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Abstract: Cold-sprayed AISI 316L stainless steel coatings are treated to form an austenite phase
with excessive dissolved nitrogen (known as the S-phase) by plasma nitriding at temperatures
below 450 ◦C. The S-phase is a hard and wear-resistant layer with high corrosion resistance.
However, the S-phase layer formed after only nitriding is thin and the hardness abruptly decreases at
a certain depth; it lacks mechanical reliability. We examined two types of combined low-temperature
plasma treatment to enhance the mechanical reliability of the S-phase layer: (i) sequential and (ii)
simultaneous. In the sequential plasma treatment, the carburizing step was followed by nitriding.
In the simultaneous treatment, the nitriding and carburizing steps were conducted at the same
time. Both combined plasma treatments succeeded in thickening the S-phase layers and changed
the hardness depth profiles to decrease smoothly. In addition, anodic polarization measurements
indicated that sequential treatment involving carburizing followed by nitriding for 2 h each resulted
in high corrosion resistance.
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1. Introduction

Conventional nitriding and carburizing for austenitic stainless steel plates at treatment temperatures
over 500 ◦C improve the surface hardness, but reduce the corrosion resistance due to the formation of
chromium nitride or carbide. In contrast, low-temperature nitriding and carburizing at temperatures below
450 ◦C for austenitic stainless steel plates can result in the formation of an austenite phase with excessive
dissolved nitrogen known as the S-phase. The S-phase is not a nitride or carbide, but a solid solution
of excessive nitrogen or carbon dissolved in the fcc lattice. The S-phase layers possess a high hardness
and excellent wear resistance. Therefore, low-temperature nitriding and carburizing could be applied to
austenitic stainless steel plates used under severe friction conditions. In addition, these treatments restrict
the formation of chromium nitride or carbide, maintaining the corrosion resistance [1–17].

A few papers have been reported nitriding and nitrocarburizing for sprayed stainless steel
coatings, including treatments at conventional and low-temperatures. For the conventional treatment,
HVOF-sprayed stainless steel coating was treated by plasma nitriding and nitrocarburizing at the
temperature of 550 ◦C has been reported by Park et al. [18]. In addition, Thomas Lindner reported
that HVOF-sprayed stainless steel coating was treated by gas nitriding and nitrocarburizing at low
temperatures [19,20]. Additionally, we examined plasma-sprayed AISI 316L stainless steel coatings
that were treated by low-temperature treatments below 450 ◦C [21,22]. As a result, it was recognized
that the plasma-sprayed stainless steel coatings had improved wear resistance, similar to steel plates.

Coatings 2018, 8, 456; doi:10.3390/coatings8120456 www.mdpi.com/journal/coatings

http://www.mdpi.com/journal/coatings
http://www.mdpi.com
https://orcid.org/0000-0001-6434-6834
http://dx.doi.org/10.3390/coatings8120456
http://www.mdpi.com/journal/coatings
http://www.mdpi.com/2079-6412/8/12/456?type=check_update&version=2


Coatings 2018, 8, 456 2 of 13

However, plasma-sprayed stainless steel coatings include oxide layers, cracks, and pores in their
structure, which deteriorate the corrosion resistance considerably.

Cold-spraying is not a fusing process but a solid particle stacking process. Hence, cold-sprayed
coatings are without any oxides, similar to a bulk steel structure [23]. It was reported that thick
cold-sprayed 316L stainless steel coatings show electrochemical polarization behavior similar to bulk
stainless steels [24]. Therefore, it is expected that cold-sprayed AISI 316L coatings can be applied as
corrosion protective coatings. Additionally, Villa et al. reported that cold-sprayed 316L coatings can be
hardened by cold working during the deposition process, which can also result in increased strength,
and the abrasive wear resistance of the coating is in the same order of magnitude as that of coatings
produced by HVOF [25]. However, the hardness of the 316L coatings was 358 ± 36 HVN, which is
insufficient to apply under severe wear conditions.

We have previously reported low-temperature plasma nitriding of cold-sprayed AISI 316L
coatings to successfully improve the Vickers hardness to 1200 HV [26]. In particular, remelted AISI
316L coatings by a postlaser treatment had excellent corrosion protection for ordinary steel substrates
due to a dense microstructure.

