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Abstract: In conventional hot stamping, an Al-Si-coated blank is first heated above the austenitization
temperature and then soaked for a period of time within a furnace, prior to the stamping operation.
In this work, the impacts of furnace heating rate, soaking temperature, and soaking time on the
Al-Si coating evolution were investigated for two commercial coating weights, 80 and 150 g/m2.
These heat treatment parameters during heating and soaking affect the coating microstructure
and the thickness of the interdiffusion layer, which affect the properties of the as-formed coatings.
The transformation and growth of binary Fe-Al and ternary Fe-Al-Si intermetallic layers were
characterized and quantified for soak times up to 240 s. The results show that the effect of the heating
rate on the Al-Si intermetallic distribution and ternary phase morphology was more severe than
the soaking time and soaking temperature. The Fe2Al5 (η) phase was the dominant layer at the
beginning of the soaking stage with a Fe3Al2Si3 (τ1) layer formed within it, and then the Fe3Al2Si3
layer transformed into FeAl (β2) as the soaking time increased due to the interdiffusion of Fe and Al.
The transformation of Fe3Al2Si3 to FeAl occurred at a higher rate for elevated soaking temperatures
due to the greater diffusivity of Al and Fe. The interdiffusion layer (IDL) consisted of FeAl, Fe3Al(β1)

and α− Fe. Higher soaking temperatures of 1000 ◦C resulted in a thicker IDL for the same soak time
when compared with 900 ◦C and 950 ◦C, but when the heating rate was lower, the IDL was thicker
than that at the higher heating rate since a longer heating time was required to reach the soaking
temperature of 900 ◦C, which prolonged the diffusion time during the heating stage. The findings
were similar for AS80.

Keywords: hot-stamped steel; Al-Si coating; intermetallic phase growth; phase transformations;
soaking temperature

1. Introduction

Hot stamping is a mature metal-forming process that has been used to produce
advanced high-strength steel (AHSS) and ultra-high-strength steel (UHSS) automotive com-
ponents that fulfill the demands of a light weight and high vehicle safety performance [1–3].
The hot-stamping process is mainly applied to boron-alloyed steels and consists of three
stages, austenitization, blank transfer, and stamping. During austenitization, the blank is
heated beyond its austenitization temperature (850 ◦C to 950 ◦C) and soaked for 3–10 min
to transform the pearlite–ferrite mixed microstructure into austenite [4]. In the second
stage, the austenitized blank is quickly transferred to the press without losing signifi-
cant heat and then, in the final stage, the blank is simultaneously formed and quenched
(~30 ◦C/s–100 ◦C/s) within a cooled die to fully transform the austenite into martensite,
resulting in a part with UHSS properties [5–9].

Typically, the sheet metal used for hot stamping is coated with an Al-Si protective
layer (by hot dipping) to prevent significant oxidation and decarburization during heating
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and austenitization [10,11]. Fan et al. [12] stated that the Al-Si coating effectively protects
the base metal from oxidation, as it was shown that, after 120 min of soaking for a 25 µm
coating, oxygen was detected only 5 µm below the coating’s surface. The Al-Si coating
also provides a protective barrier to prevent the decarburization of the base metal, which
occurs during austenitization when carbon escapes from the steel surface and results
in a low-carbon microstructure that cannot be adequately hardened via the martensite
transformation [11].

The typical Al-Si coating contains 90 wt% aluminum and 10 wt% silicon [13]. After
the hot-dipping process, a thin τ5(Fe2Al7Si) inhabitation layer exists at the interface of the
coating and steel [14]. During heating and austenitization, the Al-Si coating transforms
into a complex multilayer intermetallic system driven by the interdiffusion between Fe
and Al at the interface of the coating and steel [10]. At a temperature of ~577 ◦C, the
coating begins to melt [15], and Fe quickly diffuses into the liquid coating. According to
previous studies [12,16–24], when heated from 577 ◦C to approximately 900 ◦C (heating
stage), the τ5 phase first reaches the surface of the coating. The transformation of binary
intermetallic phases, including FeAl3(θ), Fe2Al5 (η), and FeAl2, occurs gradually as the
temperature increases. Furthermore, Fe-Al-Si ternary intermetallic phases, including τ1
and Fe2Al5Si2 (τ2), are observed as thin white phases. The majority of the previous studies
dealing with the initial heating phase identified the layer grown from the steel/coating
interface as Fe2Al5 [17–23], while Fan et al. [12] and Chang et al. [16] identified it as FeAl2.
The formation of FeAl3 was observed by Chang et al. [16], Grigorivea et al. [19], and Cheng
et al. [25]. A comprehensive characterization of the intermetallic phase transformations that
occur during the heating stage (at varying heating rates) is presented in our previous study,
where we identified the initial formation of Fe2Al5. The disagreements among research
groups can be caused by different factors, such as the heating rate, heating time, and the
coating thickness, which are often not all reported.

