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Abstract: Affected by the improper operation of the workers, environmental changes during drying
and curing or the quality of the paint itself, diverse defects are produced during the process of ship
painting. The traditional defect recognition method relies on expert knowledge or experience to
detect defects, which is not conducive to ensuring the effectiveness of defect recognition. Therefore,
this paper proposes an image generation and recognition model which is suitable for small samples.
Based on a deep convolutional neural network (DCNN), the model combines a conditional varia-
tional autoencoder (DCCVAE) and auxiliary conditional Wasserstein GAN with gradient penalty
(ACWGAN-GP) to gradually expand and generate various coating defect images for solving the
overfitting problem due to unbalanced data. The DCNN model is trained based on newly generated
image data and original image data so as to build a coating defect image classification model suitable
for small samples, which is conducive to improving classification performance. The experimental
results showed that our proposed model can achieve up to 92.54% accuracy, an F-score of 88.33%, and
a G mean value of 91.93%. Compared with traditional data enhancement methods and classification
algorithms, our proposed model can identify various defects in the ship painting process more
accurately and consistently, which can provide effective theoretical and technical support for ship
painting defect detection and has significant engineering research value and application prospects.

Keywords: ship coating defects; VAE; generative adversarial networks; image classification

1. Introduction

The shipbuilding industry is an indispensable and important part of the national
equipment manufacturing industry, is the epitome of modernized industry, and is also a
strategic industry related to national economic development and national defense. As one
of the three pillars of modern shipbuilding process, ship painting runs through the whole
process of shipbuilding, from design and construction to the delivery of the ship [1,2].
Coating quality is directly related to the construction cycle and maintenance cost of the ship
as well as an important factor affecting the corrosion resistance of the hull and the service life
of the ship [3]. Without modern ship painting, there is no modern shipbuilding. However,
in the process of ship painting, various defects such as holiday coating, sagging and orange
skin are produced due to worker error and environmental changes during drying and
curing [4]. These coating defects not only affect the aesthetic appearance, but also have an
impact on the performance of the coating, which in turn leads to severe corrosion of the
hull surface [5]. Therefore, in the field of ship construction, timely identification of coating
defects and feedback regarding the painting process is essential to improve the quality of
ship construction and enhance the core competitiveness of ship enterprises.

Feature extraction is to extract effective feature information from images, which is
usually used as a basis for image classification [6–8]. Conventional coating defect detection
is the inspection and judging of coating quality and the recording of the type and level of
defects the staff produces within a specific time after the painting is completed. This method
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relies on domain experts or field technicians to identify the underlying visual features
of defects, such as color [9–12], shape [13–16], and texture [17–20] through professional
knowledge and practical experience, which not only increases the work intensity and work
pressure of personnel but also greatly increases time cost, making it difficult to ensure the
accuracy of coating defect identification [21] and the efficiency of coating operations [22].
With proposals based in ship manufacturing theory and the continuous popularization of
artificial intelligence in the ship painting industry, people have begun to gradually apply
intelligent technology to the understanding of ship painting defects, but there are fewer
reports on the application of image-based ship coating defects recognition.

The deep learning theory represented by convolutional neural networking can simu-
late the function of the visual center of the human brain and automatically extract deeper
features from information without artificially designing feature patterns, which can truly
achieve “end-to-end” recognition [23] and, to a certain extent, solve the problem that tradi-
tional machine learning methods [24] cannot classify high-dimensional data [25] and the
classification process requires professional knowledge and complex computing power [26].
Since its introduction, it has received a lot of attention from scholars and has achieved great
success in computer vision [27], natural language processing [28], image processing [29]
and other fields. However, in practical applications, due to various reasons such as high
labeling cost, severe natural image noise, data security and privacy protection, there is no
special and large number of labeled ship coating defect datasets available for the training
of deep learning network models and numerous hyper-parameter adjustments. Based on
the above reasons, it is difficult to obtain a sufficient and balanced dataset from the existing
ship coating defect image classification. Therefore, the data-driven deep learning model
faces the problem of data imbalance, which limits the reliability of the model. Analysis
shows that the classification model with a dimensionality approximation equal to or greater
than the sample size of the original feature space may have several problems such as
overfitting [30] and poor generalization performance [31], which restricts the development
of a new generation of artificial intelligence seriously.

Researchers both at home and abroad have conducted a lot of research on the few-shot
problem. Liu Jinxiang et al. [32] combined the multidimensional convolution layer with
the attention mechanism module to solve the few-shot problem in hyperspectral image
classification. Dong Yunjia [33] used the bearing dynamics model to generate massive
and diverse simulation data, and, combined with transfer learning, the network can learn
more transferable features, reduce the difference of feature distribution, and significantly
improve the fault recognition performance of rolling bearings. Hongmin Gao et al. [34]
constructed a small convolution and feature taking module, which can extract the spectral
and spatial features of HIS at the same time even in the case of limited training samples,
effectively improving the generalization ability of CNN. The above results have laid a good
theoretical foundation for the research on this subject. However, at present, in the field of
shipbuilding, especially in the field of coating defect recognition, the imbalance of sample
categories is still an important factor restricting the performance of defect detection [35].
Due to the unbalanced ship coating defect data, the traditional trained classification model
cannot easily identify certain classes, which results in an over-fitting model and its overall
generalization performance is greatly reduced.

