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Abstract: Currently, the high voltage testing method is widely used to detect pinholes and porosity
defects in dielectric coatings. However, most modern coatings also have requirements for the
minimum allowable coating thickness. Conducting tolerance tests on the thickness of dielectric
coatings concurrently along with monitoring integrity within a single technological process appears
promising. Additionally, mitigating the impact of various interfering parameters is crucial. This
paper conducts a theoretical and experimental examination of spark formation processes in both gas
and dielectrics. This analysis takes place during the identification of both through and non-through
defects in dielectric coatings on conductive substrates. The principles of selecting the test voltage
for the investigated dielectric coatings, considering the need to detect both through defects and
inadmissible thinning, are theoretically and experimentally justified. It is suggested to utilize a
probabilistic approach for evaluating the detectability of the mentioned defects. It is demonstrated
that, when the dielectric strength of the coating is known, it is feasible to identify both through and
non-through defects in coatings with a calculated probability under a specified test voltage. The
conditions of occurrence of partial discharges in the process of testing are investigated, and measures
to suppress their influence on the inspection results are proposed. The influence of the substrate
surface roughness on the magnitude of the breakdown voltage during testing is considered.

Keywords: dielectric strength; holiday detection; breakdown voltage; continuity; coating; thickness

1. Introduction

Today, testing of protective dielectric coatings is carried out in most countries on
pipeline transportation infrastructure facilities, production, and other structures, and is
regulated by a significant amount of regulatory documentation [1–5]. One of the main
requirements for such coatings is the absence of through defects, while the need to identify
non-through pores, scratches, and inadmissible thinning is not regulated, although such
defects also affect the protective properties of coatings and reduce the service life of the
final product [6–8].

One of the most common nondestructive testing (NDT) methods [4,5] for testing di-
electric coating continuity is the high-voltage method based on the occurrence of discharges
at the formation of a high-intensity electric field (E) between the coating surface and a
conductive substrate (Figure 1) [9]. The sensitivity of the method is achieved by differences
in the dielectric strength of the flawless and defective areas of the coating.

When considering the existing methods of high-voltage testing, it becomes clear that
they do not pay proper attention to the connection between the coating thickness (dc) and its
breakdown voltage (Udc), which is essential for the purpose of identifying specific areas of
inadmissible thinning and con-through coating defects. In addition, the influence of factors
caused by the parameters of the testing items is not considered (in particular, changes in the
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electric field pattern at areas of roughness on the substrate surface and partial discharges
caused, for example, by the undulations of the product surface), along with the conditions
of inspection, in connection with which the development of a single refined methodology
to detect not only con-through coating defects but also inadmissible thinning, considering
the influence of interfering parameters, is a relevant task.
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To test paintwork, the electrolytic NDT method has become widespread in practice 
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In [10], the authors proposed to increase the reliability of a high-voltage testing method
by introducing a system of standard sample certification. However, the issues of identifying
the thinning of the coating, through defects, and the degree of influence of interfering
parameters on the occurrence of false positive and false negative test results were not
covered in any way.

Works [11,12] describe a methodology for the integrated use of high-voltage testing
methods and electric capacitance methods to identify the unacceptable thinning of cable
products based on changes in the interelectrode electrical capacitance. It proposes to detect
through defects according to standard methods of high-voltage testing. The works describe
that thinning can be detected if its thickness is no more than 65% of the maximum cable
thickness, and the final decision on the presence of thinning in the cable should be made by
flaw detectors based on checking the readings with the thickness gauge readings. These
results significantly increase the information content of monitoring the continuity of cable
products; however, the electrical capacitance method is practically impossible to apply in
the case of monitoring objects of arbitrary shape and coating thickness.

Work [6] describes an installation for automated monitoring of coating continuity, as
well as a method for determining the geometric parameters of defects, such as crack size and
shape. However, the influence of interfering parameters on the control process has not been
studied in any way, and the testing voltage is set exclusively by standard dependencies.