During the soaking stage, the blank is held for several minutes after reaching the
austenitization temperature to obtain a fully austenitic microstructure in the steel substrate.
During this soaking stage, the intermetallic phase transformation progresses and the
Fe2Al5 phase gradually replaces all of the previously formed Fe-Al phases and becomes
the dominant layer, with the τ-family of ternary intermetallics resulting from the Si being
rejected by Fe2Al5 [19]. This ternary intermetallic phase becomes thicker as more Si is
rejected from newly transformed Fe2Al5. This Fe-Al-Si precipitate that forms at the Fe2Al5
boundaries was identified as a mixture of τ1 and τ2 by Grigorieva et al. [19] and Klassen
et al. [26], while Windmann et al. [27] identified it as Fe3Al2Si3. As the soaking time
further increases, FeAl starts to replace the previously formed Fe2Al5 from the interface
between the coating and steel substrate, which is attributed to Fe enrichment due to the
inward diffusion of Al to the steel substrate [17,28,29]. Simultaneously, previously formed
Fe-Al-Si ternary phases are also transformed into FeAl from the middle of the coating
due to the high solubility of 16 at.% for silicon in the FeAl phase [30]. The interdiffusion
layer separates the substrate/intermetallic coating and the thickness of this interdiffusion
layer increases during the soaking stage when the Al-Si coating completely transforms
into Fe2Al5 and Si-rich ternary phases [17]. A recent study by Cui et al. [31] investigated
the coating microstructure when soaked for 5 min at different temperatures from 500 °C
to 900 °C, and they found that Fe2Al5, FeAl, and α-Fe transformed at 900 ◦C. Pogrebnjak
et al. [32] identified the formation of FeAl, FeAl3, and Fe2Al5 within the diffusion layer
after the annealing of the aluminized sample. This is due to strong Al atom diffusion into
the steel [33] because the diffusion coefficient of Al in the aforementioned intermetallic
phases is greater than that of Fe [34].

The in-service properties of the as-formed coatings is crucial to the final performance
of the hot-stamped part. Corrosion resistance is offered by the coating because it creates a
relatively long diffusion barrier to prevent corrosive compounds from reaching the steel
substrate [35]. Moreover, Allely et al. [36,37] reported that the corrosion rate of aluminum-
coated steel was very slow during their cyclic corrosion test. They observed stable corrosion
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products consisting of the Fe-i-Al compounds that filled the corrosion cavities to prevent
further corrosion from blocking the inward diffusion of oxygen. The corrosion resistance of
the coating also depends on the Al content, and Maki et al. [38] reported that a lower Al
content in the coating caused a greater corrosion depth. Moreover, Grandhi et al. [39] found
that the addition of Ca to Al-Si coatings offered better short-term corrosion resistance than
Al-Si; however, the overall corrosion resistance decreased with increasing Ca concentration
due to increased cathodic kinetics. The morphology of the Fe-Al-Si layer is one of the
factors that influences the weldability of a hot-stamped part. Drillet et al. [40] found that
non-layered (or island-type) Fe-Al-Si intermetallic phases are not desired, since they reduce
the welding current range. The formability of the coating is strongly affected by the type
of intermetallic phases and thickness of the interdiffusion layer. It has been reported that
crack initiation and propagation could be reduced if the Fe2Al5 phase transforms into
FeAl [17]. Gui et al. [41,42] suggested that a higher soaking temperature could improve the
formability of the coating due to the formation and growth of a more ductile FeAl phase.
Takagi et al. [43] stated that the interdiffusion layer should be 50% of the coating thickness
for good resistance to coating crack propagation. On the other hand, a recent study by
Cho et al. [20] found that the cracks initiated in the coating with a thicker interdiffusion
layer propagated further into the steel substrate compared with a coating with a thinner
interdiffusion layer. Moreover, they stated that the FeAl phase was more susceptible to
brittle intergranular fracture when compared with Fe2Al5.

The aforementioned properties of the as-formed coatings depend on their microstruc-
ture characteristics, such as the intermetallic species, morphology of the layers, and thick-
ness of the interdiffusion layer, which is, in turn, affected by different heat treatment
parameters during the heating and soaking stage. The impact of heating rate on coating
growth was characterized in our previous study [44]. The focus of the current work is to
comprehensively characterize coating growth and phase transformations during the soak-
ing stage, which includes three soaking temperatures, five soaking times, and considers
two commercial coating weights. This study helps to better understand the intermetallic
phases that transform and the growth of the interdiffusion layer (IDL) with respect to a
variety of process parameters. The results of this study will help hot-stamping-process
engineers to optimize the austenitization process by reducing furnace run-time costs while
generating an as-formed coating microstructure with acceptable in-service properties.

