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Abstract: AISI 316L stainless steel has received considerable attention as a common material for
key ball valve components; however, its properties cannot be improved through traditional phase
transformation, and fretting wears the contact interface between valve parts. A carburized layer was
prepared on the surface of AISI 316L stainless steel by using double-glow low-temperature plasma
carburization technology. This study reveals the effect of double-glow low-temperature plasma
carburization technology on the fretting wear mechanism of AISI 316L steel under different normal
loads and displacements. The fretting wear behavior and energy dissipation of the AISI 316L steel
and the carburized layer were studied on an SRV-V fretting friction and wear machine with ball–plane
contact. The wear mark morphology was analyzed by using scanning electron microscopy (SEM), the
phase structure of the carburized layer was characterized with X-ray diffractometry (XRD), and the
wear profile and wear volume were evaluated with laser confocal microscopy. The carburized layer
contains a single Sc phase, a uniform and dense structure, and a metallurgically combined matrix.
After plasma carburizing, the sample exhibited a maximum surface hardness of 897 ± 18 HV0.2,
which is approximately four times higher than that of the matrix (273 ± 33 HV0.2). Moreover, the
surface roughness was approximately doubled. The wear depth, wear rate, and frictional dissipation
energy coefficient of the carburized layer were significantly reduced by up to approximately an
order of magnitude compared with the matrix, while the wear resistance and fretting wear stability
of the carburized layer were significantly improved. Under different load conditions, the wear
mechanism of the AISI 316L steel changed from adhesive wear and abrasive wear to adhesive wear,
fatigue delamination, and abrasive wear. Meanwhile, the wear mechanism of the carburized layer
changed from adhesive wear to adhesive wear and fatigue delamination, accompanied by a furrowing
effect. Under variable displacement conditions, both the AISI 316L steel and carburized layer mainly
exhibited adhesive wear and fatigue peeling. Oxygen elements accumulated in the wear marks of
the AISI 316L steel and carburized layer, indicating oxidative wear. The fretting wear properties of
the AISI 316L steel and carburized layer were determined using the coupled competition between
mechanical factors and thermochemical factors. Low-temperature plasma carburization technology
improved the stability of the fretting wear process and changed the fretting regime of the AISI 316L
steel and could be considered as anti-wearing coatings of ball valves.

Keywords: AISI 316L stainless steel; low-temperature plasma carburization; carburized layer; fretting
wear; wear mechanism

1. Introduction

AISI 316L austenitic stainless steel has excellent comprehensive mechanical properties
(such as high strength, good corrosion resistance, low yield strength, good plasticity, and
good toughness). Thus, AISI 316L steel is widely used in the petrochemical, biomedical,
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aerospace, nuclear, and metallurgy industries [1–3]. However, AISI 316L steel also exhibits
various disadvantages, including low hardness, poor wear resistance, and easy adhesion to
abrasive parts. Moreover, the performance of AISI 316L steel cannot be improved through
traditional phase transformation. These drawbacks significantly reduce the service life of
AISI 316L stainless steel parts and affect their application range [4–6]. Hard sealing fixed
ball valve stem/bearing, bearing/body, and spool/sealing surfaces are prone to fretting
wear when the valve is normally open or normally closed. Fretting wears the contact
interface between valve parts and accelerates the further initiation and expansion of the
original cracks on the material surface. This results in the local failure of the bearings and
spool, as well as the leakage failure of the sealing surface [7].

The wear resistance of various materials and engineering components can often be
improved by surface modification. Double-glow low-temperature plasma carburization is
an efficient thermochemical surface modification technology that can be used to increase
the hardness and wear resistance of austenitic stainless steel [8,9]. For example, He et al.
studied the fretting wear mechanism of 35CrMo steel before and after ion nitriding under
dry friction and lubricated conditions. They reported that the wear resistance of the 35CrMo
steel was significantly improved by ion nitriding. The high hardness and rough compound
layer produced by ion nitriding were conducive to the formation of a third body layer at the
fretting contact interface [10]. Adachi et al. treated AISI 316L stainless-steel-based tungsten
carbide composites with single-plasma carburizing and continuous-plasma nitriding. Both
the single carburizing and continuous processes can improve the surface hardness and
corrosion resistance effectively [11].

Low-temperature plasma carburization (LTPC) technology is usually carried out
at temperatures below 500 ◦C to avoid the precipitation of chromium carbides in the
carburized layer. These chromium carbides reduce the corrosion resistance of stainless
steel. LTPC enhances the hardness and wear resistance of austenitic stainless steel by
forming a super-saturated austenite structure in the austenite structure (an Sc phase) and
inducing a high level of residual stress [12–14]. Moreover, this strategy is inexpensive and
has environmental benefits. Therefore, LTPC has been applied for the surface modification
of austenitic stainless steels for several decades. Sun et al. prepared nitriding or carburizing
layers on 316L stainless steel surfaces and studied the sliding friction of these surfaces
under an ambient atmosphere and in corrosive media. Both layers provided the 316L
steel with good wear resistance and corrosion resistance [15]. Montanari et al. treated
316L stainless steel with L-PBF and modified the steel surface with ion carburization. The
results showed that ion carburization generated an Sc phase on the surfaces of the 316L
steel and L-PBF-316L steel, which increased the surface hardness by a factor of two and
further improved the mechanical properties [16]. Scheuer et al. prepared the carburized
layer on the surface of AISI 420 martensitic stainless steel and investigated the effect of
plasma carburizing time and temperature on their dry sliding friction and wear behavior.
The carburized layers without Cr-carbide precipitation exhibited lower wear and friction
coefficients. The wear mechanism of both samples exhibited micro-abrasion and oxidative
wear [17]. Lamim et al. studied the influence of LTPC on the mechanical and tribological
behaviors of sintered and nitriding sintered iron. Plasma carburizing the sintered iron
surface effectively improved its mechanical properties. Moreover, the wear resistance was
improved by approximately 45% [18].