To test paintwork, the electrolytic NDT method has become widespread in practice
worldwide [13,14], based on the occurrence of electrical contact between the electrode and
the substrate through a liquid electrolyte. This method has a number of disadvantages:
the ability to control only through coating defects, the possibility of missing narrow pores
due to the capillary effect, the low speed of inspection of most industrial objects, and
requirements for the orientation of objects in space.

High-voltage testing of paintwork is limited due to the possibility of damaging a thin
dielectric coating with high voltage, due to the small difference between the breakdown
voltage of the air and the breakdown voltage of the coating (the electric hardening effect).
Thus, if there is a need to test large areas of paintwork, it is necessary to pay closer attention
to the choice of test voltage and reduce it to the minimum permissible (the air breakdown
voltage). In addition, when performing testing using the high-voltage method, much
attention should be paid to the sensitivity of the equipment, and to determining the criteria
for which signals should be considered a signal about the presence of a defect in the coating.
When monitoring paintwork, a situation may arise in which the discharge covers only part
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of the interelectrode gap and spreads over the surface. The signal from such a discharge
can be mistakenly taken for a coating defect. Accordingly, it is necessary to develop criteria
for separating full and partial discharges during monitoring.

2. Materials and Methods

First of all, it is worth separating the tasks of detecting non-through defects and
inadmissible thinning due to the difference in the physical processes of spark discharge
formation in the air gap of the non-through defect and in the dielectric coating material.

The mechanism for the formation of a spark discharge for air (discharge) interelectrode
gaps dc ranging from 5 µm to 50 mm is explained by the Townsend theory of electrical
breakdown of gases [15,16]. If a free electron appears in a gas between two electrodes
creating an electric field, then, moving towards the anode with sufficient electric field
strength, it can ionize an atom or molecule of the gas upon collision. As a result, a new
electron and a positive ion appear. The new electron, together with the initial one, ionizes
new atoms and molecules, and the number of free electrons continuously increases until an
avalanche of electrons appears. According to the above theory, a streamer is formed from
electron avalanches arising in the electric field of the discharge gap, which, lengthening,
covers the discharge gap and connects the electrodes, forming a spark discharge.

The intensity of electron multiplication in an avalanche is characterized by the impact
ionization coefficient (the first Townsend coefficient) α, equal to the number of ionizations
produced by an electron along a path of 10 mm in the direction of action of the electric field.

When analyzing the ongoing processes, it should be taken into account that during
the development of an avalanche, simultaneously with electrons, positive ions are formed,
the mobility of which is much less than that of electrons, and during the development of
the avalanche, they practically do not have time to move in the gap to the cathode. Thus,
after the passage of an avalanche of electrons, positive ions remain in the interelectrode
gap, which distorts (reduces or increases) the electric field [17].

The key element of reliable high-voltage testing is to ensure conditions for independent
spark discharge in places of coating defects (for example, violation of their continuity).
After the first avalanche passes through the gap, the avalanche process may resume or die
out. To resume the avalanche process (organize a self-discharge), at least one secondary
effective electron is required, which can arise, including as a result of the passage of a
primary avalanche, with an increase in the voltage applied to the electrodes.

The number of positive ions
(
n+

i
)

remaining in the interelectrode gap after the passage
of the avalanche is equal to the number of electrons in the avalanche, excluding the initial
electron, i.e.,

n+
i = n0·e(α−η)·dc − 1, (1)

where n0 is the number of primary electrons and η is the sticking coefficient.
It should be taken into account that not all electrons knocked out from the cathode

participate in the formation of secondary avalanches. Some electrons recombine with
positive ions. The overall process of formation of secondary electrons from the cathode
is characterized by the secondary ionization coefficient (second Townsend coefficient) γ,
which depends on the cathode material, composition, and gas pressure, while γ << 1. The
number of secondary electrons formed after the passage of the primary avalanche with an
independent discharge form must satisfy the condition:

γ·
(

e(α−η)·dc − 1
)
≥ 1 (2)

This shows that as a result of the passage of a primary avalanche, the formation of at
least one effective electron capable of igniting a secondary avalanche is necessary.