In general, data augmentation methods can be used to solve the above problems [36].
Traditional data augmentation methods such as geometric transformations, color transfor-
mations and pixel transformations [37] focus on generating image data via simple linear
transformations, which preserve labels only by simply modifying the image to merge affini-
ties without producing completely invisible data [38]. It can be seen that these traditional
data enhancement methods can only expand the number of images through depth and scale
in the process of image classification, which has no practical utility for clearly distinguish-
ing data boundaries, although it alleviates the data imbalance problem to some extent [39].
This type of data augmentation does not improve the data distribution determined by
higher-level features and thus cannot change the sample categories [40,41]; therefore, these
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traditional data augmentation methods have no practical utility in recognizing minority cat-
egories. A modern and advanced form of data enhancement is synthetic data enhancement,
which overcomes the limitations of traditional data enhancement. Variational autoencoders
(VAEs) and generative adversarial networks (GANs) are two of the most popular deep
generative models [42] and are widely used in areas such as image generation [43], im-
age transformation [44], image resolution enhancement [45], domain adaptation [46] and
anomaly detection [47]. Ngoc-Trung Tran et al. [48] proposed a GAN-based data enhance-
ment optimization model and validated the proposed GAN model to obtain better FID
performance on natural and medical datasets; Santiago López-Tapia et al. [49] extended
image super-resolution to video super-resolution, demonstrating that the proposed system
obtained higher super-resolution than the perceptual quality provided by the MSE-based
model; Jang Young In et al. [50] generated simulated ECG signals by variational self-encoder
(VAE) reconstruction to enhance the consistency of SDNN. However, recent studies have
shown that although the original GAN has many advantages when applied, it still suffers
from non-convergence, gradient vanishing, difficulty in generating controllable multi-class
and high-quality datasets [51], unstable training process [52], single input noise [53] and
mode collapse [54], due to the fact that GANs involve unsupervised learning. Like GANs,
VAEs, which serve as new sample generation models, can reconstruct images by inputting
random noise and thus by variational inference [55] optimization methods. However, they
are not able to reconstruct the target image through adversarial learning mechanisms like
GANs can. Moreover, the images generated by VAE reconstruction are often blurred due
to the lack of perfect optimization measurements and unavoidable noise due to manually
designed parameters. Therefore, it has become urgent to combine the advantages of both
models to compensate for the inherent weaknesses of each.

To address the above situation, this paper proposes an image generation and recogni-
tion algorithm model for small samples, which combines the sample generation capability
of conditional variational autoencoder (CVAE) and the adversarial learning mechanism
of GANs based on DCNNs, extends and generates a variety of coating defective images
and trains the DCNN model together with the original images to improve classification
performance, effectively solving the problems of overfitting caused by small samples and
model collapse caused by data imbalance. The contributions of this paper are summarized
as follows:

1. At present, the transformation and upgrading of the shipbuilding industry driven
by intelligent manufacturing is in its infancy. Aimed at the problems of over-reliance
on domain expert knowledge and low intelligence level in the current stage of ship
coating defect recognition, this paper proposes an intelligent coating defect recognition
algorithm. Based on the data enhancement network model, painting defect images
are generated, and the “end-to-end” recognition model is trained.

2. Traditional data augment methods cannot change the sample categories. To solve this
problem, this paper first combines the ideas of DCCVAE and ACWGAN-GP at the
data level, so that the network can generate high-quality, multi-category images of
minor ship coating defects in accordance with the original data distribution in a more
stable and controllable way.

3. The standard DCCVAE encoding stage is not conducive to feature extraction by
establishing a connection with class labels instead. To solve this problem, this paper
only adds class labels in the decoding stage.

4. To avoid the problems of gradient disappearance and model overfitting inherent in
the deep generation model, this paper introduces the residual block with an attention
mechanism to fully extract the important features. At the same time, the algorithm
model loss function is improved from the algorithm level to prevent problems such as
gradient disappearance and gradient explosion to some extent. Then, the balanced
dataset is used as the input of DCNN deep neural network, and the parameters are
globally tuned by “layer-by-layer pre-training + fine-tuning” to obtain the optimal



Coatings 2024, 14, 288 4 of 23

DCNN model parameters. Finally, the trained DCNN neural network is used to clas-
sify the coating defects in the test set, and the final classification results are obtained.

The results show that the proposed method is better than other data enhancement
algorithms in achieving high accuracy detection and identification of ship coating defects
under small sample conditions.

2. Proposed Methodology
2.1. The Overall Framework of the Proposed Model

The proposed classification algorithm for ship coating defects consists of four modules,
namely a data acquisition module, a data pre-processing module, a data generation module
and a coating defect classification module, as shown in Figure 1.
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Figure 1. The framework of the proposed image classification method for ship coating defects.

Based on the above framework, the DCCVAE-ACWGAN-GP model is chosen as the
model of the data generation module in this paper, which consists of four sub-networks
with a convolutional neural network as the main architecture, that is, an encoder network
(En), decoder network (De), generator network (G) and discriminator network (Dis), as
shown in the module (F) in Figure 2. The detailed flowchart of the proposed algorithm
model is as follows. The upper half of the dotted line of the module (F) is the training
process of ACWGAN-GP, and the lower half is the training process of DCCVAE.