However, there is a concern that S-phase layers formed by nitriding without carburizing could be
delaminated when an external force is applied, because the hardness of the S-phase layers declines
drastically at a certain depth. Low-temperature treatments combining nitriding and carburizing have
been reported to result in a milder hardness distribution (with hardness not declining drastically),
excellent wear resistance, and thickening of the S-phase layers. There are two types of combined
treatments—(i) sequential and (ii) simultaneous. In the sequential treatment, carburizing is followed by
nitriding [27–29]. Meanwhile, in the simultaneous treatment, carburizing and nitriding are performed
at the same time, using a gas mixture of carbon and nitrogen species [30–35]. We had previously
examined combined low-temperature plasma treatments for plasma-sprayed AISI 316L coatings [36],
consequently thick S-phase layers were produced by the simultaneous plasma treatment. In this paper,
cold-sprayed AISI 316L coatings are applied simultaneously and sequentially combined with plasma
nitriding and carburizing at temperatures ranging from 400 to 450 ◦C; we then examined the effects
of the processes on the thickening of the S-phase layer, wear resistance, hardness depth distribution,
and corrosion resistance.

2. Experimental Procedure

2.1. AISI 316L Coating by Cold-Spraying

The substrate was an ordinary steel plate (JIS: SS400) sized 25× 65× 6 mm3. The spraying material
was AISI 316L stainless steel powder with diameter 16−45 µm. The steel substrates were blasted by
#36 alumina grit to roughen and remove the oxide layer as a pretreatment step before cold-spraying.
Cold-spraying was performed with a PCS-1000 system (Plasma Giken Co., Ltd., Saitama, Japan) using
helium as the propellant gas. The spraying was carried out with a helium gas pressure of 5 MPa,
gas temperature of 950 ◦C, nozzle standoff distance from the substrate of 25 mm, and traverse speed of
300 mm s−1. The thickness of the sprayed coatings was ~500 µm.

After spraying, the coatings were polished using metallographic 3-µm diamond paste to flatten
and remove the surface layer. The final thicknesses of the sprayed coatings were over 200 µm.

The cross-section of the cold-sprayed AISI 316L coating was polished and observed using
an optical microscope. The porosity of the cold-sprayed AISI 316L coating was measured using
commercially available image analysis software with an image binarization for the coating’s
cross-sectional micrograph.

2.2. Combined Low-Temperature Plasma Carburizing and Nitriding Treatment

A laboratory-type DC plasma ion treatment machine (FECH-1N, Fuji Electronics Industry Co, Ltd.,
Osaka, Japan) was used for the low-temperature plasma treatments. The specimen was placed on a
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holder in the chamber and the holder was connected to the cathode. The plasma gas mixtures for the
carburizing and nitriding processes were CH4:Ar:H2 (5:50:45) and N2:H2 (80:20), respectively. The gas
mixture for the simultaneous (nitrocarburizing) treatment was CH4:N2:H2 (5:80:15). The treatment
temperatures were 400, 425, and 450 ◦C and the total treatment time was 4 h (see Table 1).

2.3. Characterization of the S-phase

Cross-sectional micrographs were observed using an optical microscope. Samples were first etched
with Marble’s reagent (containing 20 mL HCl, 20 mL H2O, and 4 g CuSO4). In addition, the nitride layer
thickness was measured at approximately 10 points per sample from the cross-sectional micrographs.

Table 1. Conditions of low-temperature plasma treatments at 400, 425 and 450 ◦C.

Symbol Treatment

Single Treatment

C4 h Carburizing 4 h
N4 h Nitriding 4 h

Sequential Treatment

1st Treatment 2nd Treatment

C0.5 h→N3.5 h Carburizing 0.5 h Nitriding 3.5 h
C2 h→N2 h Carburizing 2 h Nitriding 2 h

Simultaneous Treatment

(C+N)4 h Nitrocarburizing 4 h

X-ray diffraction measurements involving conventional θ–2θ scans were performed to evaluate
the crystal structure using Rigaku Smart Lab (Tokyo, Japan) with Cu-Kα radiation generated at 40 kV
and 150 mA.

The carbon and nitrogen depth distribution profiles were obtained glow-discharge optical
emission spectroscopy (GDOES) on a Rigaku GDA750 system (Tokyo, Japan).

2.4. Wear Resistance

The surface hardness was measured with a Vickers tester (HMV-2000, Shimadzu Corporation,
Kyoto, Japan) with a test load of 0.245 N. The Vickers test of each sample was repeated 8 times and the
lowest and highest value were excluded.

The hardness depth profiles were measured by using a nanoindentation tester (ENT-1100a, Elionix,
Tokyo, Japan) with a test load of 1 mN and the measurement was repeated 3 times.