As mentioned above, during the development of an avalanche, the number of electrons
and positive ions continuously increases. As the number of electrons in the avalanche
head increases, the field strength at the avalanche front increases, while at the same time,
the field strength decreases at the avalanche tail. This causes the electrons at the head
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of the avalanche to stop and possibly recombine with ions, emitting photons, which, in
turn, are able to ionize neutral molecules near the tail of the primary avalanche, forming
secondary avalanches. Secondary avalanches, following the lines of force and having an
excess negative charge on the head, are drawn into the region of the positive space charge
left by the primary avalanche. The electrons of the secondary avalanches mix with the
positive ions of the primary avalanche and form a streamer, an area with the highest current
density, which, when heated, begins to glow. The highest concentration of particles (current
density) is formed near the cathode. For photoionization in a gas volume, the photon
energy must be greater than the ionization energy. This process is successfully carried
out in mixtures of gases containing components with relatively low ionization energy
(including in air).

According to the above theory [18–20], the minimum breakdown voltage of a non-
through coating defect can be calculated using the following formula:

Uda =
B0·P·dc

ln A0·P·dc
ln(1+ 1

γ )

, (3)

where P is the gas pressure, E is the electric field strength, A0 is the coefficient that depends
on the composition of the gas, B0 is the coefficient which depends on the ionization energy
of the gas, and γ is the secondary electron ionization coefficient.

It can be inferred from Equation (3) that with a consistent external air temperature
within a uniform field Uda = f (P · dc), there is a quasi-constant atmospheric pressure
Uda = f (dc) (Figure 2).
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Figure 2. Calculated values of Uda: 1—Uda(dc) according to Formula (1) for atmospheric air under
normal conditions, 2—Uda (dc) according to Formula (2) for dc > 1 mm, 3—Uda(dc) according to
Formula (2) for dc < 1 mm.

Simultaneously, established techniques for determining the test voltage, accounting
for the non-uniformities in the electric field during testing, provide the calculation of
Uda based on the empirical relationship [2,3]:

Uda = M·
√

dc, (4)

where M is a constant empirical coefficient depending on the thickness of the coating (dc)
(M = 3294 for coatings with dc < 1 mm and M = 7843 for dc > 1 mm).

As can be seen from Figure 2, the standardized test voltage calculation methods can be
applied exclusively to detect through coating defects as they do not consider the increase
in breakdown voltage of Udc solid dielectrics.
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In [21], an empirical dependence of the coating breakdown voltage Udc is proposed
for a wide range of dielectric coatings:

Udc =
K
dc
·Kp·

(
A0

c

)1.1
·exp

(
a

b + lg(b)
+

m
n + lg(τ)

)
, (5)

where K represents the proportionality factor based on dc, τ signifies the duration of applied
voltage, KP denotes the probability of breakdown, A0

c is the energy required for channel
formation, while a, b, n, and m are constants contingent on the dielectric for the purpose
of approximation.

Equation (5) is applicable for computing the dielectric strength of dielectrics within a range
of thicknesses from 0.01 to 40 mm under the duration of the applied voltage pulse τ = 0.1–10 µs.

Table 1 provides a comparative display of experimentally obtained and formula-calculated
Udc values for several solid dielectrics with a sample thickness of dc = 0.1 mm [22].

Table 1. Calculated and experimental values of the dielectric strength Udc for 0.1 mm thick
dielectric materials.

