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Abstract: The advantages of optical fiber sensors include their miniaturization, strong anti-interference
ability, high sensitivity, low cost, and fast response speed. They can be used for in situ detection in
harsh environments, making them suitable for a wide range of applications such as blood detection
and monitoring. This technology holds great potential for medical diagnosis and health monitoring,
opening up new possibilities in the field. Coating technology plays a crucial role in enhancing the
sensitivity and stability of optical fiber sensors, ultimately improving their measurement accuracy
and reliability. This manuscript expounds the application status and progression of optical fiber
sensors in the determination of blood glucose concentrations, blood pH, diverse proteins in blood,
and physical properties of blood. The principle of optical fiber sensors and the application of coating
technology for detecting varying targets are scrutinized in detail, with particular emphasis on the
advantages and limitations of distinct design schemes. The adept amalgamation of optical fiber
sensing technology and coating technology amplifies the adaptability of optical fiber sensors in
diverse practical scenarios, thereby presenting novel instruments and methodologies for researchers
in pertinent fields to augment their advancement and development.

Keywords: optical fiber sensors; blood component detection; blood glucose concentration; blood pH;
protein in blood

1. Introduction

Optical fiber sensor technology is widely used in the medical field, especially in the
detection of various substances and parameters in blood. As a vital part of the fluid environ-
ment in the human body, blood carries oxygen, nutrients, hormones, and waste products
and reflects important information about the state of human health. Abnormalities in blood
vessel wall thickness, blood flow velocity, and parameters like contraction and dilation,
or certain substances such as cholesterol and hormones exceeding threshold values, are
closely related to conditions such as hypertension, arteriosclerosis, cardiovascular disease,
and many other diseases [1,2]. Therefore, the accurate monitoring of various substances
and parameters in blood has important clinical and research significance. For example,
the continuous monitoring of arterial blood pressure is essential for the treatment and
medication adjustment of hypertensive patients [3]. Traditional blood testing methods,
which typically require blood samples to be collected and then analyzed in a lab, are not
only time-consuming but can also cause discomfort to patients due to wounds. Therefore,
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developing a non-invasive, real-time, highly sensitive method for in situ blood testing is an
important challenge in the field of medicine. The miniaturization of the fiber sensor makes
it possible to monitor one’s blood pressure, blood flow rate, and other parameters with
high sensitivity in real time, so it becomes a new practical tool for the clinical detection
and treatment of diseases. Fiber optic sensors have made remarkable progress in detecting
various substances and parameters in blood. For example, they can be used to measure
the blood oxygen saturation (SPO2), blood glucose concentration, blood pH, and concen-
trations of biochemical molecules such as proteins, hormones, and drugs in the blood [4].
In addition, fiber optic sensors can also monitor one’s pulse, blood flow rate, and viscosity
in real time [5,6]. It provides clinicians with more comprehensive blood information, which
helps in early diagnosis and disease treatment. Fiber optic sensors can be widely used in
diagnostics, sensing, and drug management in biomedicine, and their applications are not
limited to the above fields and are constantly expanding.

A deep understanding and optimization of the design and coating of fiber optic
sensors for blood measurement can improve the accuracy, real-time performance, and
patient comfort of the measurement of various parameters in blood. This paper will focus
on the current situation and development trend of optical fiber sensing technology and
its coating in medical blood detection and analyze the advantages and limitations of
different sensor design schemes. In addition, we will discuss the challenges and future
directions of fiber optic sensors in blood detection in medicine. The research in this paper
can provide more inspiration for the application of optical fiber sensing technology and
coating technology in medicine and provide new ideas and possibilities for improving
clinical blood detection methods.

2. The Basic Principle of Optical Fiber Sensors

Optical fiber sensing technology began in 1977 [7]; with the rapid development of
optical fiber communication technology, optical fiber sensing technology has become one
of the standards for measuring the degree of information technology in a country. Optical
fiber sensing technology is a sensing technology that uses the optical signal propagating
in the optical fiber to perceive the physical quantity to be measured outside. When the
temperature, humidity, magnetic field, electric field, and other external physical quantities
to be measured change, the characteristic parameters of the light wave transmitted in
the optical fiber, such as the phase, light intensity, wavelength, and so on, will change
accordingly, and the change relationship between the characteristic parameters and the
physical quantity to be measured will be found out so as to inversely derive the change
value of the physical quantity to be measured. The schematic diagram of the optical fiber
sensing principle is shown in Figure 1. The light emitted by the light source accesses the
corresponding sensing region. When the light source remains unchanged, the external
physical quantity to be measured will change, which will affect the beam transmitted
in the optical fiber through some mechanism, resulting in corresponding changes in the
characteristic parameters of the light wave itself. The changed light is received by the
optical spectrum analyzer, and the useful signal is demodulated to achieve the purpose of
sensing [8,9].

As an emerging sensor technology, fiber sensor technology boasts many advantages,
including its high sensitivity, fast response, miniaturization, freedom from electromagnetic
interference, suitability for interventional detection, and other characteristics. Therefore, it
holds great potential in medical applications.

Based on different sensing principles, optical fiber sensors can be primarily categorized
into intensity-modulated sensors, phase-modulated sensors, and wavelength-modulated
sensors. Fiber Bragg Grating (FBG) sensors [10] and Surface Plasmon Resonance (SPR)
sensors [11] are conventional technologies. FBG combines a Bragg reflector manufactured
in a small segment of the fiber core, reflecting a specific wavelength range of the guided
mode while transmitting all other guided modes. FBG sensors typically integrate sensitive
materials to measure and amplify the sensitivity of the measured parameters. Fixing FBG
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in a capillary can achieve temperature sensitivity [12], and utilizing the water accumulation
and diffusion characteristics of hydrogels can convert changes in the measured param-
eters into strain changes in the FBG grating area [13]. SPR sensors are based on surface
plasmon resonance in a metal-dielectric waveguide. They measure the refractive index
changes caused by the interaction of biological molecules with the SPR sensor surface. The
modulation of the refractive index of the analyte medium leads to a resonance wavelength
shift. The choice of plasmonic materials for exciting surface plasmons plays a crucial role in
the flexibility of manufacturing processes and the performance of SPR-based fiber probes.
Silver and gold are preferred plasmonic metals due to their superior optical properties in
the visible and near-infrared range.
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In addition, Long Period Fiber Grating (LFPG) sensors [14,15], Fabry–Pérot Interfer-
ometer (FPI) sensors [16,17], Michelson Interferometer (MI) sensors [18,19], Mach–Zehnder
Interferometer (MZI) sensors [20], and others are also mature technologies.