Currently, studies investigating the wear behavior of austenitic stainless steel before
and after plasma carburizing have mainly focused on evaluating the conventional recipro-
cating friction and wear behavior. However, little attention has been paid to the fretting
wear behavior and mechanism of austenitic stainless steel after plasma carburization.
Therefore, in this work, the influence of LTPC on the fretting wear behavior of AISI 316L
austenitic stainless steel under varying loads and displacements was investigated using
an SRV-V fretting friction and wear testing machine (Optimol Company, Germany). The
morphology, phase structure, and surface hardness of the plasma carburization (PC) layers
were thoroughly characterized. The wear morphology, elemental distribution, wear profile,
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and friction coefficient were also analyzed, and the wear rate (K), cutting plastic ratio
(f cp), and frictional dissipation energy coefficient (αe) were calculated. In this study, the
fretting wear behavior and mechanism of the AISI 316L austenitic stainless steel before and
after LTPC are discussed in terms of mechanical and energy factors. This study provides
experimental data support and a theoretical basis for evaluating and understanding the
anti-fretting damage and surface protection of key components of ball valves.

2. Materials and Methods
2.1. Test Material and Carburized Layer Preparation

Commercial AISI 316L austenitic stainless steel (Φ24 mm × 8 mm cylinder) was used as
the lower sample; the chemical composition of this steel is shown in Table 1. The steel was
pre-treated through grinding, cleaning, and drying until the surface was a smooth mirror. The
corrosion solution was Marble reagent (CuSO4·5H2O (4 g) + HCl (20 mL) + H2O (20 mL)). The
corrosion time was 10 s.

Table 1. The main chemical composition of AISI 316L stainless steel.

Cr Ni Mo Mn Si Fe

16.45 10.01 2.1 0.92 0.36 Bal

The LTPC layer was prepared by treating the AISI 316L steel in an LDMC-30F glow
ion diffusion furnace (Wenzhou, China). The specific process parameters are shown in
Table 2. The sample was cleaned in the furnace for 20 min to remove surface stains before
carburizing the surface.

Table 2. Detailed parameters for LTPC of AISI 316L stainless steel.

Temperature
(◦C)

Voltage
(V)

H2
(L/min)

C2H2
(L/min)

Time
(h)

Current
(A)

450 800 0.7 0.063–0.077 10 8

2.2. Fretting Friction and Wear Experiment

The fretting wear test was carried out with an SRV-V fretting friction and wear testing
machine (Optimol Company, Germany). A GCr15 ball (Φ10 mm) was selected as the upper
sample, and the untreated or treated AISI 316L steel was used as the lower sample. The
contact mode was ball–plane point contact. The experimental parameters are shown in
Table 3. Before each test, the surfaces of the upper and lower samples were cleaned to
ensure that the contact surface was clean. Each set of experiments was repeated at least
three times, and the set with the most consistent results was selected for analysis.

Table 3. The experiment parameters of fretting wear test.

Load (N) Displacement
(µm)

Frequency
(Hz) Time (min) Temperature

(◦C) Cycles

30/50/70 70
25 20 25 3 × 104

50 50/75/100

2.3. Performance Testing and Characterization

The morphological structures of the carburized layer and the wear morphology marks
were observed with field emission scanning electron microscopy (SEM, QUANTA FEG
450,FEI Company, Hillsboro, OR, USA) coupled with energy-dispersive X-ray spectroscopy
(FEI Company, Hillsboro, OR, USA) to determine the elemental distribution. The mor-
phological structures of the carburized layer were also observed with a metallographic
microscope (Leica DMI 8, Leica Company, Wetzle, SBH, Germany). The phase structure
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of the carburized layer was evaluated with X-ray diffractometry (XRD, D8-ADVANCE,
Brooke Company, Germany). XRD patterns were obtained in the 2θ range of 20–90◦ with a
step size of 0.02 (◦)/s, and a copper target was used. The wear volume and wear profile
were evaluated with an OLYMPUS OLS5000 3D measurement laser microscope (Olympus
Corporation, Tokyo, Japan). The friction coefficient was automatically recorded by an
SRV-V fretting friction and wear testing machine (Optimol Company, Germany). The sur-
face hardness was measured using a microhardness tester (W1102D37, Buehler Company,
Lake Bluff, IL, USA). The measurements were carried out using a 20 gf load applied for a
duration of 15 s.

3. Results
3.1. Cross-Sectional Morphology and Properties of Carburized Layer

As shown in Figure 1a–c, the carburized layer was evenly distributed, continuous,
dense, and metallurgically combined with the matrix. No obvious defects (cracks, holes,
etc.) could be observed at the joint, and the boundary between the carburized layer and
the matrix was clear [10,19]. The carburized layer mainly contained Fe, Cr, Ni, and C.
The thickness of the carburized layer was approximately 25 µm. The surface hardness
of the carburized layer was 897 ± 18 HV0.2, which was approximately four times higher
than that of the untreated AISI 316L steel (273 ± 33 HV0.2). The carburized layer had a
surface roughness of 0.187, which is slightly higher than that of the untreated AISI 316L
steel surface (~0.147). The increased surface roughness of the carburized layer compared to
the untreated AISI 316L steel surface is due to the modified surface lattice of the austenitic
stainless steel. During the LTPC process, a large number of carbon atoms were soldered in
the tetrahedral or octahedral gaps of the austenite structure, which affected the lattice and
induced the formation of an expanded austenite phase [9,20–22].
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Figure 1. (a) Cross-sectional SEM microstructure of the carburized layer, (b) cross-sectional metal-
lographic microstructure of the carburized layer, (c) EDS paĴerns of the carburized layer, and (d) 
XRD paĴerns of plasma-carburized AISI 316L steel. 
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the rapid expansion distortion of the crystal laĴice, increased the crystal surface spacing 
and laĴice constant, and generated large residual stress. Thus, the surface hardness of the 
carburized AISI 316L steel was improved. (2) After plasma carburizing, the main diffrac-
tion peak of the Sc phase was broadened, indicating the existence of micro-strain in the 
carburized layer and the high defect density. This further improved the surface hardness 
of the AISI 316L steel after LTPC. 

