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Abstract: Wind turbines in cold and humid regions face significant icing challenges. Heating is
considered an efficient strategy to prevent ice accretion over the turbine’s blade surface. An ice
protection system is required to minimize freezing of the runback water at the back of the blade and
the melting state of the ice on the blade; the law of re-freezing of the runback water is necessary
for the design of wind turbine de-icing systems. In this paper, a wind tunnel test was conducted
to investigate the de-icing process of a static heated blade under various rime icing conditions. Ice
shapes of different thicknesses were obtained by spraying water at 5 m/s, 10 m/s, and 15 m/s. The
spray system was turned off and different heating fluxes were applied to heat the blade. The de-icing
state and total energy consumption were explored. When de-icing occurred in a short freezing time,
the ice layer became thin, and runback water flowed out (pattern I). With an increase in freezing
time at a low wind speed, the melting ice induced by the dominant action of inertial force moved
backward due to the reduction in adhesion between the ice and blade surface (pattern II). As wind
speed increased, it exhibited various de-icing states, including refreezing at the trailing edge (pattern
III) and ice shedding (pattern IV). The total energy consumption of ice melting decreased as the heat
flux increased and the ice melting time shortened. At 5 m/s, when the heat flux was q = 14 kW/m2,
the energy consumption at EA at tδ = 1 min, 5 min, and 7 min were 0.33 kJ, 0.55 kJ, and 0.61 kJ,
respectively. At 10 m/s, when the heat flux was q = 14 kW/m2, the energy consumption at EA at
tδ = 1 min, 3 min, and 5 min were 0.77 kJ, 0.81 kJ, and 0.80 kJ, respectively. Excessive heat flow density
increased the risk of the return water freezing; thus, the reference de-icing heat fluxes of 5 m/s and
10 m/s were 10 kW/m2 and 12 kW/m2, respectively. This paper provides an effective reference for
wind turbine de-icing.

Keywords: wind turbine blade; rime ice; ice protection technology; electro-thermal heating; blade
surface de-icing

1. Introduction

Wind energy is a renewable energy source that is being actively developed in the world.
The development and use of wind energy have far-reaching implications for optimizing
the traditional energy structure and reducing global carbon emissions. According to the
“Statistical Review of World Energy” published by British Petroleum Global, global wind
power installation in 2021 added 93.1 GW to the cumulative installed capacity of 824.9 GW,
representing an increase of 13% compared to the previous year [1]. In recent years, wind
power generation in cold regions has been 1% higher than that in other regions due to
higher air density [2,3]. Installed capacity has also been rising. By the end of 2015, the
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global wind power generation in cold climates was approximately 127 GW. However, wind
turbines in cold regions suffer from severe icing problems, with 72%, 94%, and 19% of
wind turbines affected by icing events in North America, Europe, and Asia, respectively [4].
Ice accretion on wind turbine blades can change their aerodynamic shape, affecting their
aerodynamic characteristics and causing power losses in wind turbines [5–8]. Ice accretion
on the blades affects their load distribution and shortens the wind turbine’s life [9]. The
wind turbines usually stop working during severe ice accretion to avoid mechanical damage.
The downtime may last days or weeks, causing economic losses to wind farm operators [10].
For wind turbines in more extreme icing conditions, the estimated loss of annual total
energy production (AEP) is about 17% [11]. Ice accretion on the blades can also cause some
safety hazards [12]. With the growing icing problem of wind turbines in cold climates, there
is an urgent need to develop innovative solutions to mitigate wind turbine blade icing.

Currently, icing mitigation methods for wind turbine blades are generally divided
into anti-icing and de-icing systems [13]. Anti-icing prevents ice from being generated
on the blades’ surfaces. De-icing refers to removing ice accretion until it reaches a certain
amount. Ice mitigation methods are divided into passive and active methods, based on
whether additional energy is required [14]. The passive method requires no additional
energy consumption. It mainly employs coatings with anti-icing characteristics [15–19]
or chemical solutions that lower the freezing point, changing the blade surface properties
to mitigate ice accretion [20]. However, the passive method does not achieve the desired
de-icing effect when the ice has already adhered to the surface.