Coating Material
Udc, kV

Experimental Values Calculated Values

polyethylene 6.75–7 6.2

polystyrene 5.5–7.3 4.3

fluoroplast-4 3.5 4

The larger scatter in the values Udc of polystyrene can be explained by its low den-
sity and, as a consequence, the large influence of the probabilistic processes of streamer
formation in the material. The calculation of Udc using Equation (5) is applicable to both
single-component and multilayer coatings, with their parameters available in the reference
literature, such as those for anti-corrosion coatings on pipelines. However, it should be
considered that the parameters required for the calculation of multi-component coatings
(e.g., paint and varnish coatings) are usually not standardized. Therefore, Udc multi-
component coatings or coatings for which it is not possible to determine Udc by calculation
should be determined empirically. To experimentally determine Udc, the recommendation
is to employ a coating sample that is either identical to or closely resembles the one being
tested in terms of composition and thickness, and apply it to a conductive substrate.

3. Results

To measure the breakdown voltages of through defects and dielectric coatings (and to
calculate the electrical strengths of coatings based on the breakdown voltage), a setup was
used, the structural diagram of which is shown in Figure 3. The distinctive features of each
experiment are described directly in its description.

Figure 3 shows a diagram of the experimental setup. The high-voltage pulse generator
creates a high voltage on the electrode (Figure 4), which is applied to the controlled
sample. High-voltage pulses follow at a frequency of 50 Hz. The duration of one pulse is
approximately 20 µs. Pulse amplitude can be set in the range of 0.5–40 kV. A high-voltage
voltage divider is also connected to the electrode, which is needed to measure the high
voltage on the electrode. The voltage divider has a division factor of 1000, and thus high
voltage can be measured using a regular digital oscilloscope. When a spark discharge
occurs, the discharge current flows into the discharge indication circuit. Using a current
detector, the presence of a spark discharge is detected, and the device signals this using
light and sound alarms.

To confirm this, an experiment was conducted to determine Udc. Plates of textolite
coated by aluminum were used as substrates, on which the paintwork was
created—Molecules MLS 306 enamel (Figure 5). Enamel was utilized in three, six, and nine
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layers (the thickness of one layer was equal to 12–16 µm). The ambient air temperature was
controlled by a TTZh-K thermometer and varied during the experiment from 22 to 26 ◦C.
Atmospheric pressure was controlled by the Aneroid BAMM-1 barometer and amounted
to 96.2 ± 0.3 kPa.
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Figure 5. Testing objects: 1—coated aluminum sheet, 2—foil-coated laminate sheet with a
fabric substrate.

After the fabrication of the specimens, the thickness was gauged at testing points
where the breakdown voltage was determined. Points in this case mean the area bounded
by a circle with a diameter of 5 mm. This is performed to consider the possible path of
the spark discharge in the area with the lowest dielectric strength of the coating Ec in
this area. A test voltage was applied to the coating and increased until it broke down,
and the Udc value was captured utilizing a DSO-X 2002A oscilloscope. Consequently, the
correlation of Udc(dc) was obtained, as presented in Figure 6.
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Figure 6. The relationship between the breakdown voltage of the coating Udc and its thickness dc.

As evident from Figure 6, the obtained Udc values exhibit a considerable degree of
variation. It is likely attributed to the development of discharge at the location with the
least coating thickness and certain alterations in coating parameters [23,24]. Due to this
factor, it is necessary to estimate the probabilities of detecting inadmissible thinning as a
function of Ui and dc, for which an algorithm was applied to the construction of a regression
line of the Udc(dc) dependence and the generation of normal distribution functions with
predetermined parameters from it [25–27]. In the studied area, the function Udc(dc) has a
quasi-linear form. Based on this, a linear regression of the type U = k·dc + b was computed
using the least squares method, utilizing the acquired experimental data. Subsequently, the
normal distribution function of the probability of spark discharge formation from the value
of Ui was constructed:

P(Ui) =
1√
2·σ

Uи∫
−∞

e−
(Ui−µ)2

2·σ2 dUi, (6)

where Ui is the test voltage, k and b are parameters of the regression line, µ is the mathe-
matical expectation, and σ is the standard deviation.