The amount of specific wear was measured using a laboratory-type ball-on-disc reciprocal sliding
wear tester, and it was performed under dry conditions. An Al2O3 ball (4.76 mm in diameter) was used
in the tests at a sliding speed of 20 mm s−1, frequency of 2 Hz, amplitude of 5 mm, sliding distance of
144 m, and load of 1.96 N. The wear test of each sample was repeated 3 times. The cross-sectional area
of the wear trails was measured at 3 points by using a roughness meter, Mitutoyo Formtracer CS-5000
(Mitutoyo, Tokyo, Japan).

2.5. Corrosion Protection

The corrosion resistance was evaluated by electrochemical polarization measurements carried
out using a potentiostat, HZ-5000 (Hokuto Denko Corporation, Tokyo, Japan), with an Ag/AgCl
reference electrode and a platinum-plated counter electrode at a scan rate of 20 mV min−1 at 30 ◦C.
The experiments were performed using 3.5 wt % NaCl solution, which was degassed by bubbling N2

gas for at least 0.5 h before the measurement to eliminate the influence of dissolved oxygen. A voltage
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of −0.7 V was applied to the sample for 600 s and the sample was then allowed to stand for 600 s
before the polarization curve was measured.

After the measurements, the surface morphology was examined by optical microscopy.

3. Results and Discussion

3.1. S-phase Produced by Plasma Treatment

Figure 1 shows the cross-sectional microstructure of the as-sprayed AISI 316L coating, and the
coating porosity was 1%.
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Figure 2. X-ray diffraction patterns of the cold-sprayed AISI 316L samples subjected to low-
temperature plasma treatments at (a) 400 °C, (b) 425 °C and (c) 450 °C. 

  

Figure 1. Cross-sectional micrograph of the cold-sprayed AISI 316L coating.

Figure 2 shows X-ray diffraction patterns of the sprayed AISI 316L coatings with and without the
low-temperature plasma treatments. All XRD peaks for γ(111) and γ(200) were shifted towards lower
angles by the plasma treatments, suggesting the γ-phase in the sprayed AISI 316L coatings expanded due
to carbon and nitrogen atoms dissolving, indicating the formation of S-phase layers. In addition, at the
treatment temperature of 450 ◦C, the small XRD peaks corresponding to Fe3N and Cr7C3 were detected
in the products of the combined plasma treatments and single carburizing treatment, respectively.
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Cross-sectional micrographs for products obtained at the various treatments and temperatures are
shown in Figures 3–5. The S-phase layers appear as the lighter region at the surface. The S-phase layers
obtained with the combined plasma treatments were observed as a dual structure with a dark surface
layer and a bright inner layer. Especially, at 450 ◦C, the dual structure was observed clearly. The carbon
and nitrogen depth distributions obtained by GDOES are shown in Figure 6. For the combined plasma
treatments, the GDOES results indicate that the nitrogen and carbon are present near the S-phase layer
surface and inside, respectively. Then, it was concluded that the dark surface layer of the S-phase was
rich in nitrogen (SN-phase), and the inner bright layer was rich in carbon (SC-phase).
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Figure 6. Carbon and nitrogen depth distributions of the S-phase layers on cold-sprayed AISI
316L coatings obtained at 400, 425 and 450 ◦C by (a) carburizing for 4 h, (b) nitriding for 4 h,
(c) C0.5 h→N3.5 h, (d) C2 h→N2 h, and (e) (C+N)4 h.
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The total thicknesses of the S-phase layers were measured from the cross-sectional micrographs
and the values are shown in Figure 7. For the sequential plasma treatments, the average thicknesses
of the (C0.5 h→N3.5 h) layers were 8.6 µm at 400 ◦C, 12.3 µm at 425 ◦C, and 16.7 µm at 450 ◦C.
The (C2 h→N2 h) layer thicknesses were 7 µm at 400 ◦C, 10.7 µm at 425 ◦C, and 12.9 µm at 450 ◦C.
Thus, the (C0.5 h→N3.5 h) layers were thicker than the (C2 h→N2 h) layers.Coatings 2018, 8, x FOR PEER REVIEW  7 of 13 
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Figure 7. Thicknesses of the S-phase layers on cold-sprayed AISI 316L coatings subjected to various
low-temperature plasma treatments at different temperatures.