In order to make the optical fiber sensor adapt to various application scenarios and
realize the measurement of various physical quantities, the coating layer of the sensor
plays an extremely critical role. First of all, the coating layer plays an important role in the
protection and durability of the optical fiber sensor; by selecting the appropriate coating
material, it can effectively protect the optical fiber sensors from external environment
damage such as corrosion, friction, and chemical erosion. This protective coating not only
extends the life of the sensor but also ensures reliable operation in harsh conditions [21,22].
Second, through the clever design of the coating layer, the optical fiber sensor can simulta-
neously detect a variety of target substances, especially to realize the detection of physical
quantities or substances that are not sensitive to the optical fiber [23]. The fluorescent
optical fiber sensors coated with fluorescent dye can be used to measure a blood glucose
concentration with high sensitivity and accuracy. Visible light fiber optic sensors coated
with a photosensitive coating can be used to measure SpO2, enabling real-time monitoring
of the patient’s respiratory and circulatory function. Moreover, the selection of coating
materials with specific optical properties can improve the performance of fiber optic sensors
such as sensitivity, stability, and response time [24–27]. For example, the fiber sensor coated
with anti-protein adsorption coating can reduce the influence of protein adsorption in the
blood on the measurement results and improve the measurement accuracy. It should be
particularly mentioned that the optical fiber sensor used in medical blood testing can also
ensure its biocompatibility through the choice of coating layer to ensure safe and reliable
application. The fiber sensor coated with chemical corrosion-resistant coating can resist
the corrosion of chemical substances in the blood and prolong the service life of the sensor.
In recent years, researchers have focused on improving the selectivity, sensitivity, and
stability of fiber optic sensors and have achieved these goals by introducing functional
and nanomaterials. However, there are still some challenges, such as long-term stability
and feasibility in actual engineering [28–30]. It is worth noting that there is a difference in
length between protective coatings and sensing coatings on optical fibers. In contrast to
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sensing coatings, the protective coating of optical fibers is typically applied over lengths of
several kilometers rather than meters or millimeters. This difference in length indicates
that the primary function of the protective coating is to provide protection along the entire
length of the optical fiber, while sensing coatings may selectively interact within specific
regions of the fiber.

3. Application of Optical Fiber Sensors in Blood Detection

Fiber optic sensors play a key role in blood testing by utilizing optical principles for
the sensitive monitoring of blood composition and properties. The sensors using the high
sensitivity of the fiber and a fast response time can detect or monitor in real time the phys-
iological indexes in the blood, such as the blood glucose concentration, blood pH value,
various protein contents, and other physical characteristics of the blood such as the SpO2.

3.1. Blood Glucose Concentration

Diabetes has become a major health disease, with a rapid increase in the number of
patients and high costs worldwide [31]. The continuous monitoring of blood glucose levels
is of great significance to guide diagnosis and treatment [32]. Therefore, the development
of a simple, compact, fast-response, and high-sensitivity glucose sensor with long-term
stability has always been of interest to researchers.

Continuous glucose monitoring (CGM) is commonly employed in outpatient settings
to enhance diabetes management. The integration of CGM with insulin injection pumps
proves effective in the treatment of diabetes patients [33,34]. Real-time glucose trends
are provided by CGM, enabling the detection of abnormal blood glucose levels before
clinical symptoms manifest [35]. Biochemical analyzers, utilizing absorbance spectroscopy,
serve as the basis and standard for clinically diagnosing diabetes. While these analyzers
offer high accuracy, their operation requires skilled professionals and is time-consuming,
making them unsuitable for home use by diabetes patients. Home glucose meters, on
the other hand, provide rapid and compact testing suitable for community and home
use. However, both biochemical analyzers and home glucose meters lack the capability to
continuously record dynamic changes in human blood glucose. Consequently, continuous
glucose monitoring has emerged as a research focus.

Sensors are the core components of CGM, directly influencing its accuracy. CGM
sensors encompass invasive, minimally invasive, and non-invasive categories [36]. Optical
technologies have become a global research focus due to their non-invasive, convenient,
and safe characteristics. However, challenges such as measurement errors caused by
interference from organic substances still need resolution [37,38]. For instance, fluorescence-
based glucose sensors exhibit poor long-term stability, and biological molecules similar to
glucose may cause interference, leading to false positives [39]. Electrochemical products,
the most mature technology with well-commercialized products, have undergone three
generations of development for glucose sensors. The first two generations are already
mature products in the market, offering high sensitivity. However, their high cost and
susceptibility to interference limit their application [40].

Dynamic glucose monitoring involves implanting glucose sensors subcutaneously
for the continuous monitoring of glucose concentrations. Clinically, enzymatic electrode
sensing technology is utilized for continuous glucose monitoring. However, frequent blood
sampling for sensor calibration is typically required. Additionally, enzyme-based sensors
struggle to effectively measure low blood glucose levels [41,42]. Fiber optic sensors emerge
as promising candidates for glucose sensing due to their advantages of miniaturization,
resistance to electromagnetic interference, low cost, and rapid response. Moreover, fiber
optic sensors exhibit excellent biocompatibility, making them suitable for in situ detection
within the body [43–46].

As early as 1982, Peterson et al. developed a small optical fiber pH probe consisting
of two fibers filled with phenol red dye and mounted in a hollow fiber. They proposed
that the probe could also be used to measure the glucose concentration [47]. In 1999, a
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fiber-based portable system was proposed for detecting and calibrating blood sugar levels
using a catheter inserted into a blood vessel; a detector at the end of the catheter captures
scattered light and returns it through the fiber to an external computer, which can detect
and calibrate blood sugar levels through signal processing [48]. In recent years, due to
the rapid development of biology and the emergence of more emerging materials, more
types of recognition molecules and coating materials have been combined with optical
fiber sensors, which has greatly promoted the improvement of the performance of glucose
optical fiber sensors.

In order to realize the real-time monitoring of blood glucose levels in vivo, it is neces-
sary to select a coating material with good biocompatibility.

Graphene oxide (GO), as a branch of graphene research, has the excellent character-
istics of a large specific surface area and good biocompatibility, which can form a large
number of biomolecular fixed binding sites. Compared with the original graphene material,
the functional groups in GO—for example, carboxyl, hydroxyl, and epoxy groups—make
it hydrophilic. In addition, GO also has the ability to fix some enzymes, such as glucose
oxidase (GOD), etc., which provides a good platform for the further functionalization of
the fiber optic sensor [49,50]. In 2018, a tilted fiber Bragg grating (TFBG) glucose sensor
based on GO and GOD functionalization was proposed, as shown in Figure 2, which could
be used to detect low concentrations of glucose in the range of 0 to 8 mM with a sensitivity
of 0.24 nm/mM. The sensitivity of the sensor is 4.5 and 1.7 times higher than that of TFBG
without GO layer modification and a glucose biosensor based on LFPG. The method of
electrochemical covalent ligase is applied to the optical fiber sensor, which combines the
advantages of high sensitivity, in situ measurement, and no labeling of the electrochemical
and optical fiber sensors [51]. In 2020, Panda et al. developed a graphene-based prism-
coupled SPR biosensor, which deposited a gold layer and GO layer on an N-FK51A prism
substrate, which can effectively detect human blood glucose concentrations in the range
of 25 to 175 mg/dL. The maximum sensitivity of 271.15◦/RIU and the detection accuracy
of 1.41◦/RIU when the thickness of the gold layer is 55 nm and the number of graphene
layers is single-layer are confirmed. This sensor can also be used to detect glucose con-
centrations in gas analytes and also shows a high sensitivity of 92◦/RIU, indicating that
this method has potential for development in the field of glucose sensing [52]. In 2023, an
extremely-low-detection-limit fiber optic glucose sensor was proposed, which was made
by coating the metal surface of TFBG with a GO layer, along with pyrene 1-boric acid (PBA)
fixed on the GO layer as a bio-detector. The experimental results show that the sensor has a
limit of detection (LOD) of 1 fM and a linear measurement range of 1 fM~10 pM, which
can be used to measure the blood glucose concentration in serum and can also be used to
measure glucose in tears and sweat due to its low LOD [53].
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Many chemo mechanical polymers and related hydrogels have also been shown to be
useful materials for glucose detection [54–56].