The boundaries of the confidence interval P±(Ui) concerning the regression model
(Figure 7) according to [28] are as follows:

PP±(Ui) = P(Ui)± tP
√

D

√√√√ 1
n
+

(
ln Ui − Ui

)2

∑n
i=1

(
ln Ui − Ui

)2 , (7)

where n is the quantity of measurements, tP is the Student’s coefficient for the 95% confi-
dence level and (n − 2) degrees of freedom, D is the variance of Udc, and Ui is the mean
value of Ui.

The probability dependence graph of defect detection P(Udc) indicates the depend-
ability of the testing process. The chart, portraying a sigmoid function, delineates the
boundaries of the interval at a specified confidence level (illustrated by dashed lines). Ob-
viously, with increasing dc, the characteristic P(Udc) shifts to the right. It is also advisable
to construct the relationship P(Udc) to achieve a confidence probability of 0.9 (90%) when
conducting tolerance testing for coating defects (detection of areas of inadmissible thin-
ning) [29,30]. Therefore, it is feasible to ascertain the dielectric strength of the coating (Ep)
with a defect detection probability set at 90% for every examined coating sample (Figure 8).

The experimental results indicate that the estimated value of Ec within the designated
thickness range is 75.4 ± 8.2 kV. Assuming a nearly constant dielectric strength across the
specified thickness range, the likelihood of detecting a defect of a specific thickness (based
on the dielectric strength of the coating) would be 0.8 (80%).
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Therefore, given a recognized dielectric strength value for the coating (determined
through calculation or experimentation), one can identify unacceptable thinning with a
calculated probability by conducting testing with a test voltage equal to Ui = Ec/dc.

At the same time, it should be considered that during testing, including for the
purpose of detecting inadmissible thinning, the formation of air gaps between the electrode
and the coating surface is possible (Figure 9), which can lead to the formation of surface
discharges—discharges that cover part of the interelectrode gap. Such discharges do not
signal a coating defect but may generate a signal mistaken for a coating defect signal
(corresponding to a full discharge) at given equipment settings. Proceeding from this,
it is possible to assert that partial discharges are an interfering parameter in the process
of inspection, the possibility of their occurrence should be considered, and appropriate
measures should be taken to eliminate their influence when building flaw detector circuits,
developing electrode designs, and creating inspection techniques.

Partial discharges occur due to air gaps (da) between the electrode and the coating,
caused, for example, by inhomogeneous coating thickness, curvature or waviness of the
product surface, or inaccuracy in placing the electrode on the coating [31]. In the formed air
gaps, the electric field strength can exceed the field strength in the dielectric coating because
the relative dielectric constant of the coating is greater than the dielectric constant of the air
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(Figure 10). In this case, favorable conditions for the formation of partial discharges are
created [11,32].
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Figure 10. Finite element model of electric field strength distribution on a section with air gap 50 µm
and residual coating thickness 180 µm.

The primary informative parameter carrying information about the presence or ab-
sence of defects in the coating is the amplitude of the voltage pulse on the shunt uR(t),
included in series in the measurement circuit when the discharge current flows through
it. It has been experimentally established [33] that in the area of small coating thickness
(dc ≈ 50 µm) uR(t) at full discharge, the current flowing through it is smaller than the
amplitude of uR(t) at partial discharge in the case of large coating thickness (Figure 11). It
follows that for instrumental realizations of the nondestructive electric discharge testing, it
is necessary to adjust the sensitivity of the instruments. At the same time, if the sensitivity
of the device is set incorrectly, false alarms due to partial discharges may occur.

Adjustment of the required sensitivity level can be carried out on test or standard
samples identical to or close in characteristics to the testing object. However, this approach
does not exclude the possibility of human factor influence on the choice of the sensitivity
level and, as a consequence, on the testing results.