STEP1: Data acquisition (A): The unbalanced coating defect database is collected
through painting logs, construction ledgers and a painting process database in the shipyard.

STEP2: Data pre-processing: This mainly consists of four stages, namely, data partition (B),
one-hot encoding (C), resizing (D) and data normalization (E). The specific steps are as follows.

STEP2.1: Data partition (B): The original database obtained in STEP1 is divided into a
training set, a testing set and a validation set at a ratio of 0.7:0.15:0.15.

STEP2.2: One-hot encoding (C): The class labels of 10 coating defect images converted
to one-hot encoding are concatenated with random noise vector z, to serve as the input
to the decoder De. For example, the label of Holiday coating is one-hot encoded as
[1,0,0,0,0,0,0,0,0,0] and the label of Sagging as [0,1,0,0,0,0,0,0,0,0].

STEP2.3: Resize (D): Since the size ratio of the acquired images varies in the coating
defect dataset, all images are resized to 128 × 128 × 3.



Coatings 2024, 14, 288 5 of 23

STEP2.4: Data normalization (E): Since large differences in values tend to lead to slow
convergence of the network and saturation of neuron outputs, each image is normalized by
rescaling the pixels from [0,255] to [0,1] (data normalization is a process of changing the
range of pixel values, the purpose of which is to transform the input image into a series of
more familiar or normal pixel values, ensuring that each feature is in the same dimension
and greatly improving the performance of the neural network).
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STEP3: Coating defect image generation based on DCCVAE-ACWGAN-GP model:
This consists of two phases, namely the DCCVAE model training phase and the ACWGAN-GP
model training phase.

STEP3.1: DCCVAE model training phase: Input real sample x without labels to the
encoder of DCCVAE after data preprocessing to obtain a latent distribution with mean
µ and standard deviation σ, and then the latent representation z is sampled from the
distribution by the reparameterization trick (Z = µ+ σ⊙ ε), and the newly generated
samples are obtained from the learned distribution by the decoder De.

STEP3.2: ACWGAN-GP model training phase: After the training of the DCCVAE is
completed, since the DCCVAE and ACWGAN-GP have the same architecture, we use the
network parameters pre-trained by the DCCVAE to initialize the network parameters in
the ACWGAN-GP, which improves the training efficiency of the ACWGAN-GP and also
minimizes the differences of training. In addition, due to the difficulty of noise sampling,
this paper uses the prior distribution learned by the DCCVAE for random noise sampling
to obtain the noise vector. Together with the category label C as the input of the generator
in ACWGAN-GP, we obtain the specific generation samples x2

′. Then the discriminator
keeps the distance to destroy the real image and the generated image to form the training
process of confrontation and generate the classification prediction.
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STEP4: a coating defect classification using the DCNN model: The newly generated
coating defect images are first blended into the original dataset to form a new balanced
dataset. Then, the newly generated images are used as the input to train the DCNN model.
Additionally, the network parameters are updated and optimized through iteration and
fine-tuning and output the classification results through the trained classifier. The final
classification results are tested and validated on the original dataset.

2.2. The Training Process and Total Loss Function of the Proposed Model
2.2.1. The Training Process of the Proposed Algorithm

The training process of the DCCVAE-ACWGAN-GP algorithm model, as shown in
Algorithm 1.

Algorithm 1: Training process of DCCVAE-ACWGAN-GP model

Input: batch size m, number of categories n, learning rate α, number of iteration k, spatial
dimension of the noise z dz
Output: θEn, θDe, θG, θDis, θC
Initialize network parameters θEn, θDe, θG, θDis, θC of different networks (En, De, G, Dis, C)
While i < the maximum number of iterations or model parameters converges do

1: {x} ∼ Pr←mini-batch sampling randomly from the real coating defect data set
For each real minority sample do

2: Obtain the feature parameter vector µ, σ← input x to the Encoder network En(x)
3: Obtain the potential representation z1 ← re-parameterization trick (z1 = µ + σ⊙ ε)
4: Generate specific samples x1

′ ← reconstruct z1 by the Decoder network De(z1, C)
5: Feed real samples x ← D(x) and generated samples x2

′ ← D(x2
′) into discriminator

network Dis to distinguish true from false
6: Feed real samples y← C(x) and generated samples y′ ← C(x2

′) into the Classification
network C to ensure the recognition of coating defect categories and the final classification
results are tested and verified in the original dataset.
7: Optimize the loss function of DCCVAE-ACWGAN-GP model:

LKL ← 1
2 [µ

Tµ + sum(exp(σ)− σ− k)]← DKL[qϕ(z|x)||pθ(z|x, c)]

Lrec ← 1
2 ||x− x1

′||22 ← Eq(z|x)[log p(x|z, c)]

Zp ← sampling from the initial distribution N(0,1)

xp ← G(zp)

x̂ = ςx + (1− ς)x′ ← obtain ς by random sampling from a Gaussian distribution ς ∼ U(0, 1)

LACWGAN−GP ← − log(d′) + [− log(d) + log(1− d′)] + γ E
x̂∼Px

[||∇x̂D(x̂)||2 − 1)2]

LC ← 1
2 (||y− c||22 + ||y′ − c||22)

LDCCVAE−ACWGAN−GP = LKL + βLrec + ψLACWGAN−GP + λLC

8: Update network parameters:

θEn
update← −∇θEn (LKL − ηLrec)

θDe
update← −∇θDe ((1 + η)Lrec)

θG
update← −∇θG (LG − ξLD)

θDis
update← −∇θDis ((1 + ξ)LD)

θC
update← −∇θC (LC)

End For
End While

Print(New structure)
End
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2.2.2. Loss Function

The goal of the proposed model is to minimize the loss function, which has four
components, as shown in Equation (1).