A fiber probe biosensor based on FPI measurement technology can be used to detect
pH and glucose. Three pH-sensitive dyes (methyl orange, methyl red, and thymol blue) and
three solvent developing dyes (Nile red, rhodamine-B, and 4-amino-n-methylphthalimide)



Coatings 2024, 14, 173 6 of 25

were mixed with the polymer, respectively. Five pH- and three glucose-sensitive sensing
films were obtained and deposited on eight gold nanoparticles coated on a fiber optic
probe to obtain five pH and three glucose fiber optic probe sensors. The proposed fiber
optic pH and glucose probe sensors have a sensitivity of 1.95 nm/pH and 3.25 nm/mM,
respectively, with a high sensing stability and a relative standard deviation of about
2.5%. The proposed sensor provides linear sensing capabilities over a wide range of pH
(2–12) and glucose (1 µM–1 M). The response time and recovery time of the proposed
sensor are about 8 s and 9 s, respectively. The sensor has the excellent performance
attributes of a fast response, high sensitivity, wide dynamic range, and remote sensing
capability, which can be well applied to the field of detection [57]. Alexeev et al. reported a
material containing boric acid that facilitates the detection of glucose in tears [58]. In 2023,
Li et al. reported a new hydrogel fiber fluorescence sensor functionalized with luciferin
derivatives and CdTe QDs/3-(acrylamide) phenylboronic acid (3-APBA). The complex
action of the glucose and boric acid group fixed on the hydrogel fiber core will cause local
hydrogel expansion. Quantum dots act as signal transducers, which convert hydrogel
swelling into fluorescence signal attenuation. The sensor can continuously monitor the
dynamic change in a glucose concentration within 0–20 mM. At the same time, since
the reaction between PBA and glucose is very sensitive to the pH value, the covalent
connection of fluorescein derivatives to the hydrogel fiber core can compensate the pH
error in glucose detection and continuously monitor the pH value of 5.4–7.8. The sensor has
good biocompatibility and strong anti-interference and can be used for implantation in vivo
monitoring. If PBA derivatives with low pKa values (<7) are introduced into the hydrogel
fiber, the sensor can also detect glucose under acidic conditions and be used in wearable
sensors for sweat glucose detection [59]. The glucose concentration can be measured
by etching FBG functionalized with aminophenylboronic acid (APBA) and coated with
Reduced Graphene Oxide (RGO) layers. The experimental results show that the sensor
coated with the 4-APBA-RGO composite has a more suitable LOD and response range than
that coated with 3-APBA-RGO. The etched fiber grating sensor coated with the 4-APBA-
RGO composite can detect D-glucose in the concentration range of 1 nM~10 mM, and its
LOD is 1nM. At the same time, the sensor used to detect the hemoglobin concentration in
whole blood also showed a low detection limit of 8.6 × 10−5 [60].

The combination of etching technology can enhance the interaction between the
evanescent field of the fiber sensor and the surrounding medium so as to improve the
performance of the fiber sensor. However, the etching process needs to strictly control the
etching environmental conditions and time; otherwise, it is difficult to control the shape of
the fiber [61,62]. In 2017, Mohamed et al. made D-shaped SPR-PCF biosensors by etching
three rows of photonic crystal fiber (PCF) air holes horizontally, depositing a 50 nm gold
layer on the silica surface, and then adding analytes on the gold layer. The sensitivity of
the sensor is 200 nm/RIU, and the corresponding resolution is 1.3 × 13−3 RIU−1, but the
optical fiber sensor is difficult to make and the mechanical structure is unstable, so it is not
conducive to the popularization of use [63]. In 2022, Li et al. proposed a glucose Fiber sensor
based on a microsphere Fiber SPR probe. By splicing one end of the single-mode fiber (SMF)
with the multi-mode fiber (MMF), the other end was heated by electrode discharge to form
a microsphere and plated with gold film. The experimental results show that the sensor
has a detection range of 0.1688–200 mg/dL, a maximum glucose concentration sensitivity
of 100 nm/(mg/dL), and an LOD of 4 mg/dL. In addition, it is proven that the sensor can
resist the interference of sodium ion, potassium ion, sucrose, and chitosan, and the sensor
has the advantages of good selectivity and high sensitivity [64]. In 2023, a transmission-type
SPR sensor based on unclad fiber was used for glucose detection. The sensor coated a
section of step-index multimode fiber with 50 nm Au coating after removing cladding. It is
used to measure glucose solutions at concentrations of 0.0001 g/mL and 0.5000 g/mL, with
a maximum sensitivity of 161.302 nm/(g/mL) for the lowest glucose concentration and
312.000 nm/(g/mL) for the highest glucose concentration. With a resolution of 0.027 g/mL
and good stability, the sensor has great potential for the real-time monitoring of blood
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glucose concentrations [65]. Although SPR-based glucose sensors have high sensitivity,
they are difficult to be widely used in clinical analysis due to their high cost and poor
biocompatibility with heavy metals [66]. Therefore, gold, silver, and other precious metal
nanoparticles with a certain biological affinity are often used in biosensors [67]. Using
a semipermeable membrane with good biocompatibility as a protection cover is also a
desirable method. In 2015, a U-shaped fiber attenuated total reflection (ATR) sensor
enhanced by silver nanoparticles used a U-shaped fiber with a bending radius of 2.5 mm,
coated with silver nanoparticles and a biological semi-permeable membrane that could
pass through glucose as a protective cover. The sensor can be implanted into subcutaneous
tissue for continuous glucose concentration detection, and experimental results show that
the sensor resolution is 15 mg/mL, about three times that of traditional ATR sensors.
Biocompatible semi-permeable membranes have excellent biocompatibility and can allow
glucose molecules to pass through while isolating other biomacromolecules [68].