Figure 12a,b shows the oscillograms of voltages at the formation of test voltage pulses
and the occurrence of partial discharges: pulse ui(t) of the test voltage (in blue) and pulses
of voltage drop on the shunt uR(t), included in series in the measurement circuit, are caused
by the flow of partial discharge currents (in red). Figure 12c, shows the oscillograms of ui(t)
and uR(t) pulses at full discharge through the interelectrode gap in the area of the through
coating defect.

As can be seen from the oscillograms, in general, the amplitude of uR(t) at partial
discharge is smaller than the amplitude of uR(t) at full discharge. This is due to the fact that
in a partial discharge, the source of charges is the charged capacitance of the air gap (Ca),
while in a full discharge, the current is due to the flow of charges from both the charged
capacitances and the high voltage source. As a consequence, at the moment of complete



Coatings 2024, 14, 427 10 of 15

discharge of the interelectrode gap, the voltage at the electrode ui(t) decreases to close to
zero and, accordingly, the duration τ of the test voltage pulse decreases. Thus, in order to
completely eliminate false positives due to partial discharges, it is proposed to estimate τ
for ui(t) and fix the decrease in τ at full discharge using the scheme, the structure of which
is presented in Figure 11.
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Figure 11. Dependence of the amplitude I of the discharge current pulse and calculated values of the
partial discharge current on the size of the air gap dc for three values of the coating thickness dc.
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Figure 12. Oscillograms of test voltage pulses and partial discharges: (a) without full discharge
(time sweep 10 µs/div., scale: CH1: 5 V/div., CH2: 2 V/div.); (b) without full discharge (time
sweep 2.5 µs/div., scale: CH1: 2 V/div., CH2: 1 V/div.). (c) at full discharge (time sweep 5 µs/div.,
scale: CH1: 2 V/div., CH2: 1 V/div.).

The circuit proposed in Figure 13 works as follows: the voltage uR(t), the amplitude
of which depends on the value of the discharge current, is fed through a low-pass filter to
the comparator driver, which limits the maximum amplitude of the pulse. The comparator
compares the pulse amplitude uR(t) with the set sensitivity level, and the output is a logic
one or logic zero. At the same time, the circuit measures the duration τ of the pulse ui(t)
of the test voltage whose amplitude is divided by a factor of 1000. The divided pulse is
fed through a rectifier to cut off the negative component of the pulse. The rectified pulse
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is fed to a comparator, which converts the analog pulse into a digital rectangular pulse
(meander). The duration τ of this pulse is measured by the timer of the microcontroller.
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Figure 13. Structural diagram of the defect registration unit.

The scheme proposed in Figure 13 realizes the tracking of the coincidence of two
conditions in the defect area: exceeding the sensitivity threshold by the voltage pulse
uR(t) caused by the full discharge current and reducing the duration of the pulse ui(t),
which eliminates the possibility of false positive testing results caused by partial discharges.

However, false positive testing results can also occur due to the increased roughness
of the substrate. In [34,35], the influence of the inhomogeneity of the electric field formed
in the testing region on the breakdown voltage of the method was shown. In these works,
it is proposed to form a sharply inhomogeneous field to reduce the breakdown voltage, but
the influence of the roughness of the substrate surface on the inhomogeneity of the field
was not considered.

It is known that surface roughness is characterized, as a rule, by the arithmetic mean
deviation of the profile along the substrate length (Ra) and the height of profile irregularities
along ten points (Rz) [36]. Surface roughness parameters are set in accordance with [37].
In electric discharge testing, the substrate is one of the electrodes, the shape of which also
determines the pattern of the electric field in the interelectrode gap. In this case, in a highly
inhomogeneous field, regions of increased electric field strength appear, resulting in a
decrease in the breakdown voltage of the gas gap. Thus, one can talk about the possible
influence of surface roughness on the breakdown voltage. If the roughness is significant,
the substrate should not be considered as a plane in the system of two electrodes, but as
a sequence of irregularities with protrusions and depressions (Figure 14), leading to an
increase in the degree of inhomogeneity of the electric field, which may entail a decrease in
the value of the breakdown voltage.
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To evaluate the effect of substrate surface roughness (e.g., after sand or shot blast-
ing) on breakdown voltage, experiments were conducted with an Elcometer 125 Surface
Comparator on shot roughness samples. In the first case, a 0.05 mm thick film with a hole
simulating a defect was mounted on the sample. An electrode was placed on the surface of
the film in the area of the hole. The structure was fixed with clamps (Figure 15a). In the
second case, the roughness samples were painted with MLS 306 enamel (Figure 15b). In
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both cases, the spark breakdown occurrence voltage was recorded for different values of
surface roughness.
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Table 2. Results of air gap breakdown voltage measurements for different values of Rz of the substrate
in the film experiment.