From the GDOES results, in the (C2 h→N2 h) layer obtained at 450 ◦C (Figure 6d),
the carbon-enriched layer was present at a depth of 9 µm from the surface. This depth was smaller
compared to that of (C0.5 h→N3.5 h) obtained at 450 ◦C (13 µm, Figure 6c). The carburized layers of
(C2 h→N2 h) formed during the first carburizing step are expected to restrict the nitrogen diffusion
during the second nitriding step. In contrast, in (C0.5 h→N3.5 h), the carburized layers were pushed
within easily by the second nitriding treatment, since the initial carburized layers were relatively thin
due to the short treatment time of 0.5 h. Therefore, the S-phase layers of (C0.5 h→N3.5 h) are thicker
than the (C2 h→N2 h) layers. In addition, the (C0.5 h→N3.5 h) layers were thicker than layers obtained
by single treatment carburizing and nitriding. Consequently, the combination of the SN-phase and
SC-phase would lead to the advantageous thickening of the S-phase layer.

Furthermore, in the XRD peaks of Figure 2, the peaks of products obtained by the sequential
treatments (C0.5 h→N3.5 h) and (C2 h→N2 h) were shifted to lower angles than the peaks of the
products obtained by single nitriding (N4 h) at 400 and 425 ◦C. The XRD peaks shifting to lower angles
suggest more nitrogen dissolved in austenitic lattice. Consequently, the sequential plasma treatments
enable the dissolution of higher nitrogen content compared to the single plasma treatments.

In simultaneous treatments ((C+N)4 h), as shown in Figure 5e, the S-phase layer was also a dual
layer, similar to the sequential treatments. The GDOES results in Figure 6e suggest that the nitrogen
concentration in S-phase layers obtained by simultaneous treatments was high at the surface and
decreased in the interior. In contrast, the carbon concentration was relatively low at the surface and
a carbon-enriched layer was formed at the inner side, where the nitrogen concentration decreased
abruptly. The diffusion rate of carbon in austenite is faster than that of nitrogen [30], therefore carbon
could penetrate ahead of nitrogen despite simultaneous carbon and nitrogen diffusion. Simultaneous
treatment at 450 ◦C seemed to lead to lower Fe3N formation compared to sequential treatments
in Figure 2c. GDOES results in Figure 6e show that the simultaneous treatment resulted in a
surface nitrogen concentration of 10 wt %, while the sequential treatments (Figure 6c,d) resulted
in a concentration of 15 wt %. Further, the XRD profiles in Figure 2 suggest that the peak shifts of the
γ-phase with the simultaneous treatments were less compared to that observed in sequential treatments.
Consequently, the simultaneous treatments dissolved less nitrogen than the sequential treatments;



Coatings 2018, 8, 456 8 of 13

therefore, the simultaneous treatment at 450 ◦C lowered Fe3N formation. In addition, the S-phase
layers obtained with the simultaneous treatment at 400 ◦C and 425 ◦C were not thick compared to
those obtained by single carburizing (C4 h); however, at 450 ◦C the simultaneous treatment resulted in
a thick S-phase layer. Therefore, simultaneous treatment at 450 ◦C is suitable for cold-sprayed AISI
316L coatings to produce a thick S-phase layer with low Fe3N content.

3.2. Hardness and Wear Resistance

The Vickers hardness and the specific wear of the as-sprayed 316L coatings were 370 HV and
6.4 × 10−14 m2 N−1, respectively. Figures 8 and 9 show the hardness and specific wear of the S-phase
layers. For S-phase layers obtained by single carburizing (C4 h), the hardness was 800–1000 HV and
the specific wear was ~1.5 × 10−14 m2 N−1 at all treatment temperatures. In comparison with other
plasma treatments, single carburizing led to inferior wear resistance.
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Figure 8. Hardness of the S-phase layers on cold-sprayed AISI 316L coatings subjected to various
low-temperature plasma treatments at different temperatures.
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Figure 9. Specific wear of the S-phase layers on cold-sprayed AISI 316L coatings obtained by various
low-temperature plasma treatments at different temperatures.

S-phase layers obtained by single nitriding (N4 h) showed a maximum hardness of 1350 HV at
450 ◦C and the sequential and simultaneous treatments at 450 ◦C also led to similar hardness values.
On the other hand, at 400 and 425 ◦C, single nitriding led to lower hardness values than the combined



Coatings 2018, 8, 456 9 of 13

plasma treatments. The low hardness resulting from the single nitriding could be due to the thin
S-phase layer formed (Figure 7), and therefore, the unmodified AISI 316L coating layer under the
S-phase could affect the hardness.

