 33.80 58.9 34.08

Voc (V) 0.72 0.73 0.64 0.73
Fill factor 0.50 0.62 0.50 0.57

Efficiency (%) 7.50 15.3 18.5 14.18

C–V under dark condition

σ × 10−4 (Ω
cm)−1 2.85 – – 8.82

ND-NA (cm−3) 3.10 × 1014 6.67 × 1014 1.82 × 1014 7.79 × 1014

µ (cm2 V−1 s−1) 5.74 – – 7.07
Co (pF) 330 395 160 280
W (nm) 926.7 – – 1092.2

6. Conclusions

This work describes electroplating as a robust material deposition technique with wide
applications ranging from surface protection to large-area electronics and nano-technology while
focusing on semiconductor deposition. The manuscript also reviews the pros and cons of electroplating
techniques. The effect of growth parameters such as temperature, pH, stirring rate, precursor,
solvent and cathodic voltage, and post-growth heat treatments of the deposited were iterated.
The capability of electroplated material to be comparable and possibly superior to semiconductor
materials grown using other cash intensive techniques are also highlighted with experimental evidence.
Electroplated materials can be applicable in large-area devices such as photovoltaic solar panels and
large-area display panels in which intricate shapes are required. Bandgap grading, alteration of
elemental composition, and different conductivity type are also possible intrinsically with a change
in the cathodic voltage. Other advantages such as columnar growth of nanorods which are tightly
packed and normal to the substrate could trigger many new applications in the nanotechnology area.
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