To achieve the real-time monitoring of blood glucose levels in the body, it is also
crucial to miniaturize fiber optic sensor products. In 2018, a cone-shaped multi-mode
interferometric fiber optic probe modified by GOD was used for glucose sensing. As shown
in Figure 3, the fiber is modified by the silanization process, and then GOD is fixed on the
MMF through covalent bonding; the probe realized the glucose concentration detection in
the range of 0–3.0 mg/mL and realized the accurate detection of glucose content in animal
serum samples. The size of this GOD-functionalized fiber optic microprobe glucose sensor
was reduced to only a few microns, which is comparable to a single living biological cell.
Due to its small size and high sensitivity, it is expected to be applied to the detection of
blood sugar in vivo [66]. Combining fiber optic sensors with microfluidic technology to
develop high-performance glucose sensors is also a promising solution, as microfluidic
technology can provide a miniaturized, low-sample consumption platform for field analysis
and detection. In 2016, Yin et al. etched LPFG on a small-diameter single-mode fiber,
prepared poly (acrylic acid0 (PAA) and poly (ethylenimine) (PEI) multilayer film on its
surface through self-assembly technology, and fixed GOD on the multilayer film for glucose
concentration detection. The sensor is integrated into a microfluidic chip and can perform
the ultra-sensitive detection of glucose solutions with concentrations ranging from 2 µM to
10 µM and as low as 1nM, and the response time of the fiber optic sensor is reduced from 6
min to 70 min. This microfluidic chip with integrated fiber optic glucose biosensors has
great potential in healthcare and clinical diagnostics [69].
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The performance comparison of the mentioned fiber optic sensors is presented in
Table 1. Due to the narrow bandwidth peak of the FBG spectra, achieving large-range
high-resolution demodulation is relatively convenient. Additionally, the implementation
of multiple sensors in cascade through wavelength division multiplexing is feasible, mak-
ing FBG widely applied. However, sensors based on the FBG principle generally suffer
from lower sensitivity. In addressing this limitation, researchers often combine etching
techniques, utilize TFBG, or apply surface coatings with SPR to enhance sensor perfor-
mance. Silver and gold are commonly chosen as plasma metals, with gold being the most
frequently used in SPR due to its high chemical stability, although silver exhibits poor
chemical stability [70]. The preparation of specialty fibers and the use of emerging coating
materials play a significant role in improving the performance of glucose fiber optic sensors.
This advancement concurrently promotes their direction towards non-invasive and in situ
detection. To overcome the drawbacks of glucose sensors based on covalent binding, which
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are sensitive to temperature and pH, researchers incorporate compensation sensors for
simultaneous multi-parameter measurements. Furthermore, with the rise of wearable
technology, attention is directed towards the flexibility and wearability of coating materials,
further enhancing the applicability of glucose sensors in the fields of clinical diagnosis and
health monitoring.

Table 1. Performance comparison of the above sensing scheme and coating selection.

Sensing Principle Coatings Range Sensitivity Reference

TFBG GO and GOD 0~8 mM 0.24 nm/mM [51]

SPR Au and GO 25~175 mg/dL 271.15◦/RIU [52]

TFBG-SPR Au, GO, and PBA 1 fM~10 pM [53]

FF Ca alginate 0~20 mM [59]

FBG RGO and
4-APBA 1 nM~10 mM [60]

SPR-PCF Au 200 nm/RIU [63]

SPR Au 0.1688–200 mg/dL 100 nm/(mg/dL) [64]

Transmission-type SPR Au 0.0001 g/mL
0.5000 g/mL

161.302 nm/(g/mL)
312.000 nm/(g/mL) [65]

Multimode interference GOD 0~3.0 mg/mL [66]

LPFG PAA, PEI, and GOD
1 nM~10 µM

(after being integrated into a
microfluidic chip)

[69]

3.2. Blood pH

Blood pH analysis is one of the most commonly performed tests for critically ill patients
in the operating room and intensive care unit [71]. Dysfunctional pH values can be a typical
sign of many deadly diseases, such as cancer and myocardial ischemia [71–74]. In addition,
small changes in the pH value can also have a significant impact on nerve activities such
as ion regulation and potential changes in nerve cells [75]. Therefore, the high-resolution
real-time monitoring of blood pH is necessary. Currently, advanced pH sensors based
on colorimetric analysis, fluorescence signals, and electrochemical methods have been
proposed [76–78]. Colorimetric or fluorescence-based sensors are given attention due to
their ability to provide visual results, but they require professional operators and come
with higher costs [73,78,79], making them suitable only for specific occasions. Commonly
used electrochemical analyzers have drawbacks such as the need for frequent electrode
calibration and susceptibility to electrical interference [80]. Optical fiber sensors can be used
as a better solution; they can provide continuous and real-time monitoring, and have many
advantages, such as miniaturization and anti-electromagnetic interference, so they have
better application prospects in the fields of disease prediction and medical diagnosis [81].

Most pH sensors are based on the use of coating materials with PH-sensitive optical
properties, with indicator dyes [82] and hydrogels [83,84] being the most commonly used
coating materials for pH sensors. This fluorescence-based fiber-optic sensor (FF) structure,
in which a reversible indicator system (colorimetric or fluorescent) is fixed at the fiber end,
is attractive because of the large number of indicators that can be used for detection [85–87].

Responding to analytes based on changes in fluorescence intensity is the simplest and
most direct method, but the use of intensity changes is unreliable, and the concentration of
the analyte may be underestimated or overestimated due to the influence of the illumination
source [88]. It is more advantageous to use a fluorescent probe with a wavelength ratio
independent of the fluctuation of the light source, and the concentration of the analyte
can be confirmed by the ratio of the fluorescence intensity measured at the two excitation
or emission wavelengths [89]. In 1976, Peterson et al. developed a fiber optic probe for
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the detection of pH in an effort to create an in vivo sensor for blood gas analysis and
thus proposed the concept of a fiber optic chemical sensor. The sensor probe uses phenol
red as a dye indicator, the dye is covalently bound to the polyacrylamide microsphere.
Dual-beam spectrophotometry measurement is used because the absorption of red light
is independent of the pH value, so it can be used as an optical reference. The green light
and red light from the input fiber go from the filler back to another fiber, and its pH value
can be calculated based on the measured green light and red light ratio. The accuracy
and precision of the sensor are close to 0.01 pH units within the pH range of 7.0 to 7.4.
In blood measurement experiments in animals, the results of the fiber optic probe in the
first half of the experiment were lower than those of the pH electrode, the pH probe
responded faster to pH changes in the second half of the experiment, and there was no
similar phenomenon of scaling on the pH electrode after the end of the experiment, so its
use time could be extended [90]. In 2018, Wencel et al. reported a rate-based optical pH
sensor that physically encapsulated 8-hydroxypyrene 1,3,6-trisulfonic acid (HPTS) into a
sol-gel matrix as a pH-sensitive material, deposited on a highly flexible plastic multi-core
fiber tip and integrated with electronics for excitation and detection. According to the
laboratory results, the pH sensor has a resolution of 0.0013 pH units in the physiological
pH range (6.0–8.0) and drifts 0.003 pH units every 22 h. It has the advantages of long-term
stability, excellent reversibility, and a short response time (<2 min). The sensor also showed
promising performance in in vitro whole blood samples and human evaluations conducted
under the program, demonstrating the success of the short-term deployment of the sensor
in vivo [80].

Naphthalimide derivatives were first used for the measurement of blood pH in 2011,
and n-allyl-4-(4-methylpiperazinyl)-1, 8-naphthalimide was covalently connected to a
fluorescence quenching optical pH sensor through thermal polymerization. Experiments in
which the sensor measured different concentrations of the buffer solution and rabbit arterial
blood showed that the sensor resolution was 0.03 pH units when the pH value was in the
range of 6.8–8.0, the correlation coefficient between the pH sensor and the conventional
blood gas analyzer was 0.93 in vivo (n = 75, p < 0.001), and the bias and accuracy were
−0.02 ± 0.08 pH units. The pH sensor is stable for at least 72 h during the measurement
and insensitive to fluctuations in various ion concentrations and plasma permeations at
pathophysiological limits, suggesting that it can be used to continuously measure blood
pH in a variety of clinical settings [91].