2. Materials and Methods
2.1. Materials

A commercial 22MnB5 boron steel was used in this research. The two coating weights
employed for this study were nominally 80 g/m2 and 150 g/m2, denoted as AS80 and
AS150, respectively. These are the same materials examined in [44]. The heat treatment
samples cut from the AS80 and AS150 sheets were 38.5 mm in length and 19 mm in width.
The cut samples were then hot-mounted and polished for metallographic characterization.
The AS80 coating thickness was ~20 µm, with a nominal sheet thickness of 1.7 mm, and
the AS150 coating thickness was ~30 µm, with a nominal sheet thickness of 1.9 mm. The
nominal mass composition of the as-received coating was 90% Al and 10% Si, and the
base metal consisted of ferrite and pearlite. The as-received structure was generated by
hot-dip-coating the bare steel with an Al-Si alloy. A thin layer of τ5 from the hot-dipping
process was formed at the interface of the coating and steel substrate. Based on previous
studies, an extremely thin Fe2Al5 phase should be formed between the τ5 layer and steel
substrate, but it is difficult to observe in the optical micrographs or detect in the EDS
analysis due to its thin thickness.

2.2. Heat Treatment in Chamber Furnace

A chamber furnace with a small port hole opening was used for heat treatment to
reproduce similar heat treatment conditions as in a conventional roller hearth furnace.
A servo-controlled custom specimen-handling apparatus was developed for this work.
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The apparatus was used to position the specimen to the same position in the furnace for
different heating trials, which allows for a repeatable (position and time) thermal cycle to
heat-treat the specimens. The specimens were quenched quickly with compressed air to
halt the phase transformation and preserve the coating structure. The furnace setpoint was
adjusted to 900 ◦C and 1000 ◦C to achieve Medium and High heating rates (terminology
will be used throughout). For the Medium-heating-rate tests, the specimens were soaked
at 900 ◦C for different dwell times ranging from 30 s to 240 s. For the High-heating-rate
tests, the specimens were soaked at 900 ◦C, 950 ◦C, and 1000 ◦C for different dwell times
ranging from 30 s to 240 s. During the High-heating-rate tests, the specimens were first
transferred to the middle of the furnace, where the ambient temperature was 1000 ◦C
in order to achieve the High heating rate. When the specimen temperature reached the
designated soaking temperature (900 ◦C or 950 ◦C), the specimen was moved to a position
within the furnace where the ambient temperature was the same as the designated soaking
temperature. Table 1 summarizes the soaking study tests for both coating weights. The
soak times in Table 1 represent the time between reaching the soaking temperature and
quenching, not the time required to reach the soaking temperature, which is a factor of the
heating rate.

Table 1. Soaking study test matrix for both coating weights.

Heating Rate Furnace Temperature (◦C) Soaking Temperature (◦C) Soaking Time (s)

Medium 900 900 30, 60, 120, 180, 240

High 1000

900 30, 60, 120, 180, 240

950 30, 60, 120, 180, 240

1000 30, 60, 120, 180, 240

Before each heat treatment test, high-temperature inconel braided thermocouple wires
were welded to the specimens. An Omega OMB-DAQ-2408 USB data-acquisition module
was used to measure and record the temperature–time history at a sampling rate of 10 Hz.
An example of the temperature–time profile for the five High-heating-rate soaking time
tests for AS150 is shown in Figure 1a. In Figure 1b, the two coating weights show a
nearly identical temperature–time profile, but AS80 shows a slightly higher heating rate
(a negligible difference) due to its slightly lower thickness.
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son between the two coating weights for the different heating rates (soaking time of 240 s is shown as
an example).

2.3. SEM and EDS Analysis

After heat treatment, the specimens were wet-cut at the thermocouple welding loca-
tion and then hot-mounted and polished to achieve a mirror finish. The coating on the
opposite side of the thermocouple was used for metallurgical analysis. The cross-sectional
microstructures were captured using an FEI Inspect S50 SEM microscope operating at 20 kV,
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with a working distance of approximately 10 mm. The SEM was equipped with an Oxford
Instruments X-Max (20) EDS Detector and was used to quantitatively analyze the chemical
composition of different intermetallic phases through the thickness of the coating.

3. Results and Discussion
3.1. Heating Rate Determination

The temperature–time curve is nonlinear during the heating stage, as presented in [44],
where a comprehensive assessment of Al-Si transformations that occur during heating are
presented. The Medium and High heating rates presented in [44] are used in the current
work and will only be covered briefly herein. A temperature–time and heating rate curve
for the AS150 High-heating-rate test, with a 60 s soak time at 900 ◦C is shown in Figure 2.
The secondary y-axis in this plot shows the heating rate of the specimen. The heating stage
is divided into three regions in Figure 2a. The first heating rate region (HRI) starts when
the specimen is placed in the furnace and ends when the melting temperature of the Al-Si
coating is reached. HRII represents the region from TAS,m to TAc1, when austenite starts to
form. HRIII represents the region of austenitization from TAc1 to TAc3. The entire heating
stage is also considered as the nominal heating rate region from 600 ◦C to 900 ◦C (HR600–900),
as shown in Figure 2b. This heating rate region is selected as it includes the entire coating
transformation during the heating stage, and the conventional austenitization soaking
process begins when the blank reaches 900 ◦C. Instead of TAS,m, 600 ◦C is selected to make
the heating rate region consistent with our previous heating stage study [44] for future
coating evolution model development. Moreover, 600 ◦C is just slightly above the coating
melting temperature, so there is a negligible amount of phase transformation expected.
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Figure 2. The temperature–time (green) and heating rate (blue) curves for the AS150 High-heating-
rate test with a 60 s soaking stage at 900 ◦C. Heating rate regions for (a) coating and steel substrate
phase transformations and (b) from 600 to 900 ◦C, HR600–900.