LDCCVAE−ACWGAN−GP = LKL + βLrec + ψLACWGAN−GP + λLC (1)

where LKL and Lrec is the Kullback–Leibler divergence and the reconstruction loss in
DCCVAE model, as shown in Equation (2) and Equation (3), respectively.

LKL = DKL[qϕ(z|x)||pθ(z|x, c)] =
1
2
[µTµ + sum(exp(σ)− σ− k)] (2)

Lrec = Eq(z|x)[log pθ(x|z, c)] =
1
2
||x− x1

′||22 (3)

where k is the dimension of the latent variable z. Since the dimension of the potential vector
z in this paper is 100 × 1, k is 100.

LACWGAN−GP is the loss function of the ACWGAN-GP model, which consists of three
parts: generator loss LG, discriminator loss LD and gradient penalty (GP), as shown in
Equation (4), Equation (5) and Equation (6), respectively.

LG = − E
x2
′∼Pr

[log(D(x))] = − E
z∼Pz(z)

[log(D(G(z)))] = − log(d′) (4)

LD = − E
x∼Pr

[log(D(x))] + E
z∼Pz(z)

[log(1− D(G(z)))] = − log(d) + log(1− d′) (5)

GP = E
x̂∼Px

[||∇x̂D(x̂)||2 − 1)2]GP = E
x̂∼Px

[||∇x̂D(x̂)||2 − 1)2] (6)

where∇x̂D(x̂) is the gradient of the discriminator network Dis, and ||∇x̂D(x̂)||2 represents
the Euclidean norm of the discriminator network Dis gradient.

Therefore, the final loss function of the ACWGAN-GP model is shown in Equation (7).

LACWGAN−GP = LG + LD + γ E
x̂∼Px

[||∇x̂D(x̂)||2 − 1)2] = − log(d′)− log(d) + log(1− d′) + γ E
x̂∼Px

[||∇x̂D(x̂)||2 − 1)2] (7)

where
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is the weight coefficient of the ACWGAN-GP gradient penalty.
LC is the loss function of the classification network DCNN, as shown in Equation (8).

LC =
1
2
(||y− c||22 + ||y′ − c||22) (8)

In summary, the total loss function of the proposed model is shown in Equation (9).

LDCCVAE−ACWGAN−GP = LKL + βLrec + ψLACWGAN−GP + λLC

= 1
2 [µ

Tµ + sum(exp(σ)− σ− 100)] + 1
2 β||x− x1

′||22

+ψ

{
− log(d′)− log(d) + log(1− d′) + γ E

x̂∼Px
[||∇x̂D(x̂)||2 − 1)2]

}
+ 1

2 λ(||y− c||22 + ||y′ − c||22)

(9)

where β, ψ and λ are the weight parameters that adjust the loss function of each sub-
network to maintain balance between the individual loss functions.

2.3. The Structure Design of the Proposed Model
2.3.1. The Structure of the DCCVAE Network Model

In this study, we propose a DCCVAE model to generate images for each defect, but
with a different structure from the standard CVAE network. First of all, the conditional
probability distributions of both the encoder and decoder of the standard CVAE are related
to the label C. There is no need to link the features to the category labels in the coating
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defect recognition task, so in this paper, we only add the class label C in the decoding stage,
which is more beneficial to feature extraction in the encoding stage. Secondly, when the
deep network reaches a certain depth, increasing the number of layers blindly does not
further improve the classification performance. On the contrary, it will make the network
more difficult to train. Therefore, in order to fully extract important features and avoid
the problems of gradient disappearance and model overfitting due to the deepening of
network layers, we introduce residual blocks with attention mechanisms to improve the
generalization ability of the network. The detailed description of the proposed DCCVAE
network model structure is shown in Figure 3. Also, the detailed network parameters of
the encoder and decoder in DCCVAE are shown in Tables 1 and 2, respectively.
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Table 1. The detailed network parameters of the encoder in DCCVAE model.

Layers Output Size

Input layer (real sample x) 3 × 128 × 128
Conv2D+BN+LeakyReLU 128 × 64 × 64

Residual block with AB+LeakyReLU 128 × 64 × 64
Conv2D+BN+LeakyReLU 25 × 32 × 32

Residual block with AB+LeakyReLU 256 × 32 × 32
Conv2D+BN+LeakyReLU 512 × 16 × 16

Residual block with AB+LeakyReLU 512 × 16 × 16
Conv2D+BN+LeakyReLU 1024 × 8 × 8

Residual block with AB+LeakyReLU 1024 × 8 × 8
FC FC 100 × 1

Latent vector z1 100 × 1

Table 2. The detailed network parameters of the decoder in DCCVAE model.