On the other hand, the average amounts of specific wear of products obtained at 425 and 450 ◦C
by single nitriding, sequential, and simultaneous treatments were in the range of 1–5 × 10−15 m2 N−1.
The S-phase layers obtained by the combined plasma treatments were composed of a surface SN-phase
and an interior SC-phase; therefore, the properties of the wear resistance would not be very different in
comparison to S-phase layers obtained by single nitriding treatment.

Figure 10a shows the nanoindentation hardness-depth profiles of the S-phase layers by the single
plasma treatments obtained at 450 ◦C. The coating hardness after single nitriding (N4 h) decreased
abruptly at a depth of 10 to 14 µm. Meanwhile, the hardness of S-phase layers obtained by single
carburizing (C4 h) decreased gradually from the surface to the inside; however, these samples show a
low hardness compared to the other plasma treatments.

Coatings 2018, 8, x FOR PEER REVIEW  9 of 13 

 

SN-phase and an interior SC-phase; therefore, the properties of the wear resistance would not be very 
different in comparison to S-phase layers obtained by single nitriding treatment. 

Figure 10a shows the nanoindentation hardness-depth profiles of the S-phase layers by the 
single plasma treatments obtained at 450 °C. The coating hardness after single nitriding (N4 h) 
decreased abruptly at a depth of 10 to 14 µm. Meanwhile, the hardness of S-phase layers obtained by 
single carburizing (C4 h) decreased gradually from the surface to the inside; however, these samples 
show a low hardness compared to the other plasma treatments. 

  
(a) (b) 

Figure 10. Hardness depth profiles of the S-phase layers on cold-sprayed AISI 316L coatings obtained 
at 450 °C by (a) single carburizing and nitriding treatments and (b) combined plasma treatments. 

For S-phase layers obtained by the combined plasma treatments, the hardness (Figure 10b) 
decreased gradually at depths of 10 to 15 µm. In addition, the surface hardness was almost the same 
as those by single nitriding (N4 h), because the S-phase layers obtained with the combined plasma 
treatments were composed of the surface SN-phase. The hardness distribution of samples obtained 
with sequential plasma treatment of (C0.5 h→N3.5 h) and simultaneous treatment of ((C+N)4 h) 
showed higher hardness profiles than those obtained by single nitriding (N4 h). Meanwhile, the 
sequential plasma treatment of (C2 h→N2 h) led to low hardness in samples at depths over 10 µm. 
The GDOES results in Figure 6d suggest that the nitrogen content of samples subjected to (C2 h→N2 h) at 
450 °C decreased at a depth of 8 µm, conversely carbon content increased; therefore, the hardness of 
S-phase layers obtained by (C2 h→N2 h) are close to the hardness of samples obtained by single 
carburizing (C4 h). 

Consequently, combined plasma processes including the sequential treatment of (C0.5 h→N3.5 h) 
and simultaneous treatment of ((C+N)4 h) improved the hardness depth distribution of S-phase 
layers of cold-sprayed AISI 316L coatings. 

3.3. Corrosion Resistance 

Figure 11 shows the anodic polarization curves of the S-phase layers obtained by single 
carburizing and nitriding at various treatment temperatures. Figure 12 shows the corresponding 
results of sequence and simultaneous plasma treated samples. All current densities of the S-phase 
layers at over ~0.2 V were lower than the as-sprayed AISI 316L coatings. Figure 13 shows the surface 
morphologies after the anodic polarization measurement. The as-sprayed AISI 316L coating clearly 
showed pitting corrosion; in contrast, the S-phase layers only changed colors at the surface with only 
a few sites of pitting corrosion. These indicate that low-temperature plasma treatments of sprayed 
AISI 316L coatings enhanced corrosion resistance by inhibiting the pitting corrosion. 

Figure 10. Hardness depth profiles of the S-phase layers on cold-sprayed AISI 316L coatings obtained
at 450 ◦C by (a) single carburizing and nitriding treatments and (b) combined plasma treatments.