3.2. Friction Coefficient 
The friction coefficient curves of GCr15/316L and GCr15/PC under different loads 

and displacements are shown in Figure 2. These curves are divided into three stages: 
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stage, the friction pair experienced a slightly convex contact, the relative contact area 
was small, and fewer hard phase particles were shed, resulting in a low friction coef-
ficient. With increasing load and displacement, the real contact area and roughness 
of the wear interface increased, the frictional heat of the wear surface increased, wear 
chips started to appear, the friction resistance increased, and the friction coefficient 
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Figure 1. (a) Cross-sectional SEM microstructure of the carburized layer, (b) cross-sectional metallo-
graphic microstructure of the carburized layer, (c) EDS patterns of the carburized layer, and (d) XRD
patterns of plasma-carburized AISI 316L steel.

The XRD analysis (see Figure 1d) showed that the carburized layer was composed of
the Sc phase. Due to the strong affinity between the Cr atoms of the AISI 316L steel and
the C atoms of the carburizing environment, the Cr atoms attracted a large number of C
atoms to form chromium–carbon compounds during the LTPC process. However, the low
temperatures used in this process did not provide enough energy to form chromium–carbon



Coatings 2024, 14, 158 5 of 20

compounds. Therefore, the C atoms entered the tetrahedral or octahedral gaps of the γ-Fe
phase in a solid solution to form a metastable supersaturated solid-solution Sc phase. This
phase had a disordered face-centered cubic lattice structure [9,23]. The formation of the
carburized layer required the accumulation and reaction of stable C atoms, as well as the
continuous diffusion and conversion of metastable C atoms.

After plasma carburizing, the main S (111) diffraction peak of the Sc phase shifted
to a smaller angle compared with the main γ-Fe (111) diffraction peak of the matrix.
Moreover, the S (111) diffraction peak was slightly broader after the LTPC process. Thus,
the formation of the super-saturated solution of active carbon atoms in the AISI 316L
steel austenite lattice gaps led to the expansion distortion of the original austenite lattice.
Thus, the lattice constant changed. This lattice expansion was constrained by the internal
matrix, resulting in residual stress in the superficial tangential direction. As a result, the
modification of the crystal structure by the active carbon atoms caused textural changes,
dislocation defects, slip band defects, lattice expansion, an increase in intergranular spacing,
and higher deformation dislocation density. According to the Bragg equation (2dsinθ = nλ),
when nλ is constant, sinθ decreases and d increases. Therefore, the shift in the main S (111)
diffraction peak of the Sc phase to a smaller angle compared with the γ-Fe (111) peak of the
matrix indicates larger d-spacing. The formation of the Sc phase and the coincidence of the
diffraction peaks of the Sc phase and the primary γ-Fe phase caused the slight broadening
of the main S (111) diffraction peak.

The enhanced surface hardness of the AISI 316L steel after plasma carburizing can be
explained as follows [19,24–26]: (1) The carbon atoms have a strong solution-strengthening
effect. During the LTPC process, a large number of C atoms continually diffused into the
lattice gaps of the AISI 316L steel, resulting in solid-solution strengthening. This led to
the rapid expansion distortion of the crystal lattice, increased the crystal surface spacing
and lattice constant, and generated large residual stress. Thus, the surface hardness of
the carburized AISI 316L steel was improved. (2) After plasma carburizing, the main
diffraction peak of the Sc phase was broadened, indicating the existence of micro-strain
in the carburized layer and the high defect density. This further improved the surface
hardness of the AISI 316L steel after LTPC.

3.2. Friction Coefficient

The friction coefficient curves of GCr15/316L and GCr15/PC under different loads
and displacements are shown in Figure 2. These curves are divided into three stages:

(1) Initial stage I [27,28]: The friction coefficient curves of GCr15/316L and GCr15/PC
sharply rose and very rapidly reached the maximum values. In the initial running-in
stage, the friction pair experienced a slightly convex contact, the relative contact
area was small, and fewer hard phase particles were shed, resulting in a low friction
coefficient. With increasing load and displacement, the real contact area and roughness
of the wear interface increased, the frictional heat of the wear surface increased, wear
chips started to appear, the friction resistance increased, and the friction coefficient
sharply rose.

(2) Wear stage II [29,30]: The friction coefficient curve significantly decreased in this
stage compared with the initial stage. The temperature between the contact surfaces
continued to rise, and heat continued to accumulate. This resulted in local areas
reaching the “friction flashover temperature”. The thin oxide film formed on the wear
surface slightly reduced the friction coefficient, but this oxide film was quickly crushed
and peeled off by the sample on the wear surface. In addition, a large number of wear
chips were generated and discharged, and the contact interface began to shift from
two-body wear to three-body wear, resulting in fluctuations in the friction coefficient.

