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Abstract: The marching-on-in-degree (MOD) time-domain integral equation (TDIE) solver for the
transient electromagnetic scattering of the graphene is presented in this paper. Graphene’s dispersive
surface impedance is approximated using rational function expressions of complex conjugate
pole-residue pairs with the vector fitting (VF) method. Enforcing the surface impedance boundary
condition, TDIE is established and solved in the MOD scheme, where the temporal surface impedance
is carefully convoluted with the current. Unconditionally stable transient solution in time domain
can be ensured. Wide frequency band information is obtained after the Fourier transform of the time
domain solution. Numerical results validate the proposed method.

Keywords: graphene; vector fitting; computational electromagnetics; time-domain integral equation;
marching-on-in-degree

1. Introduction

A single layer of graphite, i.e., the monolayer graphene sheet, has many ideal properties and
considerable potential in terahertz communications [1], stealth technologies [2], solar cells [3], etc.
The transfer matrix method (TMM) [2] and rigorous coupled wave analysis (RCWA) [4] are very
efficient for some particular graphene structures. As for more general full-wave numerical simulation,
various methods are available, including but not limited to the finite integration technique (FIT) [5], the
finite element method (FEM) [6], the method of moments (MOM) [7,8], and the Nyström method [9,10].
For transient electromagnetic analysis, time domain techniques are preferred, e.g., the finite-difference
time-domain (FDTD) [11–13], discontinuous Galerkin time domain (DGTD) method [14–16], and the
time-domain integral equation (TDIE) method [17,18].

The TDIE method has been more and more popular in solving transient electromagnetic problems.
The marching-on-in-degree (MOD) scheme [19–25] uses weighted Laguerre polynomials (WLPs) as
the temporal basis functions, and involves no late-time instability, which may be encountered in the
marching-on-in-time (MOT) scheme [26–28]. Generally, when handling resonant structures with a long
tail current, many more degrees of WLPs are required. In this case, the frequency domain methods are
recommended, but they may suffer from the ill-conditioned impedance matrix as well. When handling
the potential internal resonance problems, the MOD scheme [19] and augmented electric field integral
equation [22] might be the remedy.
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In this paper, the MOD TDIE solver for the transient electromagnetic scattering of the graphene
sheet is developed. The TDIE is based on the surface impedance boundary condition. The surface
impedance is approximated by a vector fitting (VF) method, which has since its first introduction
in 1999 widely applied for its robustness and efficiency [11–18,29–34]. Convolution of the temporal
surface impedance and current is derived from properties of Laguerre polynomials.

In the next section, the formulation of VF and MOD TDIE is deduced. Section 3 presents numerical
results to demonstrate the proposed method. Section 4 delineates conclusions.

2. Formulation

2.1. Modeling of Graphene and VF Method

The Kubo formula-based graphene sheet dispersive frequency domain intraband and interband
conductivity are as follows:

σintra =
4πe2

(
µc + 2kBT ln

(
exp

(
− µc

kBT

)
+ 1
))

h2(2Γ + jω)
(1)

σinter =
−je2

2h
ln
(

4π|µc| − (ω− j2Γh)
4π|µc|+ (ω− j2Γh)

)
(2)

whereω is the angular frequency, µc is the chemical potential, Γ is the phenomenological scattering
rate (or relaxation time), T is the temperature, e is the electron charge, kB is the Boltzmann constant,
and h is the Planck constant.

VF computes a rational approximation from the frequency domain data, using expressions in
terms of complex conjugate pole-residue pairs. Graphene’s frequency domain surface impedance is
as follows:

ρ(ω) =
1

σintra + σinter
≈

p

∑
l=1

cl
jω− al

(3)

where al and cl are poles and residues, respectively. The real parts of al should be negative for causality
and stability.

Calculating ρ(ω) at several frequencies with a set of starting poles presents the over-determined
linear problem, which can be solved with the least squares method. It is repeated using new poles as
starting poles in an iterative procedure until the convergence is achieved [29–31].

Graphene’s time domain surface impedance is [17]

ρ(t) = F−1(ρ(ω)) = u(t)
p

∑
i=1

cl exp(alt) (4)

F−1( ) denotes inverse Fourier transform, and u(t) is the unit step function.

2.2. TDIE and Temporal Convolution

Enforcing the surface impedance boundary condition, the TDIE is

Einc (r, t)|tan −

µ0
4π

∫ .
J(r′, t− ∆tR)

R
dS′ +

∇
4πε0

∫ t−∆tR∫
0

∇× J(r′, τ)
R

dτdS′

|tan = ρ(t)× J(r, t) (5)

|tan stands for tangential electric fields, S’ is the surface of graphene sheet illuminated by the
transient electric field Einc(r,t), r and r’ are field and source point position vectors, R = |r− r′|,
∆tR = R/c,

.
J is the first derivative of current J with respect to time t, * is the temporal convolution,

and c, ε0, and µ0 are light velocity, permittivity and permeability in free space, respectively.
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The j-th degree Laguerre polynomial is

Lj(t) =
exp(t)

j!
dj

dtj

(
tj exp(−t)

)
, 0 ≤ t < ∞ (6)

The weighted Laguerre polynomial (WLP) is

ϕj(t) = exp(−st/2)Lj(st) (7)

s is the temporal scaling factor, and ϕj(t) converges to zero. The highest degree of WLP is

NL ≥ t0

(
4π2B2/s + s/4

)
(8)

t0 is the time delay of the signal, and B is the bandwidth of the incident pulse.
Given real (ai) < 0, we have [23]

ρ(t) =
p

∑
l=1
ρl(t) =

p

∑
l=1

[
NL

∑
j=0
−cl

(bl + 1)j

bl
j+1 ϕj(st)

]
(9)

NL is the highest degree of WLP, bl = al/s − 1/2, and al and cl are poles and residues in the VF
method, respectively.