Input Layer Output Size

Input layer (z1+class label C) 100 × 1
Reshape+Concatenate -
FC+BN+LeakyReLU 1024 × 8 × 8

Conv2DT+BN+LeakyReLU 512 × 16 × 16
Residual block with AB+LeakyReLU 512 × 16 × 16

Conv2DT+BN+LeakyReLU 256 × 32 × 32
Residual block with AB+LeakyReLU 256 × 32 × 32

Conv2DT+BN+LeakyReLU 128 × 64 × 64
Residual block with AB+LeakyReLU 128 × 64 × 64

Conv2DT+BN+Sigmoid 3 × 128 × 128
Onput layer (generated samples x1

′) 3 × 128 × 128

1. Encoder network

As shown in Table 1, in the proposed encoder, we implement one input layer, four basic
convolutional blocks, two fully connected layers and one output layer. Each convolutional
block consists of one convolutional layer with 3 × 3 filters and 2 × 2 strides, followed by
BN, a LeakyReLU activation function. In addition, a residual block with an attention block
is added after each convolutional block of the encoder, which contains three convolutional
layers with 3 × 3 kernels.

2. Decoder network

The decoding process is the reverse operation of the encoding process. To ensure that
the size of the generated image is the same as the size of the original input, the decoder
uses a symmetric structure similar to that of the encoder. We use transposed convolutional
layers to implement spatial upsampling instead of convolutional layers. Similar to the
encoder network, the decoder consists of one FC+BN+LeakyReLU layer, four convolutional
blocks and one output layer, as shown in Figure 4. We use one fully connected layer in the
potential vector z1 to extend the dimension. Then an 8 × 8 × 1024 feature map is gener-
ated. In addition, we place 4 transposed convolution blocks consisting of a 3 × 3 filter to
increase the size, a batch normalization (BN) layer and a LeakyReLU activation layer with a
slope of 0.2.

Like the encoder, each transposed convolutional layer is followed by a residual block
with an attention mechanism. The differences are as follows: first, a residual block is
added after each transposed convolutional layer except the last one. Second, we choose the
Sigmoid function as the activation function of the output layer of the decoder. The detailed
decoder structure is shown in Table 2.
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2.3.2. The Structure of the ACWGAN-GP Network Model

The ACWGAN-GP model proposed in the paper is one of the standard GAN vari-
ants. It inherits the conditional image generation of ACGAN and the training stability of
WGAN-GP to make up for the inherent deficiencies of their respective models, as shown in
Figure 4. Compared with other GANs, the ACWGAN-GP model proposed in this paper
can both generate images with class-specific labels and use Wasserstein distance instead
of Jensen–Shannon (JS) divergence to evaluate the distribution differences between real
and generated samples, which alleviates the gradient disappearance and model collapse
problems associated with overtraining of GANs models. In addition, a Wasserstein GAN
with gradient penalty (WGAN-GP) is chosen instead of weight clipping to limit the gradient
parametric update range of the objective function to no more than 1 without extensive
hyperparameter tuning, to prevent gradient explosion and to use gradient penalty mea-
surements to satisfy the Lipschitz constraint. This makes WGAN models faster to train,
and the training process more stable. In this work, we use a CNN as the main architecture
of the generator and discriminator. Details of the model architecture are shown in Tables 3
and 4. Part of the image generated by the model is shown in Figure 5.
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Table 3. The detailed network parameters of the generator in ACWGAN-GP model.

Layers Output Size

Input layer (z2+class label C) 110 × 1
Reshape+Concatenate -
FC+BN+LeakyReLU 1024 × 8 × 8

Conv2DT+BN+LeakyReLU 512 × 16 × 16
Conv2DT+BN+LeakyReLU 256 × 32 × 32
Conv2DT+BN+LeakyReLU 128 × 64 × 64

Conv2DT+Tanh 3 × 128 × 128
Ontput layer (generated samples x2

′) 3 × 128 × 128

Table 4. The detailed network parameters of the discriminator in the ACWGAN-GP model.

Layers Output Size

Conv2D+LeakyReLU+Dropout 128 × 64 × 64
Conv2D+LeakyReLU+BN+Dropout 256 × 32 × 32
Conv2D+LeakyReLU+BN+Dropout 512 × 16 × 16
Conv2D+LeakyReLU+BN+Dropout 1024 × 8 × 8
Conv2D+LeakyReLU+BN+Dropout 1 × 1 × 1

Output layer real/fake and sample class label C
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1. Generator model

Similar to DCCVAE, the generator consists of one reshape layer and four deconvo-
lution blocks. As shown in Figure 4, the first three deconvolution blocks contain one
deconvolution layer with a 3 × 3 kernel and a stride size of 2, a BN layer and a ReLU acti-
vation layer among them. The last deconvolution block uses Tanh as the output activation
function. To avoid the problem of overfitting, the BN layer, as a regularization technique,
is used after each convolutional layer in the proposed architecture. The detailed network
parameters of the generator are shown in Table 3.