(3) Stable stage III [31]: The friction coefficient curves were stable and showed an ap-
proximately straight line. Under variable load conditions, both the GCr15/316L and
GCr15/PC friction coefficient curves required less time to enter the stable stage com-
pared to variable displacement conditions. When the wear entered the middle and
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late stages, the accumulation of wear particles between the contact surfaces led to the
formation of a wear layer, and the contact interface completely shifted to three-body
wear. At this point, the wear state remained relatively stable.
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Figure 2. Friction coefficient curves of AISI 316L steel and carburized layer under different (a) loads 
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With increasing load, the friction coefficients of GCr15/316L and GCr15/PC decreased,
and µPC > µ316L (see Figure 2a). Under a displacement of 50 µm, GCr15/316L and
GCr15/PC exhibited their lowest friction coefficient values, and µ316L > µPC. Under a
displacement of 75 µm, the friction coefficients of GCr15/316L and GCr15/PC increased,
and µPC > µ316L. When the displacement was further increased to 100 µm, the friction coef-
ficients of GCr15/316L and GCr15/PC did not increase, and the values were comparable
to those obtained under a 75 µm displacement (see Figure 2b). The anti-friction effect of the
carburized layer was not significant under varying loads and displacements.

The friction coefficient of GCr15/PC was slightly higher than that of GCr15/316L.
There are four potential reasons that could explain this difference [32–34]: (1) The difference
in the surface hardness of the AISI316L steel before and after carburizing. During fretting
wear, abrasive chips participated in the wear process as a third body by scraping or
ploughing the surface. The bearing capacity and anti-deformation capacity of these wear
chips affected the friction coefficient. The influence of the relatively soft abrasive particles
produced by the untreated AISI 316L steel on the friction coefficient was not as significant
as that of the hard-phase abrasive particles produced by the carburized layer. (2) The
rise in temperature due to friction at the wear interface during fretting wear softened the
substrate surface more than the carburized layer. The friction coefficient of the AISI 316L
steel was reduced to a certain extent because it was easier to form an oxide film than a
carburized layer as the friction temperature raised. (3) The crystal structure of the steel
sample also influenced the friction coefficient. Face-centered cubic austenite steel had a
larger lattice than other crystal structures (BCC, HCP, etc.). The expansion distortion of the
original austenite lattice after plasma carburizing meant that the carburized layer had a
slightly larger friction coefficient than the untreated AISI 316L steel. (4) Surface roughness.
The roughness of the carburized layer was slightly higher than that of the AISI 316L steel,
and the number of micro-convex bodies on the contact surface was higher, resulting in
higher relative shear strength and elevated friction stress. After the initial contact, the
micro-convex bodies of the carburized layer were gradually sheared by the upper specimen,
and the wear chips filled the contact interface. When the number of wear chips was less
than enough to fill the micro-convex body troughs, the tribological behaviors increased
such as extrusion, ploughing, and grinding. The friction coefficient increased. However,
when the number of wear chips continued to increase to fill the micro-convex body troughs,
the abrasive layer (the third body layer) could be formed at the contact interface and the
friction coefficient decreased slightly. The third body layer could soon be extruded by
ploughing and grinding the upper specimen to form new wear chips, and, therefore, the
friction coefficient increased again.



Coatings 2024, 14, 158 7 of 20

The effects of load and displacement on the friction coefficient can be described in
terms of mechanical and thermochemical factors. (1) Mechanical factors: Increasing the
load increased the number of wear chips and intensified fatigue peeling. As more wear
chips accumulated at the contact interface, the interface roughness increased. Moreover, the
abrasive chips participated in wear by acting as “balls”, increasing the friction coefficient.
Increasing the displacement is conducive to the transverse expansion of wear, increasing the
actual contact area, increasing the interface micro-convex body, and enhancing wear chip
production. This results in an increase in tribological behaviors such as extrusion, plough-
ing, and grinding, leading to a higher friction coefficient. (2) Thermochemical factors: As
the load and displacement increased, more heat accumulated at the contact interface. This
softened the interface and reduced the shear strength of the material. At the contact inter-
face, an oxide film was generated and sintered loose debris formed into a third body layer
with a certain thickness, acting as a “cushion”. Thus, the interfacial roughness was reduced,
leading to a lower friction coefficient. Under variable load conditions, the thermochemical
factors significantly influenced the friction coefficients of GCr15/316L and GCr15/PC,
which decreased with increasing load. Under variable displacement conditions, the friction
coefficients of GCr15/316L and GCr15/PC were mainly influenced by mechanical factors
when the displacement was relatively small. However, with increasing displacement, the
influence of thermochemical factors gradually became more significant. However, the
influence of thermochemical factors was still limited compared with mechanical factors.
Eventually, the friction coefficients of GCr15/316L and GCr15/PC stopped increasing with
increasing displacement.

3.3. Morphology and Composition of Wear Marks

The wear marks of the AISI 316L steel presented as an irregular oval shape, as shown
in Figure 3a,c,e. With increasing load, these wear marks gradually became round. The
center areas of the wear marks showed serious adhesive wear, and localized peeling could
be observed. Due to the low hardness and poor bearing capacity of the AISI 316L steel,
adhesion and plastic deformation easily occurred in the wear marks. These wear marks
were rough and irregular, and the fretting was in the slip regime at this time. After LTPC,
the wear marks of the carburized AISI 316L steel showed a typical double-ring elliptic
shape (see Figure 3d,f). The centers of these wear marks exhibited stickiness and spalling,
the edges showed micro-sliding, parallel scratches were visible in the same direction as the
movement of the upper sample, and the fretting was in the partial slip regime [22]. The
carburized layer contained an Sc phase and high residual stress, and the surface hardness
and strength of the AISI 316L steel were significantly increased after carburization. This
reduced the adhesion effect and plastic deformation, and there was slight fretting wear.