The nominal heating rates for both coating weights are presented in Table 2. Linear
regression was applied to the temperature–time data in these different heating rate re-
gions, and the slope of the regression lines represents the heating rate values within these
regions. The R2 values in Table 2 indicate the heating rates, showing good linearity at
different regions.

Table 2. Nominal heating rates in ◦C/s. Square parentheses indicate the regression R2 value.

HRI HRII HRIII HR600–900

Heating Rate AS80 AS150 AS80 AS150 AS80 AS150 AS80 AS150

Medium 10 [0.98] 8.8 [0.98] 3.4 [0.98] 3.16 [0.98] 1.6 [0.99] 1.4 [0.99] 1.6 [0.95] 1.6 [0.96]

High 16 [0.98] 13.2 [0.98] 6.7 [0.99] 5.8 [0.99] 3.2 [0.99] 2.9 [0.99] 3.9 [0.97] 3.6 [0.98]
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For a production-scale process, Jhajj et al. [45] measured the heating rate and showed
that it varied from ~1 to 2.5 ◦C/s as the temperature increased from 600 to 900 ◦C; therefore,
the Medium-heating-rate tests in the current work are realistic from a production process.
The High heating rate reflects a process boundary condition that could be used to reduce
the furnace run time on the premise that an acceptable coating microstructure is achieved.

3.2. Intermetallic Phase Formation

In this section, the intermetallic phase formation for both the AS150 and AS80 speci-
mens is characterized as a function of heating rate, soaking time, and soaking temperature.
Cross-sectional SEM micrographs and EDS chemical analysis were used to assess coating
evolution and characterization/identify the intermetallic phases.

3.2.1. AS150

The transformed intermetallic species Fe3Al2Si3 (τ1), FeAl (β2), and Fe2Al5 (η), and
an interdiffusion layer (IDL) are labeled and shown in Figure 3. The white-colored phases
shown in Figure 3 are identified as Fe-Al-Si ternary intermetallics, as presented in previous
studies [17,19,27,28,41,43,46] and verified by our EDS chemical analysis. The morphology
of this phase is different with respect to the heat treatment condition, as shown in Figure 3.
For the Medium-heating-rate tests, the Fe-Al-Si ternary intermetallic (lite gray color, τ1 + η)
always appeared as a continuous banded structure for all the soak times. However, for
the High heating rate with soaking at 900 ◦C, the Fe-Al-Si ternary intermetallic showed an
island-type morphology for all the soaking times. When comparing the three different soak-
ing temperatures of the High-heating-rate tests, island-type Fe-Al-Si ternary intermetallic
morphology was observed for all three soaking temperatures and soaking times. This
suggests that the heating rate had more of an effect on the morphology of the aforemen-
tioned Fe-Al-Si intermetallic phase than the soaking time and soaking temperature. This is
consistent with the findings reported by Fan et al. [10], who stated that the Fe-Al-Si ternary
intermetallic phase tended to form as a continuous layer when the heating rate up to 930 ◦C
was low, which allowed more time for the Si to saturate the continuous layer. Moreover,
the thickness (or the area fraction) of this silicon-rich phase significantly increased as the
soaking time increased, especially at higher soaking temperatures. This could be caused by
the faster iron enrichment due to higher diffusivity at the higher soaking temperature.

Voids were observed at the interface of the coating and base metal (IDL region). These
voids were related to the Kirkendall effect, which was due to the different diffusivities
of Fe and Al. The Al diffusion into the steel became more active when the Al-Si coating
completely transformed into solid intermetallic phases. Novak et al. [47] and Bakker
et al. [32] indicated that the phase transformation was mainly controlled by the diffusion of
Al when the coating was completely transformed into intermetallics, and the diffusivity
of Al was greater than that of Fe. Figure 3 shows that the specimens soaked at higher
temperatures (950 ◦C and 1000 ◦C) had more Kirkendall voids, and this was a result of an
even stronger diffusion of Al at higher soaking temperatures. This statement is supported
by the work of Windmann et al. [17].

In the current study, different intermetallic phases (τ1, θ,η,β1,β2) were determined
based on an atomic ratio calculation. Moreover, the Fe-Al-Si ternary phase diagrams
provided in [30,48,49] were used to determine the region that consisted of more than one
intermetallic phase. The weight percent ranges of Fe-Al-Si for different ternary/binary
intermetallic phases and mixture of multiple phases are listed in Table 3, which have been
cited in numerous articles on similar Al-Si coating characterization.
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Table 3. Weight percentage ranges of the phases in the current study.