In the computer model, the infinitely thin graphene sheet is built as a plane (zero-thickness) with
a triangle mesh. The induced current of graphene is expressed by both spatial and temporal basis
functions as

J(r, t) ≈
Ns

∑
n=1

Jn(t)fn(r) =
NS

∑
n=1

(
NL

∑
j=0

Jn,jϕj
(
t
))

fn(r) (10)

NS is the number of inner edges of the triangles, Jn,j is the unknown coefficient, and fn(r) is the RWG
basis function defined by the triangle mesh. Using WLPs as temporal basis functions eliminates the
late-time oscillation.

With Equations (9) and (10),

ρl(t)× J(r, t) =
NS
∑

n=1

[
NL
∑

j=0
Al,jϕj

(
t
)
×

NL
∑

j=0
Bn,jϕj

(
t
)]

=
NS
∑

n=1

[
exp(−st/2)

NL
∑

j=0

NL
∑

j=0
Al,jBn,jLj(st)× Lj(st)

] (11)

where

Al,j = −cl
(bl + 1)j

bl
j+1 (12)

Bn,j = Jn,j fn(r) (13)

Together with the property

Lj(st)× Lj(st) =
1
s
[
Lj+j(st)− Lj+j−1(st)

]
(14)

we get

ρ(t)× J(r, t) =
NS

∑
n=1

NL

∑
j=0

p

∑
l=1

Cn,j,lϕj
(
t
)

(15)
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where

Cn,j,l =
1
s

j
∑

k=0
Al,kDn,j−k =

1
s

j
∑

k=0
El,j−kBn,k

Dn,j−k = Bn,j−k − Bn,j−k−1, Bn,−1 = 0
El,j−k = Al,j−k − Al,j−k−1 , Al,−1 = 0

(16)

2.3. MOD Scheme

If the temporal derivative and integration terms [20] of the coefficients Jn,j and Equation (16) is
substituted into Equation (5), we get

Einc (r, t)|tan =
NS
∑

n=1


µ0
4π s

NL
∑

j=0
JA
n,j
∫ fn(r

′)
R dS′ + ∇

4πε0
2
s

NL
∑

j=0
JΨ
n,j
∫ ∇×fn(r

′)
R dS′

+ 1
s

NL
∑

j=0

j
∑

k=0

p
∑

l=1
JG
n,jfn(r

′)

ϕj
(
t
)

(17)

where

JA
n,j = 0.5Jn,j +

j−1

∑
k=0

Jn,k (18)

JΨ
n,j = Jn,j + 2

j−1

∑
k=0

Jn,k(−1)j+k (19)

JG
n,j =

j

∑
k=0

Jn,k

(
p

∑
l=1

−cl
bl(bl + 1)

(
1 +

1
bl

)j−k
)

(20)

Following the Galerkin’s method with spatial testing functions fm(r), Equation (17) can be
rewritten as (

sAmn JA
n,j +

2
s

Ψmn JΨ
n,j +

1
s

Gmn JG
n,j

)
ϕj
(
t
)
= Vm

(
t
)

(21)

where

Amn =
µ0
4π

∫
fm(r)

∫ ∇× fn(r
′)

R
dS′dS (22)

Ψmn =
1

4πε0

∫
∇× fm(r)

∫ ∇× fn(r
′)

R
dS′dS (23)

Gmn =
∫

fm(r)×fn
(
r′
)
dS (24)

Vm
(
t
)
=
∫

fm(r)× Einc(r, t)dS (25)

If a temporal testing procedure with ϕi(t) is performed, we obtain the matrix equation of the
i-th degree:

[Zmn][Jn,i] =
[
Vinc

m,i

]
+
[
Vm,j

]
(26)

where

Zmn =

(
sAmn0.5 +

2
s

Ψmn +
1
s

Gmn

(
p

∑
l=1

−cl
bl(bl + 1)

))
exp

(
−s∆tR

2

)
(27)

[Jn,i] =
{

J1,i, J2,i, · · · , JNS ,i
}

(28)

Vinc
m,i =

∞∫
0

Vm
(
t
)
ϕi
(
t
)
dt (29)
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Vm,j = −
i−1
∑

j=0

{
sAmn JA

n,j +
2
s Ψmn JΨ

n,j +
1
s Gmn JG

n,j

}
ϕi,j(s∆tR)

−
[

sAmn
i−1
∑

j=0
Jn,j +

2
s Ψmn

i−1
∑

j=0
Jn,j(−1)i+j + 1

s Gmn JG
n,i−1

]
exp

(
−s∆tR

2

) (30)

and
ϕi,j(s∆tR) = ϕi−j(s∆tR)−ϕi−j−1(s∆tR) (31)

∆tR =
Rmn

c
(32)

Rmn is the distance between centroids of the two triangles related to fm(r) and fn(r’).
The matrix equation is solved degree by degree (0 ≤ i ≤ NL), and the surface current can be

obtained by Equations (10) and (28). After that, electromagnetic parameters, e.g., far field scattering,
can be computed from the current.