FF has the advantages of a high sensitivity and low detection limit; however, their appli-
cation is limited due to the photobleaching of fluorophores in practical applications [92,93].
Many sensors are not originally developed for use in the human body, but with the advent
of more suitable optical fibers, optoelectronic components, and emerging coating materials,
the sensing layer can be modified or optimized for use in human detection [94]. Therefore,
the sensor design with a dynamic detection range including a normal human blood pH
range and good biocompatibility of the coating material has great potential for application
in human blood detection. Ionic hydrogels are stimulus-responsive gels that can reversibly
swell/deswell in response to changes in surrounding conditions. Among various ionic
hydrogels, polyacrylic acid (PAA) is widely used because of its biocompatibility [95–97],
water absorption, and good film formability [98]. Ultra-sensitive pH sensors can be devel-
oped by printing PAA ionic hydrogels with high accuracy on the surface of tapered LPFG
optical fibers with a diameter of 30 µm. With a sensitivity of 7.5 nm/pH in the pH range
of 2 to 7, a resolution of about 0.0027 pH units, and a rapid response, the micropatterning
method demonstrated by the sensor will trigger innovation in PAA ionic hydrogels for
sensing applications [99].

Smart hydrogels are also one of the popular coating materials for pH monitoring [100,101].
A smart hydrogel composed mainly of acrylamide, bisacrylamide solution, and methacrylic
acid coated on LPFG can be used for pH detection. Sealed in a flow cell with a known
pH solution, the sensor shows an ultra-high average sensitivity of 0.66 nm/pH and a
response time of less than 2 s over a pH range of 2 to 12, enabling almost a full range of pH
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measurements [102]. In 2018, Zhao et al. proposed a hydrogel-coated SPR sensor based
on an MMF-SMF-MMF structure for pH measurement, as shown in Figure 4. The sensor
is coated with a silver film on the surface of the SMF fiber and a smart hydrogel coating
composed mainly of acrylamide (AAM), N, N’-methylene diacrylamide (BAAM),N,N,N,N-
tetramethylenediamine (TEMED), and methacrylic acid. Experiments have shown that it
can monitor a wide range of pH values from 1 to 12. The sensitivity is 13 nm/pH in the
pH range of 8 to 10. The experiment also proves that the hydrogel layer can improve the
sensing performance of an SPR sensor and protect the silver film at the same time [103].
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In recent years, the development of pH sensors with good biocompatibility, good
stability, and rapid responses has become more and more popular research, and more and
more coating materials have been developed for pH detection. The easily synthesized
polyaniline (PAni) has excellent biocompatibility, stability [104], and fast reversible adsorp-
tion and desorption kinetics. In 2015, Chiam et al. used FBG-based sensors to study the
influence of the doping ratio on the pH detection performance of PAni-coated Fiber Bragg
Grating [105]. In 2018, a pH sensor that deposited PAni on the surface of TFBG by in situ
chemical oxidation was proposed. Experiments show that the sensitivity of the sensor is
directly related to the thickness of the coating film. The thickness of the film is less than
2 µm, which will lead to large areas of TFBG not being covered. With the increase in the
thickness of the film, the hysteresis phenomenon will also increase. The sensor has an
overall sensitivity of 46 pm/pH units in the pH range of 2 to 12, and the combination of the
sensor characteristics means that it can also be used in other fields, such as medical smart
textiles [106], bioelectricity, and in vivo measurement [101,107,108]. In 2021, Wang et al.
proposed a pH biosensor based on DNA-functionalized microfiber-assisted MZI, as shown
in Figure 5. By combining the i-motif as a Ph-sensitive nucleic acid with its complementary
sequence, the complementary DNA enhancement mechanism can be utilized to improve
pH sensitivity as well as counter matrix effects caused by the influence of the volume
refractive index of pH sample liquid. The experimental results show that the pH value
detection range of the MZI sensor is 4.98–7.4, the maximum sensitivity is 480 pm/pH, and
the resolution is 0.042 pH units. This complementary DNA-enhanced fiber optic sensor
is expected to enable biocompatible, marker-free, and highly sensitive pH sensing. In
addition, it paves a new way for the development of novel DNA nanomachine-assisted
fiber optic sensors [109].
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The acid-base balance in the human body is regulated by multiple organs and systems
in the body, so changes in pH also affect multiple organs at the same time [110]. In addition to
the monitoring of human pH values in the blood, the real-time monitoring of cerebrospinal
fluid [110,111], intestinal fluid, and intracellular fluid [112] is also of great guiding signif-
icance for medical diagnosis. In 2023, Zhou et al. proposed a hydrogel-coated fiber pH
probe based on fluorescence ratio detection, which connected PH-sensitive fluorescent mi-
crospheres to one end of MMF coated with PEGDA hydrogel. Experiments in rodent brains
show that the probe has a pH detection range of 3.0~9.0 and a resolution of 0.0014 pH units
in a pH range of 7.0–8.0. This biocompatible hydrogel-coated fiber probe provides a unique
solution for assessing small changes in the pH of the brain microenvironment [113]. In
2021, Podrazky et al. used a fiber optic sensor to measure the pH value of human aqueous
humor samples during cataract surgery. The sensor was constructed by fixing HPTS as
a fluorescent dye in a mixed sol-gel matrix at the tip of a conical fiber and measured the
samples using the fluorescence ratio. The experimental results showed that its accuracy
and response time were comparable to those of standard pH electrodes [94].

Comparing the work presented in this paper with the performance of previously
reported laboratory-based and commercially available pH sensors, as shown in Table 2, it is
clear that the limitations encountered by current fiber-optic sensors for blood pH detection
are not due to sensor performance but to scaling, long-term stability, biocompatibility,
and calibration limitations for use in real-world scenarios [114]. Therefore, in addition to
paying attention to the improvement of the sensor’s own performance, it is more important
to consider how to put excellent sensing solutions into large-scale manufacturing and
use. For pH monitoring in the human body, the biocompatibility and stability of the
sensor need to be further optimized, especially in real-time monitoring in the human
body, and the requirements for coating materials are more stringent. Second, with the
development of internet of things and telemedicine monitoring, future fiber optic pH sensor
coating materials may integrate advanced communication technologies to achieve real-time
monitoring and transmit data to remote locations, enabling users to access body pH data
anytime, anywhere.



Coatings 2024, 14, 173 12 of 25

Table 2. Performance comparison of the above sensors with previous laboratory and commercially
available blood pH sensors.

Sensing
Principle Coatings Range Resolution/pH Units Reference

Ratiometric
fluorescence signal HPTS 6.0~8.0 0.0013 [80]

Ratiometric
fluorescence signal 6.0~8.0 0.03 [91]

LPFG PAA ionic
hydrogels 2~7 0.0027 [99]

LPFG Smart hydrogels 2~12 [102]

SPR Smart hydrogels and Ag 1~12 [103]

TFBG PAni 2~12 [101]

MZI DNA(i-motif) 4.98~7.4 0.042 [109]

Lesonco pH sensor
(Commercial) 0.00~14.00 0.01 [115]

G-PHT1 pH tester
(laboratory) 0.00~14.00 0.1 [116]

Presens pH sensor
(Commercial) 5.5~8.5 0.01 [117]

Analog pH sensor
(Commercial) 0~14 0.01 [118]

3.3. Protein in Blood

When a pathogen or other foreign protein (antigen) invades an animal, the body pro-
duces antibodies that recognize these foreign objects and remove them from the body. The
antigen and antibody combine to produce an immune reaction, which has high selectivity
and sensitivity [119]. The immune sensor is a biosensor developed by using the recognition
function of the antigen (antibody) to the antibody (antigen). The immune sensor is com-
posed of a photosensitive element as an information converter and a biometric molecule
fixed on the sensor. The use of different biometric molecules generates a changing optical
signal through its interaction with the light of the optical element, and the immune response
can be detected by detecting the changing optical signal.