Weight Percentage (%)
Phase References

Al Fe Si

30–36 53–59 9–13 τ1 (Fe3Al2Si3 ) and η (Fe2Al5 ) [17,19,27,49]

53–57 36–39 5–8 θ (FeAl3) [19,26]

49–53 45–50 2–5 η (Fe2Al5 ) [19,26–28]

0–19 78–100 0–5 β1 (Fe3Al ) and α− Fe [19,20]

27–33 62–70 7–10 β2(FeAl ) [17,20]

Figure 4 shows the EDS analysis for the AS150 specimens. For the Medium-heating-
rate test with a 30 s soak at 900 ◦C (Figure 4a), the dominant phase (0 µm to 28 µm)
containing approximately 47 weight percent of Fe, 50 weight percent of Al, and 3 weight
percent of Si, is identified as Fe2Al5 and will be referred to as η. The Fe-Al-Si intermetallic
phase in the middle of the coating is identified as the combination of Fe3Al2Si3 (τ1) and
Fe2Al5 because the atomic ratio of this phase does not align directly with any common
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individual Fe-Al-Si ternary intermetallic compound; therefore, the layer was identified as
the combination of two intermetallics using the ternary phase diagram provided in [49].
This agrees with the findings of Windmann et al. [17,27], who stated that τ1 normally
precipitated at the grain boundaries of Fe2Al5 as the Si was rejected since the solubility of
Si was low in Fe2Al5. The interdiffusion layer (IDL) consists of three phases, which are
FeAl (β2), Fe3Al (β1) and α− Fe. The transformation from Fe2Al5 to FeAl was caused
by the enrichment of Fe due to the strong diffusion of Al into the steel substrate. There
was a peak in the weight percentage of Si observed at the interface between the coating
and steel substrate, which indicated a high solubility of Si in the FeAl intermetallic. The
second part of the IDL consisted of Fe3Al (β1) and α− Fe. The formation of the α− Fe
layer resulted from the diffusion of Si and Al, which stabilized the BCC lattice of Fe and
transformed the austenitic microstructure into α-Fe during austenitization. As the soaking
time increased (Figure 4b–d), in addition to the growth of the IDL (FeAl, Fe3Al and α− Fe),
there was no significant intermetallic phase changes within the coating region from the
soaking times of 30 s to 180 s. The previously formed Fe3Al2Si3 layer transformed into FeAl
when the soaking time was 240 s (Figure 4e) because Si in Fe3Al2Si3 continuously diffused
towards the steel substrate and Fe was simultaneously enriched in the coating. Windmann
et al. [17,27] mentioned the transformation of Fe3Al2Si3 to FeAl occurred as a result of the
high solubility of 16 at.% for silicon in the FeAl phase, which is in good agreement with
the EDS chemical analysis. Moreover, Windmann et al. [17] and Fan et al. [10] indicated
that the Si also diffused towards the coating surface during austenitization to form Si-rich
ternary intermetallic phases, which explained the peaks of the Si percentage at the coating
surface in the EDS chemical analysis. However, the type of the Fe-Al-Si phase formed near
the surface of the coating was difficult to identify due to its low thickness.
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For the High-heating-rate tests soaked at 900 ◦C (Figure 4f–j), the structure of the
layered microstructure was similar to that in the Low-heating-rate soaking study. However,
the τ1 phase was not transformed into FeAl during the entire soaking period; moreover, the
IDL was thinner than that in the Medium-heating-rate soaking tests. The aforementioned
difference could be caused by the shorter overall furnace time of the High-heating-rate
soaking test, since it took less time to reach the soaking temperature of 900 ◦C. Furthermore,
the High heating rate could also change the distribution of the Fe-Al-Si ternary phase from
one continuous band to multiple bands/islands dispersed throughout the entire thickness
of the coating, as shown in Figure 4h–j.

For the High-heating-rate tests soaked at 950 ◦C (Figure 4k–o), the significant growth of
the IDL started as early as 60 s of soaking (Figure 4l), and the previously formed Fe3Al2Si3
layer started to transform into FeAl at the soaking time of 120 s, which was faster when
compared with the lower soaking temperature of 900 ◦C. This was attributed to the faster
diffusion of Si and Al at the higher soaking temperature. The Fe2Al5 phase was still the
dominant phase for the soaking times of 180 s and 240 s (Figure 4n–o).

When the soaking temperature increased to 1000 ◦C, the transformation of Fe3Al2Si3
to FeAl occurred within the first 30 s of soaking since no Fe3Al2Si3 phase was observed
at 30 s (Figure 4p). The previously formed Fe2Al5 was gradually replaced by FeAl as the
soaking time increased (Figure 4q–r). The FeAl started to become the dominant phase
with a few thin Fe2Al5 layers at the soaking time of 180 s (Figure 4s). The thickness of
the IDL (FeAl, Fe3Al and α− Fe) increased to half of the original coating thickness at the
soaking time of 240 s (Figure 4t), which indicated that the layered microstructure should
be transformed into one Al-rich α-Fe layer if a higher temperature or longer soaking time
is applied.