A locally magnified view of the AISI 316L steel wear marks under a load of 30 N
showed blocky and laminar wear chips stacked because of stacking faults (see Figure 3a).
This is the third body layer. The edge of the abrasive layer was bright white, and this layer
was surrounded by clusters of sintered or scattered abrasive particles. The compacted third
body layer exhibited deformation and deep furrows in the same direction as the movement
of the GCr15 balls, indicating adhesive wear and abrasive wear. The wear marks of the
carburized layer partially consisted of the “scaly” third body layer formed by sintered
granular debris and scattered abrasive particles, which appeared as adhesive wear. The
local wear morphologies of the untreated AISI 316L steel and carburized layer under a load
of 50 N showed several small wear pits and a large number of main cracks on the compacted
surface (see Figure 3c,d). Around these main cracks, countless small micro-cracks sprouted
and expanded, and local fatigue spalling and wear pits were observed. The scattered
wear particles played a plowing role in the fretting wear, manifesting as adhesive wear,
abrasive wear, and fatigue delamination. Under a load of 70 N, the wear morphologies of
the AISI 316L steel and carburized layer showed a larger number of main cracks, and crack
formation changed from a disordered to ordered pattern (see Figure 3e,f). Stronger fatigue
wear could be observed: several parallel furrows and scattered abrasive particles were
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present on the chip layer, the surface of the wear marks showed glaze characteristics, and
there was serious plastic deformation. With increasing load, a large crack perpendicular to
the movement direction of the friction pair gradually formed on the surface of the abrasion
and was not worn away with increasing load. During the wear process, the wear rate
was slower than the crack propagation rate, and local fatigue dominated the competition
between local wear and fatigue [35,36]. Consequently, the wear mechanism was dominated
by fatigue wear. With the increasing normal load, the wear mechanism of the AISI 316L
steel changed from adhesive wear and abrasive wear to adhesive wear, abrasive wear, and
fatigue delamination, and there was serious plastic deformation. Meanwhile, the wear
mechanism of the carburized layer changed from adhesive wear to adhesive wear and
fatigue delamination, and the furrow effect was serious.

Under variable displacement conditions, the wear morphology of the AISI 316L steel
and carburized layer was elliptical, as shown in Figure 4. With increasing displacement, the
AISI 316L steel wear marks increased in area, and the central adhesion became more serious.
Meanwhile, the wear marks of the carburized layer showed a double-ring morphology
with increasing displacement. At high displacements, the fretting regime of GCr15/316L
was a slip regime, while that of GCr15/PC was a partial slip regime.

Under a displacement of 50 µm, a locally magnified view of the AISI 316L steel wear
marks showed the presence of “cloud-like” convex block wear chips. The AISI 316L steel
surface showed small and shallow wear pits and micro-cracks, while no obvious wear
could be observed in the carburized layer (see Figure 4a,b). Under a displacement of 75 µm,
the abrasive particles in the AISI 316L steel abrasive marks changed from a block to lamellar
morphology, and fine sintered abrasive particles and micro-cracks were observed on the
surface. Meanwhile, the carburized layer wear mark surface showed furrows, large wear
pits, and flat abrasive particles (see Figure 4c,d). Under a displacement of 100 µm, the wear
marks of the AISI 316L steel and the carburized layer were the third body layer composed
of flat compacted wear particles. The existence of micro-cracks indicates that the material
here will eventually be spalled (see Figure 4e,f). Because the friction pairs were always in
close and nearly static contact during fretting wear, the wear interface can easily undergo
serious plastic deformation due to the local high stress and rise in friction temperature. A
large number of adhesion points were formed between the friction pairs. These adhesion
points were then repeatedly pulled, sheared, broken, and compacted in the reciprocating
motion of the upper sample. This repetitive process led to the appearance of wear marks
such as furrows, fatigue delamination, material shedding, and wear pits. With increasing
displacement, the wear mechanisms of both the AISI 316L steel and the carburized layer
changed from adhesive wear to adhesive wear with slight fatigue delamination.

The worn-out surface showed two main forms of abrasive debris: (1) The wear
chips were sintered and compacted to form a block or lamellar third body layer, which
blocked the direct contact between friction pairs and acted like a “cushion” to slow down
wear. (2) As the third body scattered and was embedded in the cracks, furrows, and wear
pits, it acted like a “ball”, which aggravated the wear process. The normal force compacted
the hard-phase abrasive particles downward into the wear interface and increased the local
contact stress of the contact interface. When the abrasive particles were pressed down until
they reached a critical depth, the cracks began to grow and expand. There are two main
forms of cracks on the ground surface: (1) longitudinal cracks, which were perpendicular to
the direction of fretting wear and caused the initiation and propagation of micro-cracks, and
(2) transverse cracks, which extended from the bottom of the pressed particles to the surface
of the abrasion marks. When the transverse cracks converged and extended to the surface
of the wear marks, fatigue shedding and the formation of new wear chips occurred on
the surface. The upper specimen ball pushed the abrasive particles to plough (press in) or
scratch (not press in) the wear interface under the action of tangential forces, thus forming
furrows or scratches. This led to serious plastic deformation, which could be observed
as abrasive wear and fatigue delamination. The carburized layer had a high hardness, a
homogeneous structure, and good toughness. Thus, with increasing load and displacement,
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the carburized layer performed better and had a solid lubrication effect during the fretting
wear process. This reduced the adhesive wear and micro-crack formation compared to
the unmodified AISI 316L steel, slowing down the fretting wear. Consequently, while
the fretting regime of GCr15/316L was a slip regime, that of GCr15/PC was a partial
slip regime.
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The distributions of oxygen elements in the wear marks of the AISI 316L steel and
carburized layer under varying load and displacement conditions are shown in Figure 5.
Both the untreated AISI 316L steel and carburized layer showed significant oxygen accumu-
lation in the wear marks under varying load and displacement conditions. Thus, fretting
wear involves oxidizing wear.
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Under varying load and displacement conditions, the morphology of the wear marks
is determined by the competitive influence of mechanical and thermochemical factors.
When mechanical factors are dominant, fretting wear mainly involves plastic deformation,
adhesive wear, and fatigue. This leads to the formation of contact interface crystals with
high-density dislocations [37]. When thermochemical factors are dominant, the contact
interface generates heat that reaches “friction flashover temperature” during fretting wear,
leading to the occurrence of many heat-promoted interfacial chemical reactions. The micro-
convex body in close contact with the surface of the friction pairs is oxidized to form an
oxide film, which reduces the direct contact of friction pairs. Consequently, the friction
coefficient is reduced. As this oxide film is continually formed and destroyed in the middle
and late stages of wear, wear chips are formed at the contact interface, which aggravates
abrasive wear and oxidation wear. Thus, the friction coefficient is enhanced.