Proteinuria is used to describe a patient with the excessive excretion of protein in urine,
defined as more than 300 mg of protein excreted per 24 h, which precedes any detectable de-
cline in renal filtration function [120–122]; the protein content in human urine usually does
not exceed 150 mg/24 h, which is difficult to identify by conventional detection methods.
In 2016, a TFBG sensor with a plasma nanocoating was proposed for detecting changes in
urine proteins. The biosensor is coated with silver nanomaterials on commercially available
single-mode fibers engraved with TFBG, and by reducing the silver film thickness to about
20–30 nm instead of 50 nm for optimal SPR excitation, different modes of TFBG spectra
show very high but opposite sensitivities to RI changes around TFBG. Using this device,
different concentrations of protein in rat urine can be clearly distinguished between healthy
samples, kidney samples, and treated individual samples, with a protein concentration
sensitivity of 5.5 dB/(mg/mL) and an LOD of 1.5 × 10−3 mg/mL. These results show a
clear relationship between protein efflux and changes in the urine sample RI between 1.3400
and 1.3408, pointing the way for the evaluation and development of new drugs for the
treatment of kidney disease. On the one hand, the integration of TFBG with microfluidic
channels allows for the precise measurement control of samples with sub-microliter vol-
umes, and since the inherent temperature cross-sensitivity of TFBG devices is eliminated,
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precise temperature control is not required. On the other hand, the integration of TFBG
with a hypodermic needle will allow similar measurements to be made in vivo [123].

Glycoproteins have been shown by researchers to be involved in a variety of diseases,
including diabetes and neurodegenerative diseases [124], and when glycoproteins on the
surface of cells enter the blood circulation, they can become special signals that provide
important information [125]. In 2017, a TFBG-SPR unlabeled glycoprotein sensor with a
boric acid derivative (ABA-PBA) as a receptor molecule achieved a high sensitivity and se-
lectivity for glycoprotein detection. Using boric acid derivatives as the biometric molecules
of the sensor, the material is widely used as the recognition substrate of biolecolecular-
containing diol. TFBG can improve the quality factor by two orders of magnitude, so the
combination of boric acid and the TFBG sensor is beneficial to detecting different glyco-
proteins. The interaction between boric acid and glycoprotein works well in an alkaline
environment (pH > 8.5). However, bioassays usually require a neutral environment. To
solve this problem, the team synthesized a phenylborate tertiary amine derivative, giving
the sensor a pH of about 7. The sensitivity of the sensor to the protein concentration can
reach 2.867 dB/(mg/mL), the LOD is 2 × 10−5 g/mL, and it has good repeatability [126].

Myoglobin (Mb) is an oxygen-binding heme protein mainly distributed in cardiac
muscle and skeletal muscle tissue. In acute myocardial injury, Mb is the first to be released
into the blood, so Mb measurement helps to detect the presence of reinfarction during
the course of acute myocardial infarction [127]. In 2017, Tomyshev et al. designed a fiber
optic plasmon refractive index sensor. In order to improve the stability of the sensor,
different from other sensors based on TFBG and SPR, it is commonly used to measure
the transmission spectrum of the optical signal propagated through the sensor and then
transmitted to the receiving device. The sensor is coated with a reflective film at the end
of one section of the optical fiber to detect the reflected signal. This structure allows for
avoiding the second mounting point of the sensor and making the optical fiber in a free
position. Due to this characteristic, the impact of vibration and mechanical stress on sensor
operation is significantly reduced. Further experiments show that this decision improves
the stability of the sensor data at rest by at least one order of magnitude, and the sensor
exhibits both high sensitivity and high resolution, with a resolution of about 2 × 10−6 RIU
in an aqueous solution, which is almost an order of magnitude better than previously
published results. The sensor reliably detects low concentrations of proteins in the solution,
successfully detecting myoglobin at a concentration of 500 ng/mL in acetate buffers [128].

Protein aggregation, misfolding, and the like that typically occurs in neurodegenera-
tive diseases can have damaging effects on cellular processes [129,130] and are associated
with aging [131]—for example, Alzheimer’s Disease (AD), which is characterized by the
aggregation of β-amyloid and Tau proteins [132,133], or Parkinson’s disease, where α-
synuclein aggregation occurs [130]. The biosensor based on the FPI end resonator can
effectively detect the concentration of protein aggregates in a simple and quick manner.
The protein aggregation level in bovine serum albumin protein preparation is character-
ized by the biosensor. The experimental results obtained are consistent with the results
of commonly used fluorescence level analysis detection technology, which proves the
applicability and effectiveness of the sensor. The development of the probe can be used
as a non-invasive device for the diagnosis of degenerative diseases and drug production.
In addition, the sensor probe geometry with different cavities that are simultaneously
actuated can be used for multi-parameter monitoring, which will modulate the cavity of
the resonator probe more significantly [134]. At the same time, because neurodegenerative
diseases are persistent and progressive, it is necessary to take effective measures for the
early diagnosis of AD before the lesions become too severe to be cured. In 2018, an SPR
fiber sensor for the immunoassay of tau proteins (total tau protein and phosphorylated tau
protein) in human serum was proposed. The sensor removed 5 cm of cladding along the
length of the multimode fiber and produced an asymmetric coating of 1 nm-thick Cr and
40 nm-thick Au on the exposed fiber core surface by a hot evaporator, as shown in Figure 6.
The uneven contour of the coated metal can support more fiber modes to stimulate SPR,
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which is conducive to improving the sensitivity of the sensor. The test results showed that
the LODs of the total tau protein and phosphorylated tau protein were 2.4 pg/mL and
1.6 pg/mL, respectively. Comparing the measured results with the results of the ELISA
kit, it was found that the SPR fiber sensor measurements produced heterogeneity in the
average concentration of the total tau protein and phosphorylated tau protein increased
relative to the control of AD patients. This was attributed to the difference in affinity
strength between the antibodies used in the ELISA kit against the two types of tau protein
and the antibodies used in the SPR fiber sensor. According to this heterogeneity, it can be
speculated that the serum of AD patients is more likely to produce unphosphorylated tau
protein, which is considered to be one of the potential key factors that play an important
role in the progression of AD [135].
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Immunoglobulin G (IgG) and IgG subclasses have always been associated with chronic
infections, and the growing awareness that defects or increases in selected IgG subclasses
may have clinical consequences has led to a strong interest in quantifying the IgG iso-
type [136,137]. In 2019, Wang et al. first proposed and demonstrated a highly sensitive
TFBG-SPR biosensor based on GO and Staphylococcal Protein A (SPA) co-modification for
IgG detection. The gold film on the surface of the sensor was first fixed with GO and then
modified with SPA to improve the sensitivity of the sensor. Experimental results showed
that the sensitivity and LOD of the GO-SPA modified TFBG-SPR biosensor were about
0.096 dB/(µg/mL) and 0.5 µg/mL. It showed a better response to human IgG concentra-
tions in the range of 30–100 µg/mL than the TFBG-SPR sensor modified with GO or SPA
alone. Its sensitivity is 2.40 times higher than that of an SPA-modified TFBG-SPR biosensor
and 1.78 times higher than that of a Go-modified TFBG-SPR biosensor, respectively. At
the same time, the sensor has the advantages of an excellent stability, high precision, and
flexible production [138]. The optical fiber biosensor platform based on high-reflectivity
FBG also provides a competitive optical fiber platform for targeted biomolecular detec-
tion. The schematic diagram of FBG composed of high-reflection FBG, graded refractive
index MMF, and SMF is shown in Figure 7. The experiment of detecting IgG in serum
by this sensor has verified the specificity of the FBG sensor. At the same time, the sensor
achieved an ultra-low detection limit of 32 pM by coating the sensing surface with GO
and anti-IgG functionalization without using the signal amplification of functionalized
gold nanoparticles or second antibodies. It has great application potential in labeling free
biosensing [139].