2. Discriminator network

Similar to the generator, the proposed discriminator also consists of four convolutional
blocks and one classification layer. Among them, each convolutional block consists of 1
convolutional layer with a convolutional kernel of 3 × 3 and a stride size of 2, followed
by a LeakyReLU activation layer, a BN layer and a dropout layer with a dropout rate of
0.5. In the classification layer, it is necessary to add a dense layer at the end of the network
in order to classify the features generated by the convolutional layer. Finally, the result is
output after the addition of two fully connected layers. One of the fully connected layers
outputs the probability of the image being true using the Sigmoid function and the other
outputs the corresponding probabilities of the 10 coating defect classes using the Softmax
function. The detailed network parameters of the discriminator are shown in Table 4.

2.3.3. The Structure of the Classification Network Model

Conv2D layers and pooling layers are more suitable for filtering the spatial localization
of painted defective images. Therefore, we propose a convolutional layout-based classifi-
cation network that can classify painting defects using the training data generated by the
DCCVAE-ACWGAN-GP. The architecture of the model is shown in Figure 6.
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As shown in Figure 6, the classification network consists of four convolutional blocks
and one classification layer with a sliding window of 2. Each convolutional block contains
a Conv2D layer with a 3 × 3 kernel, a LeakyReLU activation layer with a slope of 0.2 and
a dropout layer with a dropout rate of 0.5. The first three convolutional blocks use a
2 × 2 max-pooling layer, except for the fourth convolutional block which uses a global
average pooling (GAP) layer. The classifier consists of one fully connected layer. The
final activation function uses a Softmax function to output a probability value between
0 and 1, which reduces the number of training parameters and improves the classification
performance. The detailed structure of the classification model is shown in Table 5.

Table 5. The detailed network parameters of the DCNN model.

Layers Size Stride

Conv+LeakyReLU 3 × 3 1
Conv+LeakyReLU+Dropout 3 × 3 1

Max-pooling 2 × 2 2
Conv+LeakyReLU 3 × 3 1

Conv+LeakyReLU+Dropout 3 × 3 1
Max-pooling 2 × 2 2

Conv+LeakyReLU 3 × 3 1
Conv+LeakyReLU+Dropout 3 × 3 1

Max-pooling 2 × 2 2
Conv+LeakyReLU 3 × 3 1

Conv+LeakyReLU+Dropout 3 × 3 1
GAP —

FC+Softmax —

2.4. The Training Process Optimization Strategies and Implementation Details

Based on the above loss functions, we use the RMSProp optimizer for stochastic gradi-
ent descent optimization of the model parameters because the discriminant loss is unstable,
and momentum-based optimization algorithms, such as Adam’s algorithm, perform worse,
while the RMSProp optimizer performs well even in very unstable cases. To improve the
stability of ACWGAN, the learning rates of the generator G and the discriminator Dis are
unequal. Similar to the GAN framework, the discriminator D parameters are updated k
times, and then the G parameters are updated once. In order to prevent the generator and
discriminator training process from being inconsistent and leading to a fixed loss value of
the generator and the gradient explosion problem, the discriminator is usually updated
once and the generator is updated k times (k is greater than 1), and in this paper, the
learning rate of generator G is 0.0003, while the learning rate of discriminator Dis is 0.0001,
and the parameters are updated iteratively, as shown in Table 6.
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Table 6. The parameters configuration of the proposed network model.

Parameters Output Size

Number of iterations 2000
Number of mini-batch sizes 64

Optimizers and their learning rates RMSProp (0.0002)
Degradation rate of the optimizer 4 × 10−8

Learning rate of generator 0.0003
Learning rate of discriminator 0.0001

Dropout 0.5
Slope of LeakyReLU 0.2

3. Experiments Setup and Results
3.1. Dataset

In this work, we analyzed 10 typical types of ship coating defects, including holiday
coating, sagging, orange skin, cracking, exudation, wrinkling, bitty appearance, blistering,
pinholing and delamination. The number of defect images acquired for each coating
defect varies, in which the maximum number of defect images (orange skin) is as high as
759 while the minimum (holiday coating) is as low as 3, as shown in Table 7. The problem of
coating defect classification is an unbalanced data classification problem. Before conducting
the experiments, we divided the original dataset into a training set, a testing set and a
validation set at a ratio of 0.7:0.15:0.15. Subsequently, one-hot coding was performed for
10 defect classes, and due to the different size ratios of the original ship coating defect
images collected, the size of each image was adjusted to 128 × 128 × 3. In addition to
the above, the data normalization process was used for improving the performance of the
neural network.

Table 7. The unbalanced dataset of the ship coating defects.

Defect Category Sample Image One-Hot Encoding Number of
Original Samples

Number of
Samples after Data

Augmentation

Holiday coating
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Table 7. Cont.

Defect Category Sample Image One-Hot Encoding Number of
Original Samples

Number of
Samples after Data

Augmentation

Wrinkling
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3.2. Experimental Environment

The hardware platform used in this experiment is an 11th Gen Intel (R) Core (TM)
i5-11400H @ 2.70 GHz with NVIDIA GeForce RTX 3050 Laptop GPU and 16.0 GB RAM.
The programming language is Python, version is 3.7.4.

3.3. Evaluation Metrics

In our experiments, we quantitatively analyzed classification results using six common
metrics of the confusion matrix, namely accuracy, precision, recall, specificity, F1 Score,
G mean, FPR and AUC. The binary classification confusion matrix is shown in Table 8.