3.2.2. AS80

Figure 5 shows the intermetallic phase distribution of AS80 at the two different heating
rates and three soaking temperatures. Similar to AS150, continuous and banded Fe-Al-Si
ternary layers were observed for all the Medium-heating-rate soaking tests. The location
of the Fe-Al-Si layers was in the middle of the coating, which was ~10 µm away from
the interface between the coating and steel substrate, while the location of the Fe-Al-Si
layers for AS150 was ~15 µm away from the interface when heat-treated at a Medium
heating rate. This indicates that the continuous Fe-Al-Si ternary intermetallic phase started
to grow from the interface of the coating and steel, and it stopped at the middle of the
coating, regardless of the initial coating thickness when the heating rate was relatively low.
Moreover, the thickness of the ternary intermetallic layers slightly increased as the soaking
time increased. For the High-heating-rate soaking tests, island-type Fe-Al-Si intermetallic
phases were observed, and the volume fraction of the Si-rich phases increased for higher
soaking temperatures or longer soaking times. The amount of Kirkendall voids in AS80
was similar to that in AS150 and indicates that the diffusion rates of Al and Si into the steel
substrate were similar for the two coating weights. When the specimen was soaked at
1000 ◦C for 240 s, the layered structure completely transformed into one single diffusion
layer while AS150 still showed a layered microstructure. This was caused by the shorter
diffusion path in the thinner AS80 coating.
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The EDS profiles of AS80 are shown in Figure 6. For the Medium-heating-rate soaking
tests, the Si-rich layer in the middle of the coating was a mixture of Fe3Al2Si3 (τ1) and
Fe2Al5 from the soak time of 30 s to 120 s (Figure 6a–c). The Fe3Al2Si3 phase transformed
into the Si-rich FeAl at 180 s for AS80 (Figure 6d), which occurred quicker than AS150. This
verifies that the transformation of Fe3Al2Si3 to FeAl was also caused by the diffusion of Fe
towards the coating surface in addition to the diffusion of Si into the steel substrate, since
the shorter Fe diffusion path in the thinner coating provided faster Fe-enrichment into the
Fe3Al2Si3 layer. For the High-heating-rate tests with soaking at 900 ◦C (Figure 6f–j), similar
to AS150, Fe2Al5 was the dominant layer for all of the soaking times from 30 s to 240 s,
and the transformation of Fe3Al2Si3 to FeAl did not occur due to shorter furnace time and
lower soaking temperature. For the High-heating-rate tests soaked at 950 ◦C (Figure 6k–o),
the coating mainly consisted of Fe2Al5, and the IDL grew faster when compared with the
soaking temperature of 900 ◦C, which is consistent with AS150. The layered structure
between Fe2Al5 and FeAl was formed for a soak temperature of 1000 ◦C for 120 s and 180 s
(Figure 6r,s), and then the layered microstructure transformed into a single diffusion layer
consisting of FeAl, Fe3Al, and α− Fe at the soaking time of 240 s (Figure 6t).
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3.3. Interdiffusion Layer Growth
3.3.1. Effect of Soaking Temperature on the IDL

Figure 7 quantifies the thicknesses of the IDL for the Medium-heating-rate tests at
the three different soaking temperatures. Please keep in mind that the IDL consisted of
FeAl, Fe3Al, and α− Fe. The rate of IDL growth was obtained by fitting a first-order poly-
nomial function to the heat treatment time and thickness data, and the slope represented
the IDL growth rate. When AS150 was soaked for 30 s, the thicknesses of the interdiffusion
layer were about 3.9, 5.8, and 13.1 µm for soaking temperatures of 900, 950, and 1000 ◦C,
respectively (Figure 7a). The thickness of the IDL increased as the soaking time increased,
and this trend was consistent for all soaking temperatures. According to Takagi et al. [43],
the thickness of the interdiffusion layer needs to be 50% of the coating thickness to have
good resistance to crack propagation. Therefore, the thickness of the IDL for AS150 needed
to be at least ~15 µm when soaked for 60 s and 240 s at 1000 ◦C and 950 ◦C, respectively.
The examination of the growth rate showed that soaking temperatures of 900, 950, and
1000 ◦C resulted in IDL growth rates of 0.030, 0.049, and 0.056 µm/s, which was due to the
higher diffusivity of Si and Al into the steel substrate at the higher soaking temperatures.