Active methods mainly include mechanical actuation and heating methods. Mechan-
ical actuation methods mainly use force to break the adhesion between the ice and the
component’s surface. Consequently, the ice structure is destroyed by vibration or motion,
which include expansion tube methods (e.g., the inflatable belt and airbag methods), electri-
cal pulse methods [21], and ultrasonic methods [22–24]. Heating methods, such as hot air,
microwave, and electro-thermal heating, are employed to maintain the temperature above
0 ◦C for anti/de-icing. Among the various active and passive anti-/de-icing methods, the
heating method is considered an efficient strategy for preventing ice accretion over the
turbine’s blade surface.

In addition, ice protection systems are required to minimize the runback water freezing
at the rear of the blade. During anti-icing, the ice interface generated by the impact of
evaporated supercooled water droplets can be used to prevent the runback water from
refreezing. The evaporation mode consumes a lot of energy and is not suitable for wind
turbines. De-icing systems have lower power costs than anti-icing systems because they
must protect icing areas only within ice impact limits. In addition, because the icing acts
as an insulator, the de-icing system is not subjected to the high level of convective cooling
encountered by anti-icing systems. However, the de-icing state is relatively complex and
affected by ambient temperature, wind speed, ice shape, ice thickness, heating power, and
the centrifugal force generated by the blade’s rotation. The ambient conditions affect the
efficiency of ice mitigation techniques [25]. Shu et al. [26,27] proposed a numerical method
to determine the critical de-icing power through fluid and temperature fields. Xu et al. [28]
numerically investigated the anti-icing energy demand of a blade airfoil for wind turbines
under various icing conditions. The authors found that the maximum heat flux demanded
for anti-icing increases by 2717 W/m2 and 745 W/m2 for 253 K and 268 K, respectively,
as the wind speed rises (6–14 m/s). Roberge et al. [29] explored the relationship between
a wind turbine’s standstill time, wind speed, and ambient temperature at a wind farm
in eastern Canada. The authors developed a method to indicate whether a certain ice
protection system can be efficient based on wind speed and ambient temperature. Xu
et al. [30] conducted static and rotational experiments on a surface-mounted continuous
laminate model blade made of carbon fiber. The authors measured the surface temperature
of the electrically heated model blade under various conditions of input voltages, rotational
speeds, and air temperatures. Stoyanov et al. [31] proposed a method that considers
accumulated ice mass, net energy losses, and financial breakeven points to compare and
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evaluate two ice mitigation strategies: tip-speed ratio derating and electro-thermal anti-
icing. The finding revealed that derating reduced the accumulated ice mass and daily power
loss by up to 23% and 37% for a 1 h extreme icing event. Anti-icing was identified as the
preferred strategy when ambient temperatures were above −5 ◦C, and the system cost was
no higher than 2% of the turbine’s capital. Gezt et al. [32] designed an efficient anti-icing
system for wind turbines by combining modeling and experimental testing. Experimental
tests showed that accumulated ice needs to reach a certain minimum thickness to break
away at a given available power. The results indicated that de-icing a typical 1.5 MW
wind turbine requires four sections along the blade span, each covering 17.8% of the span,
providing a power density of 2.48 W/in2 (0.385 W/cm2). Hann et al. [33] conducted
experiments to show that the energy efficiency of the electro-thermal anti-icing system for
fixed-wing UAVs depends on the selected IPS method. In order to determine the most
energy-efficient operating mode, the parameters of de-icing times were studied. The results
show that systems with longer cycle durations led to higher efficiencies. Additionally,
de-icing with barriers was better than anti-icing and de-icing systems without barriers.
Fakorede et al. [34] carried out anti-icing tests on the NACA 0012 airfoil with heaters at
the International Wind Tunnel Laboratory, characterized the relationship between anti-
icing energy and ambient wind speed, and used the law to estimate the anti-icing energy
consumption of full-scale wind turbines under certain assumptions.