For S-phase layers obtained by the combined plasma treatments, the hardness (Figure 10b) decreased
gradually at depths of 10 to 15 µm. In addition, the surface hardness was almost the same as those
by single nitriding (N4 h), because the S-phase layers obtained with the combined plasma treatments
were composed of the surface SN-phase. The hardness distribution of samples obtained with sequential
plasma treatment of (C0.5 h→N3.5 h) and simultaneous treatment of ((C+N)4 h) showed higher hardness
profiles than those obtained by single nitriding (N4 h). Meanwhile, the sequential plasma treatment of
(C2 h→N2 h) led to low hardness in samples at depths over 10 µm. The GDOES results in Figure 6d
suggest that the nitrogen content of samples subjected to (C2 h→N2 h) at 450 ◦C decreased at a depth
of 8 µm, conversely carbon content increased; therefore, the hardness of S-phase layers obtained by
(C2 h→N2 h) are close to the hardness of samples obtained by single carburizing (C4 h).

Consequently, combined plasma processes including the sequential treatment of (C0.5 h→N3.5 h)
and simultaneous treatment of ((C+N)4 h) improved the hardness depth distribution of S-phase layers
of cold-sprayed AISI 316L coatings.

3.3. Corrosion Resistance

Figure 11 shows the anodic polarization curves of the S-phase layers obtained by single carburizing
and nitriding at various treatment temperatures. Figure 12 shows the corresponding results of sequence
and simultaneous plasma treated samples. All current densities of the S-phase layers at over ~0.2 V
were lower than the as-sprayed AISI 316L coatings. Figure 13 shows the surface morphologies after the
anodic polarization measurement. The as-sprayed AISI 316L coating clearly showed pitting corrosion;
in contrast, the S-phase layers only changed colors at the surface with only a few sites of pitting
corrosion. These indicate that low-temperature plasma treatments of sprayed AISI 316L coatings
enhanced corrosion resistance by inhibiting the pitting corrosion.
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Figure 12. Anodic polarization curves in 3.5 wt % NaCl solution of S-phase layers on cold-sprayed
AISI 316L coatings obtained by (C0.5 h→N3.5 h), (C2 h→N2 h) and ((C+N)4 h) at (a) 400 ◦C, (b) 425 ◦C
and (c) 450 ◦C.
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The effect of treatment temperatures on the corrosion resistance indicates that S-phase layers
obtained at 400 ◦C show lower current density and corrosion-inhibiting surface morphology than
samples obtained at 425 and 450 ◦C. The excellent corrosion resistance of samples treated at 400 ◦C
is attributed to suppressed Fe3N formation (Figure 2) as Fe3N deteriorates corrosion resistance
severely [31,37]. In addition, the (C2 h→N2 h) also led to excellent corrosion resistance among
the combined plasma treatments. However, it is unclear why the S-phase layers with (C2 h→N2 h)
enhanced corrosion resistance. The possibility of nitrogen and carbon supersaturation in austenite
is reported to improve the passivation ability with an increase in the degree of supersaturation [31].
The S-phase layers with (C2 h→N2 h) showed the highest surface nitrogen content among the plasma
treated samples (Figure 6); therefore, the surface layers obtained with (C2 h→N 2 h) would show
high passivation ability. In addition, in comparison to single carburizing and nitriding treatments,
the S-phase layer obtained with (C2 h→N2 h) at 400 ◦C showed lower corrosion current density,
and those obtained at 425 and 450 ◦C also demonstrated marginally advantageous corrosion resistance
behaviors. Therefore, sequential plasma treatment (C2 h→N2 h), especially at 400 ◦C, was most
effective for enhancing the corrosion resistance of cold-sprayed AISI 316L coatings.

4. Conclusions

Low-temperature plasma carburizing, nitriding, and combined carburizing and nitriding were
carried out on cold-sprayed AISI 316L coatings to improve the wear resistance. The combined treatments
led to thicker S-phase layers than the single nitriding treatment. The wear resistance of the combined
treatments was nearly identical to that of the single nitriding treatment. The hardness depth profiles
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of samples obtained by single nitriding decreased abruptly at a certain depth, while those of samples
obtained by combined treatments decreased gradually. Hence, combined treatment of cold-sprayed AISI
316L coatings enhanced the wear resistance and resulted in high mechanical reliability under external
load. In particular, the S-phase obtained by sequential treatment (C0.5 h→N3.5 h) was a thick and
superior wear resistant layer, irrespective of treatment temperature.

In contrast, the sequential treatment (C2 h→N2 h) led to inferior hardness depth profiles than that
obtained by single nitriding and the other combined plasma treatments. However, the S-phase layers
obtained with (C2 h→N2 h) showed a small corrosion current density and corroded only slightly after
the anode polarization measurement. Consequently, the S-phase layers with (C2 h→N2 h) are suitable
to be applied under corrosive environment.
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