The abrasion morphology of the GCr15 ball under variable loads and displacements is
shown in Figure 6. Under different load and displacement conditions, the wear surface
area of the upper sample ball in GCr15/PC was smaller than that of the upper sample
ball in GCr15/316L. Thus, the wear degree of the upper sample ball was reduced due to
plasma carburization. With increasing load and displacement, the center of the GCr15
ball wear marks was depressed due to material spalling, and some central areas showed
circular bumps formed by debris accumulation. The edges of these wear marks showed
slight plastic upheaval, wear debris accumulation, and plastic deformation. The wear at
the center of the wear marks was more significant than that at the edge. This is potentially
because the wear chips generated in the central area cannot be easily discharged during
the ball–plane fretting wear process. Thus, these wear chips accumulate, resulting in a
varying load distribution on the contact surface. The large pressure applied to the center of
the wear chips leads to the destruction of the central area first. The accumulated debris
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particles also easily aggravate fretting wear, and the wear spreads from the center to the
edge of the wear chips.
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3.4. Wear Profile Analysis

The X-axis contour in the same direction as the wear and movement was selected
for characterization. The wear profiles of the AISI 316L steel and carburized layer under
different loads and displacements are shown in Figure 7. These wear profiles show wave
fluctuations, which occur because the GCr15 ball and AISI 316L steel are not ideal planes.
Thus, when the GCr15 ball and AISI 316L steel surfaces come into contact and fretting
wear occurs, higher micro-convex bodies come into contact first and are worn out, while
lower micro-convex bodies do not come into contact yet and are protected, resulting in
uneven wear [38]. During the reciprocating movement of the GCr15 ball, some of the steel
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material is pushed to the front end of the ball under the action of cutting and rolling. The
dislocation of internal material forms a micro-work hardening zone. When the GCr15
ball passes through this zone, slight wearing occurs in some areas and heavy wearing in
other areas. This is a cyclic process, leading to fluctuations in the wear profile. In this
study, under variable load and displacement conditions, the wear depth of GCr15/PC
was lower than that of GCr15/316L. The carburized layer had a wear depth of up to 8 µm,
and this layer was not completely worn through. Thus, the carburized layer provided
better protection than the AISI 316L steel surface. The three-dimensional topography of the
wear marks shows that the wear contour was higher than the base level. This indicates the
accumulation of wear chips inside the wear marks of the AISI 316L steel and carburized
layer. Thus, the adhesive wear and plastic deformation were serious.
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Figure 7. Wear profiles of the AISI 316L steel and carburized layer under loads of (a) 30 N, (b) 50 
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and (c) 70 N and displacements of (d) 50 µm, (e) 75 µm, and (f) 100 µm.

Under variable load conditions, the wear profile of GCr15/316L changed from W-shaped
to V-shaped. In contrast, the wear profile of GCr15/PC changed to a W-V-U-type profile.
Under variable displacement conditions, the wear profile of GCr15/316L changed to a V-M-
W-type profile, while that of GCr15/PC changed to a V-W-M-type profile.

When bidirectional adhesive wear occurred in the friction pairs, the wear width
was significantly smaller than the wear depth, and the wear profile showed a V shape.
Point contact was observed between the upper and lower samples, and the wear marks
tended to rapidly expand in the depth direction. During the wear process, the GCr15 ball
continuously ploughed in the transverse and depth directions, the material fell off in a
layer-by-layer manner, the width of the base continuously expanded to form a U shape,
the point contact of the upper and lower samples changed to approximate surface contact,
and the bottom of the wear mark became smoother. When the center of the abrasion
exhibited a more significant degree of adhesive wear than the edge, material tearing and
spalling occurred at the edge before the center. Consequently, a W-shaped wear profile was
obtained. Under the heat generated by friction and the reciprocating motion of the upper
sample, the W-shaped wear profile evolved into an M-shaped profile when significant
debris accumulation occurred at the edge.
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3.5. Wear Rate and Wear Volume Analysis

The wear volume and wear rate were used to evaluate the wear resistance of the
carburized layer. The wear rate K (mm3·(N·m)−1) can be calculated as follows [39]:

K =
V

4NDF
(1)

where V is the wear volume (mm3), N is the number of cycles, D is the displacement (m),
and F is the normal load (N).