The above studies have conducted fine explorations of ice protection systems. How-
ever, in de-icing systems, the melting state of ice on the blade and re-freezing of the runback
water are very important aspects in the design of wind turbine de-icing systems. The
de-icing state plays an important role in assessing the thermal efficiency during thermal de-
icing of wind turbine blades. Moreover, the effects of different parameters on the de-icing
state have not been well described.

In this paper, the de-icing process of rime ice by electric heating under −16 ◦C was
studied. Different heat fluxes were applied under three wind speeds of 5 m/s, 10 m/s and
15 m/s with different ice thicknesses, and the de-icing state and freezing of runback water
were observed, with the aim of exploring the laws of the de-icing process and provide a
basic theory for the design of a heated de-icing system. The main contributions of this
paper are as follows:

(a) the de-icing process on the blade section with electro-thermal elements in rime ice con-
ditions was characterized under different wind speed, input power, and ice thickness
conditions;

(b) the surface temperature during the de-icing process was obtained under different
conditions;

(c) the energy consumption changes were observed under the same degree of ice melting
under different heat fluxes.

2. Experimental Method
2.1. Setup

The experimental study was conducted in the reflux icing wind tunnel at the Wind
Energy Laboratory of Northeast Agricultural University. As shown in Figure 1, the icing
wind tunnel comprises a cooling section, centrifugal fan, spray system, and test section. The
cross-section of the wind tunnel test section is a rectangle measuring 250 mm × 250 mm.
The evaporator was installed in the cooling section to cool the air, and the nozzle was
installed in the stable section to eject tiny droplets. These droplets formed subcooled
droplets during the flight and were impinged with the test model in the test section. The
designed maximum wind speed was 20 m/s. The ambient temperature was −20–0 ◦C,
the liquid water content (LWC) was 0.5–1.5 g/m3, and the supercooled water droplets’
medium volume diameter (MVD) was 66 µm.
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Figure 1. Schematic of reflux icing wind tunnel.

Aluminum was selected as the blade material, due to its known thermophysical
parameters, to explore the heat transfer performance in de-icing. A test blade section
with an NACA0018 airfoil, a chord of 100 mm, and a thickness of 20 mm was used. The
first 1/3 segment of the model was hollow, with a wall thickness of 2 mm. The electro-
thermal elements were attached to the inside wall of the blade. Then, the gap was filled
with thermal insulation material to prevent heat transfer to the inside, and the model
was installed horizontally in the wind tunnel. The commercially available polyimide
electro-thermal elements, with a mature process, were chosen as the experimental heating
elements. These elements were wrapped with polyimide material, good insulation in the
outer layer, and metal alloy as the heating wire. The size of the electro-thermal elements
is 49 mm × 19 mm, and the rated voltage and Powert were 12 V and 24 W, respectively.
Figure 2 and Table 1 shows the volt-ampere characteristics and specific parameters of the
electro-thermal elements, respectively. Ie and Ue were the current and voltage of electro-
thermal elements respectively. In Figure 2, it can be seen that the volt-ampere characteristic
curve of the heating element is linear, indicating that the resistance of the conductor is
constant and does not change with the voltage or current. As the voltage increases, the
current also increases correspondingly, but the proportional relationship between them
remains constant. The heating element is a linear element. A DC-regulated power supply
provides the power, while the voltage and current are used to calculate the power during
the test.

Table 1. Electro-thermal element parameters.

Outer Layer
Material Heating Wires Dimension Rated Voltage Rated Power

Polyimide Metal alloy 49 mm × 19 mm 12 V 20 W
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Figure 2. Volt-ampere characteristics of electro-thermal element.