The IDL growth for AS80 is shown in Figure 7b and the thicknesses of the IDL were
3.7, 7.0, and 12.5 µm when soaked at 900, 950, and 1000 ◦C for 30 s, respectively, which
was comparable to AS150. For the interdiffusion layer to be 50% of the coating thickness,
the IDL thickness needs to be at least ~10 µm for AS80, which requires soaking times of
30 s and 120 s when soaked at 1000 ◦C and 950 ◦C, respectively. The AS80 IDL growth
rates were also comparable to that of AS150, resulting in the conclusion that the coating
thickness does not have a significant effect on the overall growth of the IDL.
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3.3.2. Effect of Heating Rate on the IDL

Figure 8a shows the IDL growth of AS150 when soaked at 900 ◦C. For 30 s of soaking,
the thicknesses of the IDL were 3.9 and 5.8 µm for the High and Medium heating rates,
respectively. The difference in IDL thickness was a result of the Medium-heating-rate
tests requiring more time to reach 900 ◦C during the heating stage, which provides a
longer diffusion time for Si and Al. The IDL growth rates were very similar for the two
heating rates which were 0.028 and 0.030 µm/s for the Medium- and High-heating-rate
tests, respectively.
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AS80 (Figure 8b) followed a similar trend, despite the less accurate fit to the data
compared with AS150. Nonetheless, the AS80 IDL growth rates were similar to the AS150
growth rates, indicating that coating thickness had little effect on IDL growth for the two
heating rates considered in this work.

3.3.3. IDL Thickness Growth Model

Owing to the linear growth of the IDL, an empirical model was calibrated using
non-linear regression (of the equation constant in Figures 7 and 8) to predict IDL thickness
as a function of heating rate (HR), soaking temperature (T), and soaking time (tsoak), as
shown below in Equations (1)–(4). The model constants are shown in Table 4.

IDL Thickness = f (HR, T, t) = β(T)tsoak + θ(T)δ(HR) (1)

β(T) = β1T2 + β2T + β3 (2)

θ(T) = θ1T2 + θ2T + θ3 (3)

δ(HR) = (δ1T + δ2)/δ3 (4)
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Table 4. IDL thickness model constants.

AS80 AS150

Constants 1 2 3 1 2 3

β 4.6 × 10−7 −0.000467 0.0748 −2.16 × 10−6 0.00436 −2.1441
θ 0.00078634 −1.407965 633.21 0.0013397 −2.446091 1119.409
δ −0.81183 6.143 2.9769 −1.0993 7.0416 3.0841

The IDL thickness model was a linear function, and the growth rate (µm/s) was
shown to increase with respect to soaking temperature (Section 3.3.1) in an exponential
manner and was represented by β(T). The increase in growth rate was due to the increased
diffusivity at the higher temperatures. Figure 9a shows a schematic of the temperature–time
profiles used in the experiments for the AS150 case (AS80 is similar), and the nominal
heating rates shown in the figure are those measured as HR600–900 in Section 3.1. Please
note that the time axis began at the Al-Si coating melting temperature (577 ◦C), because
heating up to this temperature did not result in the reaction of the coating with the steel
substrate, as discussed comprehensively in [44]. The IDL thickness at the beginning of the
soaking stage (tsoak = 0 s) is represented by θ(T), which is the y-intercept of Equation (1).
The initial IDL thickness corresponded to the growth of the IDL during the heating stage
of the heat treatment process. As the heating rate was held constant, but the soaking
temperature increased as shown in Figure 9a, the initial IDL grew exponentially due to the
higher temperature and longer heating time, which all facilitated diffusion and growth.
The effect of heating rate was only shown to increase the starting IDL thickness, not the
growth rate, as discussed in Section 3.3.2 for the 900 ◦C soaking temperature and change in
heating rate from Medium (1.6 ◦C/s) to High (3.6 ◦C/s). It was assumed that the initial
IDL thickness, θ(T), scaled linearly with respect to heating rate by the factor δ(HR), which
was normalized by the initial IDL thickness, or δ3.

Coatings 2024, 14, x FOR PEER REVIEW 13 of 16 
 

 

Table 4. IDL thickness model constants. 

  AS80   AS150  
Constants 1 2 3 1 2 3 𝛽 4.6 × 10−7 −0.000467 0.0748 −2.16 × 10−6 0.00436 −2.1441 𝜃 0.00078634 −1.407965 633.21 0.0013397 −2.446091 1119.409 𝛿 −0.81183 6.143 2.9769 −1.0993 7.0416 3.0841 

The IDL thickness model was a linear function, and the growth rate (µm/s) was 
shown to increase with respect to soaking temperature (Section 3.3.1) in an exponential 
manner and was represented by 𝛽(𝑇) . The increase in growth rate was due to the in-
creased diffusivity at the higher temperatures. Figure 9a shows a schematic of the temper-
ature–time profiles used in the experiments for the AS150 case (AS80 is similar), and the 
nominal heating rates shown in the figure are those measured as HR600–900 in Section 3.1. 
Please note that the time axis began at the Al-Si coating melting temperature (577 °C), 
because heating up to this temperature did not result in the reaction of the coating with 
the steel substrate, as discussed comprehensively in [44]. The IDL thickness at the begin-
ning of the soaking stage (𝑡  = 0 s) is represented by 𝜃(𝑇), which is the y-intercept of 
Equation (1). The initial IDL thickness corresponded to the growth of the IDL during the 
heating stage of the heat treatment process. As the heating rate was held constant, but the 
soaking temperature increased as shown in Figure 9a, the initial IDL grew exponentially 
due to the higher temperature and longer heating time, which all facilitated diffusion and 
growth. The effect of heating rate was only shown to increase the starting IDL thickness, 
not the growth rate, as discussed in Section 3.3.2 for the 900 °C soaking temperature and 
change in heating rate from Medium (1.6 °C/s) to High (3.6 °C/s). It was assumed that the 
initial IDL thickness, 𝜃(𝑇) , scaled linearly with respect to heating rate by the factor 𝛿(𝐻𝑅), which was normalized by the initial IDL thickness, or 𝛿 . 