Table 8. The binary classification confusion matrix.

Class Predicted Positive Class Predicted Negative Class

Actual positive class TP FN
Actual negative class FP TN

Accuracy and recall are complementary, and the higher these two metrics are, the
better. Accuracy is the most intuitive indicator of model performance, and precision is the
ratio of positive observations correctly predicted to the total positive observations predicted.
F1 score is the harmonic mean of precision and recall rates. It takes both precision and
recall into account and is often used as a statistical measure to evaluate the performance of
classifiers. G mean is the geometric mean of recall and specificity. For unbalanced datasets,
F1 score and G mean can be more effective for evaluating the performance of the model.
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FPR is the probability that all negative examples are predicted to be positive, and AUC
is the area under the ROC curve, which is often used as an important measure of learner
performance. These evaluation metrics are defined as follows.

Accuracy =
TP + TN

TP + TN + FP + FN
(10)

Precision =
TP

TP + FP
(11)

Recall = TPR =
TP

TP + FN
(12)

Specificity =
FN

FP + TN
(13)

F1− score = 2× Precision× Recall
Precision + Recall

=
2

2TP + FP + FN
(14)

G−mean =
√

Recall × Speci f icity (15)

FPR =
FP

FP + TN
(16)

AUC =
TPR− FPR + 1

2
(17)

where TP is the true example, TN is the true negative example, FP is the false positive
example, and FN is the false negative example.

3.4. Experimental Results and Analysis
3.4.1. Multi-Category Classification Results

In order to vividly demonstrate the effect of DCCVAEACWGAN-GP-generated data
and prove the validity of the generated model, we compare the multi-classification results
of ship painting defect categories when trained with real datasets, datasets generated by
traditional data enhancement methods and datasets generated by the model in this paper. A
confusion matrix is usually used to intuitively represent the number of accurate predictions
and the number of misclassifications for each category in the test results. The true attributes
of the data are represented by the vertical axis, and the predicted state is represented by the
horizontal axis. The principal diagonal elements represent the number of samples correctly
classified by each defect category, and the remaining elements except for the main diagonal
elements represent the number of samples incorrectly classified into other defect categories,
as shown in Figure 7. The detection accuracies of each category in Figure 7a are 0.333, 0.733,
0.841, 0.727, 0.69, 0.732, 0.25, 0.657, 0.346 and 0.25, respectively, with an overall accuracy
of 0.776. The accuracies of each category in Figure 7b are 0.798, 0.923, 0.845, 0.879, 0.826,
0.858, 0.885, 0.839, 0.882 and 0.891, respectively, with an overall accuracy of 0.866 while the
accuracy of each category in Figure 7c is 0.894, 0.973, 0.949, 0.953, 0.928, 0.937, 0.964, 0.946,
0.959 and 0.968, respectively, with an overall accuracy of 0.949. Therefore, the above results
indicate that the classification of each category using the data generated by the model in
this paper is generally better than that generated using the original actual data and using
traditional data augmentation methods, and the overall accuracy of the tested classification
is also higher.
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matrix for balanced dataset augmented by our proposed method.

3.4.2. AUC Performance Comparison of Different Data Enhancement Methods

To demonstrate the superiority of the proposed method, we compared the AUC
performance of the DCCVAE-ACWGAN-GP with several popularly used data enhance-
ment methods, including SMOTE, Borderline-SMOTE, ADASYN, VAE, CAE, CVAE, GAN,
OCGAN and ACGAN. The experimental results are shown in Figure 8.

Although the AUC values of the proposed method in this paper are slightly lower
than those of OCGAN and ACGAN in orange skin and blistering, respectively, the AUC
values are generally high in other defect classes. The other methods only have high
AUC values for one or two defects and significantly low values for other defects (for
example, OCGAN is high only for orange skin defects), reflecting the low performance
of other data enhancement methods in the face of unbalanced data, as shown in Figure 8.
Based on the analysis of the above results, it can be concluded that the performance of
the data enhancement algorithm proposed in this paper can better solve the problem of
data imbalance and improve the performance of the training model compared with the
performance of the current advanced data enhancement methods in sample generation.
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3.4.3. The Effect of Removing Class Labels of the Encoder in the DCCVAE

The encoder is able to encode the information contained in the input data while
ignoring the changes contained in the class label C. The iterative curve of the DCCVAE
versus mean square error with the number of iterations is illustrated in Figure 9. In the first
case, we use class labels as input conditions, while in the second, it is the opposite. It can
be seen from Figure 9 that the two configured networks reach a fairly stable error value
after 37 epochs. Although training the network with class labels can make the learning
process more stable, we can employ such unsupervised learning methods to overcome the
problems associated with annotations because they allow us to train the model without
providing explicit information about the class label C.