2.2. Data Acquisition

Micro-holes of 1 mm diameter were drilled in the wall (about 0.5 mm from the surface)
to obtain the temperature of the blade surface during de-icing without damaging its
aerodynamic characteristics. The distribution positions of micro-holes A, B, C, D and E
were shown in Figure 3. In addition, the K-type thermocouples were welded into the holes.
The hole voids were filled with thermal conductive silica gel to reduce the effect of air
thermal resistance on heat transfer.
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2.3. Experimental Procedure

The test temperature was set at −16 ◦C to investigate the de-icing process of the blade
under rime ice conditions. The heat flux q, which was set by adjusting the supply voltage,
represents the power per unit area of the electro-thermal elements. The temperature and
wind speed were first set, and the wind tunnel reached a stable state after running for some
time. Then, the spray system was turned on to cause icing on the leading blade edge; the
icing thickness was controlled by adjusting the spray time. The spray system was turned
off during de-icing because the effect of supercooled water droplets in the atmosphere
on the de-icing process was neglected. When the temperature reached a stable state, the
heating system was turned on for the de-icing.

The heat flux was set to an integer value in the range of 1 kW/m2 to 10 kW/m2

during de-icing, and the surface temperature of the blade was obtained. The heat flux
maintaining the blade surface temperature above 0 ◦C was selected as the experimental
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parameter. The mass of ice accumulation on the blade surface was controlled by controlling
the spraying time. The amount of ice accumulated simultaneously at a wind speed of
5 m/s was lower than at other wind speeds. Therefore, the spraying time at 5 m/s wind
speed was increased. The melting ice shapes, and surface temperature variations, were
recorded for different ice thicknesses. The de-icing heat flux, the incoming wind speed,
and the variations were studied, as shown in Table 2. The shape of the ice and its accretion
rates depend on the atmospheric temperature, liquid water content, impact velocity, water
droplet size and accretion time. The test was conducted when rime ice formed on the
blade surface at −16 ◦C. According to the working wind speed range of the wind turbine,
which is 3–20 m/s, three wind speeds of 5 m/s, 10 m/s, and 15 m/s were selected as the
test conditions.

Table 2. Test conditions.

Wind Tunnel
Temperature

Tc/(◦C)

LWC
(g/m3)

MVD
(µm)

Wind Speed
U/(m/s)

Time of Ice Accretion
tδ/(min)

Heat Flux
q/(kW/m2)

−16 0.5–1.5 66

5
1 6/7/8/9/10/12/14
5 6/7/8/9/10/12/14
7 6/7/8/9/10/12/14

10
1 8/9/10/11/12/14/16
3 8/9/10/11/12/14/16
5 8/9/10/11/12/14/16

15
1 10/11/12/13/14/16/18
3 10/11/12/13/14/16/18
5 10/11/12/13/14/16/18

2.4. Uncertainty Analysis

In this study, the accuracy of the K-type thermocouple was ±0.5 ◦C. The uncertainties
of the voltage and current were ±0.1 V and ±0.01 A, respectively. The uncertainty of the
power may be calculated by [35]:

σp = ±

√(
∂Q
∂V

σV

)2
+

(
∂Q
∂I

σI

)2
(1)

Based on Equation (1), the obtained uncertainties of the power measurements are
±0.108–0.187 W for the heat flux of 6–18 kW/m2.

3. Results and Discussion
3.1. Ice-Melting Shapes under Different Conditions

Figure 4 shows the photos and shapes of transient ice accretion on the blade at the
different wind speeds in the initial state. The ice profile curve of the blade’s leading edge
develops from circular to angular from 5 m/s to 15 m/s. At 5 m/s, the overall ice accretion
color is white. When the wind speed increases to 10 m/s and 15 m/s, the ice accretion near
the blades is white, and the ice accretion leading edge is opaque. Under the same spraying
time conditions, ice accretion is lowest at a wind speed of 5 m/s and highest at a wind
speed of 10 m/s.

As shown in Figure 5, the ice distribution characteristics of the blade surface were
quantitatively analyzed during de-icing, where xi was defined as the absolute value of the
horizontal coordinate of any point on the airfoil surface. The maximum thickness of the ice
sheet was denoted by Himax. Parameter xi of the intersection between the ice profile and
the wing surface is the runback water’s maximum overflow distance (lmax). As shown in
Figure 6, the relationship between the icing thickness Hi and the time is approximately
linear under different wind speeds, in which the growth rate of 15 m/s was less than that
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of 10 m/s. This may be due to the higher wind speed at 15 m/s; some of the droplets were
carried away by the air flow and did not adhere to the blade’s surface.
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Different de-icing states were obtained by applying different heat fluxes to the iced
blades with different wind speeds and icing times. The de-icing states were divided into
four categories.