3. Results and Discussion

Consider a 1 mm × 1 mm graphene sheet of µc = 0.01 eV and Γ = 5 × 1012 s−1 at T = 300 K.
Following Equations (1)–(4), poles al and residues cl of graphene’s surface impedance computed with
VF when p = 2 are listed in Table 1. Negative real parts of al are required to ensure casualty and stability.
Graphene’s surface impedances are computed and compared in Figure 1, where the results of VF are
identical to those computed by the Kubo formula.

Table 1. The poles al and residues cl when p = 2.

l al cl

1 (–1.4148 + j6.8532) × 1013 (5.5230 + j0.3378) × 1017

2 (–1.4148 – j6.8532) × 1013 (5.5230 – j0.3378) × 1017
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Figure 1. Graphene’s surface impedance: (a) real parts; (b) imaginary parts.

The graphene sheet is illuminated by the modulated Gaussian pulse

Einc(r, t) = x̂ cos(2π f0τ) exp

(
−
(
τ− tp

)2

2η2

)
(33)

The central frequency f 0 and frequency bandwidth fbw are 0.204 THz and 0.408 THz, respectively,
and τ = t− r× k̂/c, k̂ is the unit vector of the incidence direction and along the –z direction in this
example, tp = 3.5η, η = 6/(2πfbw).

The transient electromagnetic problem is solved using the MOD TDIE solver presented in Section 2.
The graphene surface current is expressed by 313 RWGs and 80 WLPs. The scaling factor s is 9.0 × 1011.

Two end points of a randomly chosen inner edge are (−0.413391 × 10−3, −0.254972 × 10−3, 0)
and (−0.326874 × 10−3, −0.205698 × 10−3, 0). Current across this inner edge is shown in Figure 2.
The dispersion of graphene leads to differences in comparison with the perfect electric conductor (PEC)
plate of the same size. The unit of the lateral axis is light meter (lm). One light meter is the time that
the EM wave propagates 1 m in free space. The current in late time is stable and converges to zero.
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Wide frequency band information, e.g., bistatic radar cross section (RCS), is obtained after the
Fourier transform. Examples are chosen at 0.102, 0.204, and 0.374 THz. The results show good
agreement with those obtained via MOM in Figure 3.
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Another 12.5 µm × 25 µm (xoy plane) graphene sheet (µc = 0.01 eV, Γ = 5 × 1012 s−1, T = 300 K)
and frequency up to 12 THz are under discussion. The poles al and residues cl of graphene’s surface
impedance computed with VF are listed in Table 2. Graphene’s surface impedances are computed and
compared in Figure 4, where the results of VF agree well with those computed by the Kubo formula.

Table 2. The poles al and residues cl when p = 4.

l al cl

1 –6.5249 × 1013 –8.5729 × 1017

2 –2.7141 × 1016 4.4980 × 1020

3 (–1.2248 + j2.6437) × 1013 (–0.8148 + j1.5576) × 1016

4 (–1.2248 – j2.6437) × 1013 (–0.8148 – j1.5576) × 1016
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For graphene, the total-scattering cross section (TSCS), the absorption cross section (ACS), and
the extinction cross section (ECS) are other interesting parameters. The ECS at frequency f is computed
according to the electromagnetic optical theorem [35] as:

ECS =
2

Einc f /c
Im(Esca) (34)
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where Einc and Esca are the incident and scattering amplitude in the forward direction, and Im( ) is the
imaginary part.

The graphene surface current is expressed by 123 RWGs and 80 WLPs. The scaling factor s
is 3.6 × 1013. The ECS above 1 THz computed with MOD TDIE show good agreement with those
obtained via MOM in Figure 5.
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Based on the MOD TDIE solver developed in this paper, transient electromagnetic modeling
of multilayer graphene with metallic and/or dielectric substrate will be studied with PMCHWT
formulation in the future by the authors. The memory and time complexity of the standard MOD
TDIE method are O (NS

2NL) and O (NS
2NL

2), respectively, where NS is the number of inner edges,
NL is the highest degree of WLPs. The memory requirement and computation time can decrease by
combining fast algorithms or parallelization codes.

4. Conclusions

TDIE for the transient electromagnetic scattering of the graphene is solved following the MOD
scheme. TDIE is established enforcing the surface impedance boundary condition. The convolution of
the temporal surface impedance and current is deduced. The temporal surface impedance is obtained
after the inverse Fourier transform of the frequency domain counterparts, which are approximated
using the VF method. Stable and accurate solution can be ensured.
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