 
Figure 9. (a) Schematic of the AS150 heat treatment experiments; (b) measured and predicted inter-
diffusion layer (IDL) growth at various soaking temperatures and heating rates for AS150. The data 
points correspond to those shown in (a). 

A comparison of the experimental and predicted IDL thickness is shown in Figure 9b 
for AS150. All the experimental cases were predicted very well by the model and the re-
sults were similar for the AS80 model. This model can now be used to predict the IDL 
thickness as a function of the anticipated hot-stamping austenitization process variables. 
Two additional soaking temperatures that are outside of those used to calibrate the model 
for the High heating rate are shown in Figure 9b and predict the slightly increasing growth 
rate (slope) that is expected at the higher soaking temperatures. It should be noted that 
this model is intended to be used within the boundary variables that are used for calibra-
tion. 

  

0
5

10
15
20
25
30
35

0 100 200 300
500
600
700
800
900

1000
1100

0 100 200 300 400 500 In
te

rd
iff

us
io

n 
La

ye
r T

hi
ck

ne
ss

 (µ
m

)

Soaking Time (s)

Te
m

pe
ra

tu
re

 (°
C)

Time (s)

30 60 120 180 240

30
60

120
180

240

HR 
(°C/s)

3.6            900
3.6            950
1.6            900
3.6           1000

Soak 
Temp. (°C)

(a) (b)0 Soak time (s)
1000

950
965
980

900

Soak 
Temp.
(°C)

Measured
Predicted

Figure 9. (a) Schematic of the AS150 heat treatment experiments; (b) measured and predicted
interdiffusion layer (IDL) growth at various soaking temperatures and heating rates for AS150. The
data points correspond to those shown in (a).

A comparison of the experimental and predicted IDL thickness is shown in Figure 9b
for AS150. All the experimental cases were predicted very well by the model and the
results were similar for the AS80 model. This model can now be used to predict the IDL
thickness as a function of the anticipated hot-stamping austenitization process variables.
Two additional soaking temperatures that are outside of those used to calibrate the model
for the High heating rate are shown in Figure 9b and predict the slightly increasing growth
rate (slope) that is expected at the higher soaking temperatures. It should be noted that this
model is intended to be used within the boundary variables that are used for calibration.

4. Conclusions

In this work, the effect of the soaking temperature, soaking time, and initial heating
rate on the phase formation of Al-Si-coated 22 MnB5 specimens was investigated for two
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coating weights. The transformation and growth of Fe-Al and Fe-Al-Si intermetallic layers
was characterized and quantified within a range of industrially pertinent soaking times up
to 240 s. The conclusions of the current research are as follows:

1. For the Medium-heating-rate soaking tests, coating materials of both weights had a
banded and continuous Fe-Al-Si intermetallic phase morphology for all the soaking
times, while the specimens soaked at 900 ◦C, but heated at the High heating rate,
resulted in an island-type ternary microstructure for all of the soak times. This
indicates that the heating rate had more of an effect on the ternary phase morphology
than the other heat treatment parameters. For the Medium heating rate, the continuous
Fe-Al-Si ternary intermetallic layers started from the interface and stop in the middle
of the coating, regardless of the initial coating thickness.

2. The Fe2Al5(η) intermetallic phase is the dominant layer at the beginning of the
soaking stage, and the Fe3Al2Si3 (τ1) phase is formed within the η phase. τ1 gradually
transforms into FeAl (β2) as the soaking time increases due to the interdiffusion of Fe
and Al. The transformation of τ1 to β2 occurred faster for higher soaking temperatures
due to the greater diffusivity of Al and Fe.

3. For both coating weights, the IDL consisted of FeAl, Fe3Al and α− Fe and the thick-
ness of the IDL increased as the soaking time increased at a relatively constant growth
rate. Higher soaking temperatures result in a thicker IDL for the same soaking time,
which is a result of the higher diffusivity of Si and Al into the steel substrate at the
higher soaking temperatures. The IDL growth of AS80 is generally the same as the
growth quantified for AS150, which indicates that the coating thickness does not have
a noticeable effect on the overall growth of the IDL.

4. For both coating weights, the impact of heating rate had little effect on the IDL growth
rate, but the Medium-heating-rate IDL was thicker than the High-heating-rate IDL,
since the Medium heating rate tests required a longer time to reach the soaking
temperature of 900 ◦C and therefore prolonged the diffusion time during heating.

5. Utilizing the experimental results found in this work, an empirical IDL thickness
model was successfully developed to predict IDL growth as a function of heating rate,
soaking temperature, and soaking time.
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