The de-icing patterns are shown in Figure 8. When de-icing is performed over a
short freezing time (tδ = 1 min), the runback water flows along the airfoil surface due to
the inertial force. The runback water drips as droplets (Figure 9a) at low wind speeds
(U = 5 m/s), forms inclined transparent icicles, and then falls (Figure 9b) at medium wind
speeds (U = 10 m/s) and freezes during the flow. Ice accumulation forms, adhering to the
blade leading edge (Figure 9c) at high wind speeds (U = 15 m/s). When de-icing occurs in a
short freezing time, the ice layer becomes thin, and the runback water flows out (pattern I).
With an increase in the freezing time at a low wind speed (5 m/s), the melting ice induced
by the dominant action of inertial force moves backward due to the reduction in adhesion
between the ice and the blade’s surface (pattern II). At medium wind speeds (U = 10 m/s),
a thin water film is formed between the ice accretion and the blade, leading to ice shedding
due to decreased adhesion (pattern IV). At a high wind speed (U = 15 m/s), the runback
water flows to the blade’s trailing edge under the action of inertia, freezing to form ice again
(pattern III). The de-icing patterns under different test conditions are shown in Table 3.
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Table 3. De-icing patterns under different test conditions (“×” means that the ice accumulation has
not obviously changed).

Wind Speed U/(m/s) Time of Ice Accretion
tδ/(min) Heat Flux q/(kW/m2) De-Icing Pattern

5

1

6 I
7 I
8 I
9 I
10 I
12 I
14 I

3

6 II
7 II
8 II
9 II
10 II
12 II
14 II

7

6 II
7 II
8 II
9 II
10 II
12 II
14 II

10

1

8 I
9 I
10 I
11 I
12 I
14 I
16 I

3

8 ×
9 I
10 II
11 IV
12 IV
14 IV
16 IV

5

8 ×
9 IV
10 IV
11 IV
12 IV
14 IV
16 IV
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Table 3. Cont.

Wind Speed U/(m/s) Time of Ice Accretion
tδ/(min) Heat Flux q/(kW/m2) De-Icing Pattern

15

1

10 I
11 I
12 I
13 I
14 I
16 I
18 I

3

10 I
11 I
12 I
13 IV
14 III
16 III
18 III

5

10 ×
11 ×
12 ×
13 IV
14 IV
16 IV
18 IV

The four modes are described in detail below.
Pattern I (Figure 9): the runback water freezes on the blade’s leading edge. This

de-icing pattern appeared at three wind speeds at the short freezing time (1 min). The
ice accumulation always adheres to the airfoil’s leading edge. The runback water flows
out and backward along the airfoil surface under the wind speed. The de-icing effect is
improved at low and medium wind speeds. However, at high wind speeds, ice accretion
formed by the runback water will affect the aerodynamic characteristics of the blade again.

Pattern II (Figure 10): the runback water moves with the melting ice. This pattern
is mainly concentrated at tδ = 3–7 min at 5 m/s as the ice accretion thickness reaches a
certain amount. Once the ice accumulation near the blade surface melts, the runback water
penetrates the ice layer, forming a semi-melting state of ice accretion that slides backward
along the airfoil surface caused by the inertial force.

Three phenomena are found as follows. The water moves to the unheated area to
be frozen again, as shown in Figure 10a; ice sheds due to the effect of the wind speed, as
shown in Figure 10b; the water flows out to form a water column under the blade due to
the melting ice, as shown in Figure 10c.

Pattern III (Figure 11): the runback water freezes to the blade’s trailing edge. This
pattern appears under q = 14–18 kW/m2, tδ = 3 min, and U = 15 m/s. A part of the water
flows to the trailing edge of the blade (t = 50 s), and a part of the ice sheds under the wind
speed due to the melting ice. The water forms quickly at the high heat flux and moves
backward at a high wind speed, leading to secondary freezing.