In this work, we only add information about the class label C in the decoding phase,
so that only the conditional probability of the decoder is associated with C while the
encoder part remains unchanged, which is more conducive to feature extraction in the
encoding phase.
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3.4.4. The Curves of Accuracy and Loss Function with Iteration Number

Figure 10 shows the curves of accuracy and loss rate with the number of iterations
for the training and test sets. It can be seen from Figure 10 that it is stable in terms of
accuracy and loss rate when the number of iterations reaches 998. At this time, the average
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accuracies of the training set and test set were 94.18% and 92.52%, respectively, and the loss
rates were 0.0319 and 0.1120, respectively.
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3.4.5. The Effect of Hyperparameter Settings on the Model Performance

Because different settings of the weight coefficients of each loss function will have
different effects on the performance of the model proposed in this paper, the effects of
the weight coefficients of reconstruction loss (β), generative adversarial network loss
(ψ), gradient penalty loss (Υ) and classification loss (λ) on the performance of the model
are investigated and analyzed in this section. The experimental results are shown in
Figure 11. The results show that the performance of DCCVAE-ACWGAN-GP is relatively
stable with the variation of ψ and λ, while too large β and too small Υ will degrade the
performance seriously.
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3.4.6. Comparative Analysis of Classification Performance of Different Classifiers

Since the performance of classifier directly affects the classification result, it is crucial
to choose a classifier. Therefore, after comparing different data enhancement methods to
balance a few classes of ship painting defect images, the scikit learning library was used to
import different machine learning classification algorithm modules, such as support vector
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machine (SVM), random forest (RF), GBDT, decision tree (DT), naive Bayes (NB), k-nearest
neighbor (KNN) and artificial neural network (ANN) as classifiers for ship painting defects.

Figure 12 shows radar plots that are used to compare the performance of these classi-
fiers. The large variation in their accuracy, F score and G mean values when using the other
classification algorithm modules on both real and artificially generated samples indicates
that these classification algorithm modules do not combine well with the generative model
proposed in this paper and their performance is not stable. The combination of the classifier
proposed in this paper with the DCCVAE-ACWGAN-GP generative model gives the best
results both on real samples and on artificially generated samples, with significantly higher
accuracy, F score and G mean values. This proves that the proposed method in this paper
outperforms other machine learning classifiers for multi-classification in ship painting de-
fect image recognition and improves the overall classification performance of ship painting
defect images.
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3.4.7. Visual Analysis of Potential Spatial Feature Extraction Capability

In this subsection, in order to perform robustness analysis on the generated painting
defect data and visualize the clustering effect of different classes of painting defect data
to further illustrate the effectiveness of the generative power of the method, we verify
the rationality and effectiveness of our method from an intuitive perspective by reducing
the dimensionality of 10 ship painting defect image feature vectors extracted based on
encoders and mapping them to a two-dimensional space by a popular high-dimensional
visualization data dimensionality reduction algorithm—distributed stochastic neighbor
embedding (t-SNE), as shown in Figure 13a–c, respectively. Figure 13a shows the distri-
bution of features extracted from different defect categories obtained from the original
imbalance data as the input of the DCCVAE encoder. From Figure 13a, it can be seen that
the features extracted from the imbalance data through the DCCVAE encoder are chaotic
and overlap with each other, which makes them easy to misclassify as other categories
and thus difficult to distinguish. One possible reason is that there are plentiful redun-
dant and invalid features in unbalanced coating defect datasets. Conversely, as shown in
Figure 13b, the feature distribution extracted from samples balanced by the DCCVAE is
greatly different, and the overlapping parts are less than those in Figure 13a, which means
the classification performance is better. Furthermore, the same class samples generated
by the DCCVAEACWGAN-GP in Figure 13c have been well combined together, which
effectively reduces intra-class changes, and the extracted feature distribution is more com-
pact, while avoiding confusion with inter-class changes, thus improving the accuracy and
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robustness of detection. Therefore, the experimental results show that the data generated by
the model proposed in this paper have more real distribution characteristics. The potential
vector z learned by the DCCVAE potential space makes the features extracted by the model
more discriminative, which can effectively distinguish different defects and improve the
classification performance.
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4. Conclusions and Future Work

In this paper, a novel deep learning method for unbalanced ship coating defects clas-
sification based on DCCVAEACWGAN-GP is proposed to solve the problems caused by
class imbalance and deep generated model for the first time. The experimental results show
that the Accuracy, F score and G mean values of the method proposed in this paper are
significantly improved. Meanwhile, the performance of the data enhancement algorithm
proposed in this paper can better solve the problem of data imbalance and improve the
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performance of the training model compared with the current advanced data enhance-
ment methods in terms of sample generation. With these results, we can conclude that the
unbalanced ship coating defects could be easily classified by using DCCVAE-ACWGAN-GP
model for augmenting the classes with fewer samples, even when faced with the class
imbalance problem, which can better realize the high precision detection and identification
of ship painting defects under small samples conditions. It can provide effective theoretical
and technical support for the intelligent detection of ship painting defects and has high
engineering research value and application prospects.

Currently, the method’s feasibility has only been verified on the ship defect dataset, and
no experiments have been carried out on other datasets to illustrate the general applicability
of the method, so in the follow-up work, we will consider verifying the effectiveness and
robustness of the proposed method on larger and more diverse datasets.

In addition, since the generative adversarial network proposed in this paper solves
the pattern collapse problem to some extent, but only uses a generator and a discriminator,
which may lead to the low quality and diversity of the generated samples, the ideas
of selective ensemble learning and evolutionary generative adversarial network will be
introduced in the future to improve the quality and diversity of the generated samples and
improve the overall performance of the model.
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