Rz, µm Udc, kV

25 1.3 1.2 1.3

40 1.3 1.3 1.26

70 1.36 1.3 1.28

100 1.36 1.3 1.36

Table 3. Results of air gap breakdown voltage measurements for different values of Rz of the substrate
in the enamel experiment.

Rz, µm Udc, kV

25 0.85 0.80 0.85

40 0.85 0.85 0.80

70 0.85 0.90 0.85

100 0.85 0.90 0.90

It can be seen from the data obtained that the breakdown voltage of the interelectrode
gap simulating the through coating defect is practically unchanged when Rz is changed in
the range of up to 100 µm. Presumably, this is due to the fact that the diameter D of the
through defect is much larger than the distance T between neighboring protrusions, hence
the spark discharge always occurs in the region between the peak and the rod. Thus, one
can conclude that for defects with a diameter D >> T, the roughness of the substrate has no
significant influence. On the other hand, if D < T, the defect may form in the trough region,
leading to an increase in the interelectrode gap and an increase in the breakdown voltage.
In such a case, it is proposed to calculate the test stress substrated on the value dсm + 1

2 Rz,
where dcm is the maximum thickness of the testing coating.

4. Discussion

The theoretical analysis of spark formation mechanisms in gas and solid bodies, as well
as the use of the regression algorithm for processing experimental results, made it possible
to develop the main provisions of the methodology for identifying areas of inadmissible
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thinning in dielectric anti-corrosion coatings. High-voltage testing using the proposed
technique increases informativeness while ensuring highly reliable results.

At the same time, the probabilistic nature of the occurrence of breakdown, the hetero-
geneity of the thickness of the coating samples, and the possible presence of defects in paint
coating samples that locally worsen the electrical strength of coating samples contributed
to an increase in the spread of experimental values of breakdown voltage, which, at this
stage, makes it possible to identify, using the electric spark method, thinning only when the
residual coating thickness is approximately 50% of the nominal thickness or less (this may
be due to an inappropriate number of paint layers). To reduce the scatter, it is necessary to
conduct further studies on interfering factors and methods for the local measurement of
coating thickness under conditions of increased external electric field strength.

On the other hand, experimental and theoretical studies on the influence of partial
discharges made it possible to formulate an algorithm for signal processing in electric
discharge testing and a structural scheme of the device, which considers an additional
informative parameter for making a decision about the presence of a defect in the coating
and provides tuning from the influence of partial discharges on the inspection result.
However, at this stage, tests of the instrumental implementation of the algorithm shown in
Figure 11 were carried out only for samples of paintwork and organic glass. In the future, it
is planned to conduct tests on a larger number of control objects (the external and internal
coatings of pipes, roofing coatings, industrial paint, and varnish coatings).

Finally, theoretical and experimental analysis of the effect of the substrate roughness
on the breakdown voltage of the interelectrode spacing of a given thickness has shown that
there is no significant effect of the substrate surface roughness on the breakdown voltage of
the interelectrode spacing in the range of Rz from 25 to 100 µm.

The obtained results make it possible to use the high-voltage method of non-destructive
testing to identify through defects and an unacceptably small number of layers of paint
and varnish coatings, which was previously inaccessible for testing by high-performance
methods and was detected mainly visually.
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