Pattern IV (Figure 12): no runback water is formed. This pattern appears under
U = 10 m/s, tδ = 3–5 min or U = 15 m/s, tδ = 5 min. No visible water flows once the ice
layer near the blade surface melts. The ice sheds as a whole due to the inertial force.
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Figure 11. Pattern III during the electro-thermal de-icing process. Tc = −16 ◦C U = 15 m/s
q = 18 kW/m2 tδ = 3 min.
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Figure 12. Pattern IV during the electro-thermal de-icing process. Tc = −16 ◦C U = 10 m/s
q = 9 kW/m2 tδ = 3 min.

Figure 13 shows the flow distance of runback water in pattern I. The flow distance
increases with wind speed. The flow distance is not noticeably affected by the heat flux at
5 m/s, but increases with the heat flux at 10 m/s and 15 m/s. In summary, the thermal ice
protection system increases energy consumption for thin ice accretion and does not achieve
the desired result.

Figure 14 shows the profiles and photos of ice accretion in pattern II. When the ice
starts to melt, the ice thickness increases with melting degrees. Moreover, the ice moves to
the lower side of the blade as a whole, and the contact area between the ice and the blade’s
surface gradually decreases. The areas with less ice are the first to melt completely. After
moving to a position below the blade, the melting ice does not move backward, and the
sliding position of the melting ice is unaffected by the amount of ice. A water column is
formed under the accumulated ice with the outflow of the runback water.
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Figure 15. Time of ice accumulation shedding in pattern IV. 
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Figure 8 demonstrates that pattern IV is mainly generated at 10 m/s and 15 m/s.
Figure 15 shows the change of the ice accretion shedding time at different heat fluxes
in pattern IV. The ice shedding time decreases with increased heat flux under various
conditions. At 10 m/s, the shedding time of thicker ice is shorter due to the greater gravity
of those with larger ice volumes under the same wind speed. Ice accretion takes longer
to shed with increasing wind speeds when the ice accretion time is the same. The reason
for this may be that the lower airspeeds lead to lower heat convection and thus more
efficient heating from the IPS, and the thin ice layer and large force effect are offset by high
heat convection.
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3.2. Temperature and Total Energy Consumption during De-Icing

As shown in Figure 16, the blade’s surface point A temperatures are obtained for the
different initial icing times during de-icing under U = 5 m/s, Tc = −16 ◦C, and q = 7 kW/m2.
Point A of the blade is the leading-edge point of the airfoil. When the angle of attack is 0◦,
the surface of point A is attached by ice accumulation, and the change in ice accumulation
will cause the temperature of point A to change. After heating, the temperature of the
heating film is transmitted to point A, causing the temperature of point A to begin to rise.
Due to the influence of convection, the rising rate gradually decreases. After reaching the
ice freezing point of 0 ◦C, part of the heat flux acts as latent heat to melt the ice, and the
temperature reaches a plateau. It can be seen from the figure that the temperature growth
rate at different ice thicknesses for U = 0 m/s is higher than U = 5 m/s. The temperature
increases once the heating is started. After reaching 0 ◦C, the temperature rate decreases as
the ice melts. The rate increases again after some time at 0 ◦C. The rate of the temperature
rise decreases with an increase in ice accumulation; the greater the ice accumulation, the
more time it takes for the temperature to reach 0 ◦C. The time it takes to reach 0 ◦C at
tδ = 1 min, tδ = 3 min, and tδ = 5 min is 64 s, 76 s, and 104 s, respectively. Lastly, the retention
times of the temperature curve at 0 ◦C are 53 s, 49 s, and 70 s, respectively.
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Figure 16. Temperatures of the blade surface point A for the different times of ice accretion during
the de-icing.