Dengue fever is a dengue virus (DENV) infection transmitted to humans through the
bite of infected mosquitoes, Dengue virus is divided into four serotypes, I, II, III, and IV,
and each type has the ability to infect and cause disease. According to the World Health
Organization 2023, about half of the world’s population is currently at risk of dengue fever,
with an estimated 100 million to 400 million people infected each year. In 2019, Kamil et al.
reported a functionalized cone-fiber biosensor with a deposited GO layer for the detection
of DENV II E protein. The conical area was deposited with GO and functionalized with
anti-DENV II E protein IgG antibodies for testing at different concentrations of DENV II
E protein. The test results of different GO layer thicknesses show that when the GO layer
thickness is 16.17 nm, the optimal sensitivity value of the sensor is 12.77 nm/nM, and the
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LOD is 1 pM. The sensor shows a high accuracy, selectivity, and affinity in tests. The sensor
undoubtedly demonstrates the great potential of nanomaterials’ integration in the field of
dengue diagnostics [140].
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Cardiac troponin I (cTnI) is considered to be the most obvious and direct indicator of
Myocardial injury [141,142] and has been established as the gold standard for detecting
Acute Myocardial Infarction (AMI). Therefore, it is necessary to develop a labeling-free,
simpler, and more efficient detection method [143]. A Local Surface Plasmon Resonance
(LSPR)-based heterocellular fiber sensor structure can be used to detect cTnI. By etching the
SMF-MMF-SMF (SMS) structure and then fixing gold nanoparticles (AuNPs) and cerium
oxide nanoparticles (CeO2-NPs) on the fiber structure, the performance and stability of this
sensor probe were improved while ensuring its biocompatibility. The LOD and sensitivity
of the sensor are 108.15 ng/mL and 3 pm/(ng/mL), respectively, and the sensor has good
repeatability and stability in the range of normal human serum pH values. Due to the
advantages of easy manufacture, high sensitivity, a wide linear range, and the ability to
detect the whole range of human cardiac troponin concentrations, it is suitable for the
diagnosis of AMI [144].

The above review covers the application of immunosensors in the detection of uri-
nary proteins, glycoproteins, myoglobin, neurodegenerative disease markers, and im-
munoglobulins. These studies demonstrate the broad use of fiber-optic immunosensors
in the biomedical field, providing new tools and methods for the early diagnosis and
treatment of diseases. The performance and reliability of optical fiber immune sensors
largely depend on their coating material; the selection of highly selective and highly sen-
sitive materials is necessary in order to increase the sensitivity of the sensor, which can
adopt more nanomaterials to enhance the number of material sensing molecules, while
in order to achieve the remote and real-time monitoring of optical fiber immune sensors,
it is also necessary to choose better biocompatible coating materials, which are critical to
understanding complex biological processes and disease mechanisms in living organisms.

3.4. Blood Physical Characteristics

The cardiovascular system is a closed transport system made up of the heart, blood
vessels, and blood, and many hormones and other information substances also reach
their target organs through blood transport to adjust body functions. Healthy and fully
functional vasculature plays an important role in delivering nutrients to cells and protecting
organs. Therefore, realizing the non-invasive real-time detection of vascular dysfunction is
of great significance in biomedical research [145].

The term “blood flow” has been used to refer to different quantities such as the
volumetric blood flow or the maximum velocity of red blood cells in a volume, and
intravascular flow measurements can be used to assess abnormalities in the shape of blood
vessels in the brain [146,147]. Positron emission tomography (PET) is often quantified as
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the “gold standard” technique for blood flow measurement, but its use in specific scenarios
is limited due to its long scan time for acute patients [148]. Ruiz-Vargas et al. demonstrated
a method for measuring instantaneous changes in flow during pulsating blood flow using
a flow sensor consisting of an FBG sensor and a 565 nm light-emitting diode, LED lighting
to heat the blood, and a fiber-optic sensor to detect temperature fluctuations due to flow
changes. Experiments show that the Pearson coefficient between the results obtained by
this method and the results obtained by an ultrasonic signal ranges from −0.83 to −0.98,
and the coefficient depends on the pulsation frequency when the pulsation blood flow
rate is 20–900 mL/min. This method allows for intravascular blood flow measurements
under pulsatile flow conditions, presenting potential applications in medical settings
requiring continuous blood flow sensing. However, further research is needed to determine
the sensor’s behavior under various physiological conditions and to examine different
configurations to ensure human safety [149]. In 1975, it became possible to perform invasive
blood flow velocity measurements in rabbits using a single-fiber catheter with a diameter of
0.5 mm [150]. The existing methods of blood flow velocity measurement include ultrasonic
Doppler detection, laser Doppler detection, and blood flow velocity measurement between
two points [151]; compared with other methods, the combination of the laser Doppler
method and optical fiber has a higher resolution. In 1983, Tahmoush et al. developed a
semi-invasive disk sensor for measuring the blood flow velocity in muscle. The disk surface
exposes the ends of two tightly connected optical fibers to the tissue, which can be placed
on the biopsied exposed muscle surface for detection [152]. Laser Doppler velocimeters
have moved in the direction of non-invasive measurement. Laser Doppler methods have
been used for the noninvasive detection of blood flow in situations where light can be
transmitted through the vessel wall [153]. However, the laser Doppler method mainly
measures the movement rate of red blood cells, rather than the whole blood flow velocity,
so spatial variations may cause spatial deviations in blood flow estimates [154].