The wear volumes and wear rates of GCr15/316L and GCr15/PC under variable
load and displacement conditions are displayed in Figure 8. As shown in Figure 8a, the
wear volume and wear rate of GCr15/316L and GCr15/PC decreased with increasing load.
Several factors influenced this trend. (1) With increasing load, the frictional heat and stress
at the wear interface increased and continuously accumulated. This provided the contact
surface with a higher activation energy. The wear surface underwent a frictional glazing
effect under the combined action of heat and chemical reactions, leading to the formation
of a glazing film. This film weakened the wear. A greater load leads to more significant
glazing on the wear surface and a thicker glazing film [40,41]. (2) Work hardening occurred
on the wear surface of the matrix under severe mechanical catalysis, and the concentration
of residual stress at the surface increased the hardness and mechanical strength of the
contact surface. Thus, fretting wear damage to the matrix was reduced. (3) When the
normal load increased, some of the third body layer was further refined and transformed
into amorphous products (which are highly brittle) and spalled to form abrasive chips
during wear. The formation of these abrasive chips accelerated the oxidation of the wear
interface, and the chips played a lubricating role [42–44]. Thus, the wear rate and wear
volume decreased with increasing normal load. GCr15/316L and GCr15/PC exhibited
their lowest wear volumes and wear rates under a load of 70 N.
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The wear volume and wear rate of GCr15/316L and GCr15/PC increased with increas-
ing displacement, as shown in Figure 8b. As the actual contact area of the upper and lower
samples increased with increasing displacement, the transverse wear was enhanced and
there was serious material damage. In contrast, under small displacements, more abrasive
particles remained in the contact area to form the third body layer, which reduced direct
contact and friction between the upper and lower samples. Thus, the load distribution
on the contact interface was more uniform under small displacements. This led to a low
wear rate and wear volume. With increasing displacement, the abrasive particles were
more easily discharged from the contact area, resulting in direct contact between friction
pairs and serious wear damage. GCr15/316L and GCr15/PC exhibited their highest wear
volumes and wear rates under a displacement of 100 µm.
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The wear volume and wear rate of GCr15/PC under variable load and displacement
conditions were significantly lower than those of GCr15/316L. As shown in Figure 7, the
maximum wear depth of the carburized layer was only 8 µm and it was not completely
worn through. This indicates that the carburized layer has good wear resistance and
protects the AISI 316L steel. The single Sc phase of the carburized layer reduced plastic
deformation during fretting wear, and the surface of this layer did not easily form adhesion
points. Moreover, the carburized layer had a uniform and dense structure, and there were
no obvious defects such as holes or cracks. This improved the adhesion resistance of the
surface and the ability of the carburized layer to resist elastoplastic deformation. Therefore,
the presence of the carburized layer leads to improved anti-fretting wear performance and
reduces wear, spalling, and cutting on the AISI 316L steel surface.

4. Discussion
4.1. Fretting Wear Process Analysis

The wear process of GCr15/PC and GCr15/316L can be divided into three stages, as
shown in Figure 9. (1) Initial stage I: The GCr15 ball forms a micro-convex contact point
with the carburized layer and AISI 316L steel. The contact mode is sphere–micro-convex
contact, and the maximum contact stress is experienced at the initial moment of wear.
(2) Wear stage II: As wear continues, the micro-convex body on the surface of the upper
and lower samples is worn out, and the wear contact interface begins to produce wear
chips. Acting as the third body, these wear chips gradually participate in the wear process,
resulting in the formation of damage morphologies such as adhesion, cracks, scratches,
and small wear pits. At this time, three-body contact exists between the GCr15 ball wear
micro-plane, the carburized layer (or AISI 316L steel) concave surface, and the wear chips.
The roughness of the micro-convex body is reduced, contact stress is reduced, and the wear
chips are filled and compacted to form a cabochon–plane contact. (3) Stability stage III: In
the middle–late stages of wear, the contact surface formed after the GCr15 ball wear process
tends to be flat or concave, and the micro-convex body completely disappears. Thus, a
stable chip layer (the third body layer) is formed. The state of the wear interface remains
relatively stable, contact stress remains constant, and the contact mode is plane–plane
contact or concave plane–plane contact. In this stage, damage morphologies such as severe
adhesion, furrows, fatigue peeling, and large wear craters are formed.
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(b) wear stage, and (c) stability stage.

4.2. Cutting Plasticity Ratio Analysis

The cutting plastic ratio (f cp) was used to quantitatively analyze the proportion of
micro-cutting and micro-ploughing in material deformation. To calculate f cp, the wear
contours were simplified, as shown in Figure 10a, according to [45]. The formula used to
calculate f cp is as follows:

fcp =
A2 − A1

A2
(2)

where A1 is the cross-sectional area of the material build-up to the edge of the wear mark
(mm2) and A2 is the cross-sectional area of the wear mark (mm2).
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Figure 10. (a) Simplified wear contours and (b) cutting plasticity ratios of AISI 316L steel and
carburized layer.

As shown in Figure 10b, the f cp values of GCr15/316L under variable load conditions
were all less than 0, indicating that the adhesion effect had a dominant influence on
material damage, while micro-cutting (ploughing) only had a slight effect. The f cp values
of GCr15/PC were greater than 0, indicating that the micro-cutting (ploughing) effect was
more significant. Thus, the carburized layer reduced the degree of adhesive wear in the
AISI 316L steel under varying load conditions. Under variable displacement conditions, the
f cp values of GCr15/316L and GCr15/PC were greater than 0 when the displacement was
50 µm and less than 0 under other displacements. This demonstrates that the adhesion effect
had a dominant influence on material damage under variable displacement conditions. The
load influenced the wear mechanism of both untreated AISI 316L steel and the carburized
layer more significantly than displacement. In combination with the local SEM images of
the wear marks shown in Figures 3 and 4, it can be seen that the material can be cut off via
micro-cutting to form wear chips. Through the interaction of ball migration, tile laying,
compaction, and high-temperature sintering, the morphology of the wear marks shows one
or several kinds of adhesion, wear particles, and a fatigue layer. Micro-ploughing forms
furrow or groove morphologies, and the wear chips are deposited at the edge of the wear
mark together with the sample via plastic upheaval. The adhesion effect leads to adhesion
wear and plastic upheaval.