As shown in Figure 17, the temperatures of the blade surface at point A at the different
heat flux and wind speeds are provided. The higher the heat flux, the greater the tempera-
ture rising rate. The results show that the critical heat flux for de-icing is when the heat flux
makes the blade surface reach 0 ◦C. The heat flux is too low for de-icing when it cannot
make the blade temperature reach 0 ◦C. If the temperature reaches above 0 ◦C, the rising
rate decreases and continues to increase. Ice accumulation on the blade surface during this
period starts to melt, and a gap appears between the ice and the blade surface. Due to the
influence of convection, the rising rate gradually decreases. After reaching the ice freezing
point of 0 ◦C, part of the heat flux acts as latent heat to melt the ice, and the temperature
reaches a plateau. As a result of heat loss due to convection, the temperature rise rate
gradually decreases until it drops to 0. The temperature no longer increases and remains
constant, reaching a thermal equilibrium state. The critical heat fluxes (test conditions) for
de-icing at wind speeds of 5 m/s and 10 m/s are 6 kW/m2 and 9 kW/m2, respectively.
Therefore, the given heating heat flux must be greater than the critical de-icing heat flux to
melt ice accretion.
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The time of ice melting at blade point A (denoted as tA) was regarded as the de-
icing time in order to investigate the relationship between heat flux and the total energy
consumption of de-icing under the same degree of ice melting. The energy that the electric
heating film consumes at point A without ice is expressed as EA.

Figures 18 and 19 show the changes in de-icing time tA (a) and total energy consump-
tion EA (b) with heat flux q at wind speeds of 5 m/s and 10 m/s, respectively. The de-icing
time and energy consumption decrease with an increase in heat flux. At the same time, the
downward trend gradually slows down. The energy consumption of thin ice volume is
relatively low at 5 m/s. When the heat flux is q = 6 kW/m2, the energy consumptions EA at
tδ = 1 min, 5 min, and 7 min are 1.24 kJ, 2.06 kJ, and 3.06 kJ, respectively. The influence of ice
volume on energy consumption is gradually weakened with an increase in heat flux. When
the heat flux is q = 14 kW/m2, the energy consumptions EA at tδ = 1 min, 5 min, and 7 min
are 0.33 kJ, 0.55 kJ, and 0.61 kJ, respectively. At 10 m/s, when the heat flux is q = 14 kW/m2,
the energy consumptions EA at tδ = 1 min, 3 min, and 5 min are 0.77 kJ, 0.81 kJ, and 0.80 kJ.
The impact of ice accumulation is not as large as the effect of heat flux, and it does not
show obvious laws, but is affected by the de-icing mode. As shown in Figure 19b, pattern
IV consumes less energy than pattern II. The reference de-icing heat fluxes of 5 m/s and
10 m/s are 10 kW/m2 and 12 kW/m2, respectively.
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4. Conclusions

In this paper, electro-thermal de-icing tests were carried out on a blade airfoil of
an NACA0018 in a reflux ice wind tunnel under different icing conditions. The main
conclusions from the study are as follows:

1. When de-icing occurs during a short freezing time (1 min), the ice layer becomes thin,
and runback water flows out;

2. With an increase in freezing time (3–7 min), the melting ice induced by the dominant
action of inertial force moves backward at a low wind speed (5 m/s) due to the
reduction in adhesion between the ice and blade surface;

3. As the wind speed increases (10–15 m/s), it exhibits various de-icing states, including
refreezing to ice at the trailing edge and ice shedding;

4. The total energy consumption of ice melting decreases as the heat flux increases and
the ice melting time shortens. The reference de-icing heat fluxes of 5 m/s and 10 m/s
are 10 kW/m2 and 12 kW/m2, respectively.
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Nomenclature

LWC Liquid Water Content, g/m3

MVD Medium Volume Droplet Diameter, µm
c Chord length of airfoil, mm
EA Total energy consumption, kJ
Hi Maximum ice thickness, mm
Ie Current, A
lmax Flow distance of runback water, mm
q Heat flux of electro-thermal elements, kW/m2

tA De-icing time, s
Tc Wind tunnel temperature, ◦C
tδ Time of ice accretion, min
U Wind speed, m/s
Ue Voltage, V
xi Abscissa of the intersection between the ice profile and the wing surface
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