SpO2 is the percentage of the volume of oxygenated hemoglobin bound by oxygen in
the blood to the total volume of hemoglobin bound, which is the concentration of blood
oxygen in the blood. In normal people, the SpO2 of arterial blood is 98%, and that of venous
blood is 75%. Monitoring the SpO2 of arterial blood can estimate the oxygenation and
hemoglobin oxygen-carrying capacity of the lungs, and thus, the effectiveness of the car-
diopulmonary system can be evaluated [153]. Continuous oxygen saturation measurement
is also valuable in patients with respiratory failure who are undergoing extracorporeal
carbon dioxide removal therapy [155]. Currently, the predominant method for measuring
SpO2 is based on photoplethysmography (PPG) [156]. To accurately calculate SpO2, the
average of multiple pulse cycles is required to enhance precision, resulting in a loss of
real-time measurement [157]. In 2018, Liu et al. proposed a novel integrated optical fiber
sensor probe that combines contact pressure for detecting SpO2. Figure 8 shows the probe
design. The sensor comprises three plastic optical fibers (POF) and one FBG sensor. Each
plastic optical fiber used in the pulse oximeter is split at a 45◦ angle at its distal end. All
fibers are encapsulated in a biocompatible epoxy resin patch to reduce motion artifacts
in the photoplethysmogram (PPG). Additionally, this design allows for the conversion of
lateral loads into the axial strain in the FBG. Test results indicate that combining pressure
measurements from FBG and a reference FBG yields reliable results with lower latency
and relatively minimal temperature influence. The measurement error for contact force
within the range of 5 to 15 kPa is less than 2%. In wearable technology, this probe could
be employed to optimize the fit of garments utilizing this technology, achieving reliable
measurement results by applying appropriate pressure. A reference FBG for temperature
compensation has been added to the sensor, and in future designs, a compensation FBG for
the axial strain could be incorporated to eliminate axial strain interference. Additionally,
algorithm modifications for calculating SpO2 could be implemented to reduce discrepancies
between the designed sensor and commercial pulse oximeters [158].
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Pulse waveform analysis (PWA) was a commonly used and effective diagnostic tool
from routine clinical examination to disease diagnosis. The radial pulse waveform was
a predictor of radial coronary artery diagnosis [159–161], and vital signs such as arterial
stiffness and cardiovascular status could be estimated by digital conversion to the central
column arterial pressure [162–164]. It has been proven that the use of FBG sensors made of
POF can solve the problem of quartz fiber easily breaking and forming sharp edges. The ex-
perimental results show that the pulse wave signal can be measured by the POF-FBG sensor,
and its signal-to-noise ratio (SNR) is at least eight times higher than that of quartz FBG. The
obtained pulse wave signal is processed and the calibration curve is constructed by the least
square method. The blood pressure calculated by the least square method has a low error.
However, the correlation between POF-FBG and accelerated pulseplethysmograph (APG)
was 0.54~0.72, which did not meet the author’s expectation. In addition, experiments
have shown that pulse wave signal measurements reflecting pulse wave signals should
be considered to improve the accuracy of blood pressure measurements, while reference
blood pressure measurements over a large range are needed in subsequent experiments
to improve the correlation coefficient of the calibration curve [165]. In 2020, Pant et al.
developed and demonstrated a novel, non-invasive Fiber Bragg Grating Plethysmographic
pulse recorder (FBGPPR). The device consists of a silicone diaphragm attached to a hollow
plastic conical tube, which binds the FBG sensor laterally to the silicon diaphragm. When
the device is worn on the finger of the subject, the developed FBGPPR captures the volume
change in the blood in the form of a pulse waveform, and the collected pulse waveform is
analyzed to obtain the APG. The experimental results are consistent with the previously
reported acceptable range for this age group, so the device can effectively acquire the
pulse pressure waveform. In addition, arterial pulse waveforms can be collected from
the developed FBGPPR with an electronic stethoscope to assess the pulse transit time
(PTT); PTT is a measure of pulse wave velocity and arterial stiffness, which can indicate
a person’s cardiovascular status. Obtaining PTT can help to further estimate important
cardiovascular parameters, such as the arterial flow velocity and arterial stiffness index,
and is also an indirect method for estimating blood pressure [127,166]. Traditional Chinese
medicine (including pulse theory) has been used clinically for thousands of years, in which
the detection of the radial pulse waveform at different locations on the wrist is one of its
necessary indicators [167–169]. So far, the measurement of the radial pulse waveform in tra-
ditional Chinese medicine is still mainly based on the doctor’s experience [170]. Therefore,
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accurate measurement can also provide a good platform for the scientific understanding
and research of Chinese medicine. A novel optical measurement system based on FBG
and a lever amplification mechanism can also be applied to high-sensitivity radial artery
pulse waveform measurements. The device utilizes a controlled carbon fiber tube to form
a lever, amplifying the force F2 generated by periodic pulses to F1 before applying it to
the FBG. Experiments demonstrated that the sensitivity of the proposed sensor increases
with an increase in the lever arm ratio. When the ratio is 6.2, the sensitivity of the FBG
sensor reaches 8.236 nm/N. Compared to previous works, this FBG sensor exhibits higher
sensitivity and a better SNR, making it more suitable for capturing details in pulse wave-
forms. Due to the similarity between the results obtained by the FBG sensor and the pulse
waveforms measured by an electrical pulse measurement system, this sensor demonstrates
good applicability. Furthermore, this sensor can detect waveforms at multiple positions and
depths, providing a measurement platform for medical communities, including traditional
Chinese medicine. However, the sensor has limitations that need optimization. First, the
inclusion of a limiter to protect the FBG from external force may restrict the sensor’s sensi-
tivity improvement. Therefore, alternative encapsulation methods should be considered
to ensure FBG stability. Second, considering the sensitivity of FBG to temperature, the
practical use of the sensor requires the addition of a temperature-compensating FBG to
eliminate temperature interference. Lastly, as motion artifacts can impact the accuracy of
detected waveforms, it is essential for patients to remain still during measurements [171].

In addition to the above-mentioned fiber optic sensors used for blood flow, flow veloc-
ity, SpO2, PWA, and other fields of monitoring, fiber optic sensors have also made progress
in the monitoring of other physical characteristics of blood, such as blood viscosity [172],
thrombosis detection [173], etc. In the future, the application of fiber optic sensors will
continue to develop in the direction of more comprehensive blood detection.

4. Conclusions and Prospects

Optic fiber sensors have gained widespread application in the medical field due
to their unique capabilities. With continuous technological advancements, their use in
blood detection and monitoring is expected to become even more extensive. In the future,
the applicability of sensors in medical diagnostics and healthcare will be strengthened
through the process of selecting sensing and coating technologies and implementing
sensing solutions in practical use. In the selection of sensing and coating technologies, fiber
optic sensors may integrate with advanced technologies such as artificial intelligence and
big data, enabling more efficient and precise blood detection and monitoring. Additionally,
with the development of biocompatible materials, fiber optic sensors may find applications
in implantable monitoring devices within the human body, facilitating the long-term and
continuous monitoring of physiological parameters.

In the manufacturing of fiber optic sensors, improvements in design, manufacturing
processes, and coating material selection can enhance their accuracy and sensitivity. This
can enable the better detection and monitoring of biomolecules and parameters in the blood,
allowing for simultaneous multi-parameter detection and providing more comprehensive
physiological information for the medical and healthcare field. Concurrently, advancements
in biomedical engineering and medical imaging technologies may see fiber optic sensors
combined with techniques like endoscopy and optical coherence imaging, offering doctors
more intuitive and in-depth insights into medical conditions.

The implementation of superior sensing solutions on a large scale requires considera-
tions for miniaturization and portability in the design of fiber optic sensors. This would
make them suitable for diverse applications, including home monitoring and mobile health-
care. In summary, the future outlook for the application of fiber optic sensors in blood
detection and monitoring is promising, promising revolutionary advancements in the
medical and healthcare domain. With technological progress, we anticipate that fiber optic
sensors will play a more significant role in the medical field, safeguarding our health.
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