4.3. Frictional Dissipation Energy Analysis

The frictional dissipation energy coefficient was used to evaluate the stability of the
AISI 316L steel fretting wear process before and after plasma carburization. The frictional
dissipation energy Ed (J) can be represented as

Ed = ∑i=N
i=1 4µFiDi (3)

The frictional dissipation energy coefficient αe (mm2·J−1) can be calculated as follows [46]:

αe =
V
Ed

(4)

where V is the wear volume (mm3), N is the number of cycles, Di is the displacement (m),
Fi is the normal load (N), and µ is the friction coefficient.

The frictional dissipative energy and friction dissipation energy coefficients of GCr15/316L
and GCr15/PC under different working conditions are shown in Figure 11. The frictional
dissipation energy coefficients of GCr15/PC under varying load and displacement conditions
were lower than those of GCr15/316L, indicating that LTPC can improve the stability of the
AISI 316L steel fretting wear process.
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With increasing load, the frictional dissipation energy coefficients of GCr15/316L
and GCr15/PC decreased, and the fretting wear processes of GCr15/316L and GCr15/PC
gradually became stable. Under a small load, large hard-phase abrasive particles were
generated at the wear interface, and the roughness of the contact interface of the friction
pair was relatively high. This means that the friction pairs had high frictional dissipation
energy. With increasing load, the wear chips were refined and quickly discharged from the
contact area, and two-body wear gradually transformed into three-body wear. A dynamic
balance was achieved between the generation and discharge of wear chips, the contact
interface became relatively smooth, and the number of micro-convex bodies decreased.
Material loss at the contact interface mainly occurred via shearing. Due to the plastic
stability of the material at this point, the wear interface tended to be stable. Thus, the
frictional dissipation energy coefficient showed a downward trend.

Under variable displacement conditions, the frictional dissipation energy coefficient
of GCr15/316L continually increased, while the frictional dissipation energy coefficient of
GCr15/PC first decreased and then increased. Both GCr15/316L and GCr15/PC showed
unstable fretting wear processes. Due to the low hardness of the AISI 316L steel, adhesion
easily occurred during wear. With increasing displacement, the actual contact area of the up-
per and lower samples increased, transverse wear intensified, the material damage became
more serious, peeling and micro-cracks appeared, the state of the wear interface became
unstable, and the frictional dissipation energy of GCr15/316L increased. In contrast, the
high hardness and toughness of the carburized layer meant that GCr15/PC only exhibited
slight interfacial fretting damage under small displacements. The elastic deformation of
the friction pairs dominated the relative motion of fretting wear, leading to a low frictional
dissipation energy coefficient. When displacement increased, local material spalling and
micro-cracks appeared in the wear marks. Wear and local fatigue were competitive and
dynamic processes at this time. During the fretting wear process, some energy was ab-
sorbed by the initiation and expansion of micro-cracks, and the frictional dissipation energy
coefficient decreased. Under a large displacement, the fretting damage of GCr15/PC was
further aggravated, and the presence of a large number of hard-phase wear chips on the
contact surface led to the violent and disorderly vibration of the wear interface during
fretting wear. This caused high levels of frictional energy dissipation during fretting wear,
and the frictional dissipation energy coefficient increased [7].

5. Conclusions

In this work, the effect of double-glow low-temperature plasma carburization on the
fretting wear behavior of 316L austenitic stainless steel under varying load and displace-
ment conditions was investigated. The untreated and carburized samples were examined
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with SRV-V, SEM, XRD, and 3D confocal laser microscopy. The results are summarized
as follows:

1. The carburized layer was composed of a single Sc phase, which exhibited good
uniformity and continuity. This layer was metallurgically combined with the matrix.
Plasma carburization increased the surface hardness of the AISI 316L steel by a factor
of approximately four.

2. Under varying load conditions, the wear mechanism of GCr15/316L changed from
adhesive wear and abrasive wear to adhesive wear, fatigue peeling, and abrasive
wear. The wear mechanism of GCr15/PC changed from adhesive wear to adhesive
wear and fatigue delamination, accompanied by a furrowing effect. Under variable
displacement conditions, both GCr15/316L and GCr15/PC mainly exhibited adhesive
wear and fatigue peeling. Oxygen accumulated in the wear marks of both the AISI
316L steel and the carburized layer, indicating oxidative wear.

3. At higher loads and displacements, the frictional dissipation energy coefficient and
wear rate of GCr15/PC were lower than those of GCr15/316L. Moreover, the carbur-
ized layer showed better fretting wear resistance. Plasma carburization improved the
stability of the AISI 316L steel fretting wear process and changed the fretting regime
of the AISI 316L steel.

4. The wear depth of GCr15/PC under variable load and displacement conditions was
lower than that of GCr15/316L, showing that the carburized layer can effectively pro-
tect AISI 316L steel. Under variable load conditions, the wear profile of GCr15/316L
changed from W-shaped to V-shaped, while that of GCr15/PC changed to a W-V-U
profile. Under variable displacement conditions, the wear profile of GCr15/316L
changed to a V-M-W profile, while that of GCr15/PC changed to a V-W-M profile.

5. This study did not provide a more in-depth discussion on the existence of interfacial
abrasive debris and its influence on fretting wear behavior and did not analyze the
fretting wear mechanism of the subsurface under variable loads and displacements.
This study has shown that the carburized layer with high surface hardness, as well
as superior resistance to fretting wear, along with a reduction in wear rate and fric-
tional dissipation energy coefficient, can all be considered as anti-wearing coatings of
ball valves.
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