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Abstract: With the increasing shortage of petroleum resources and the growing seriousness of envi-
ronmental pollution, the exploitation and application of bio-based coatings derived from renewable
resources have become increasingly important for the woodworking industry. Wood wax oil (WWO)
is a new type of bio-based natural coating material that offers an eco-friendly solution for wood
protection. This paper focused on the utilization of tung oil and beeswax as the primary raw materials
for the preparation of wood wax oil. The WWO was based on the oxidation polymerization of tung
oil, which served as the foundation for the preparation process. The effects of the photoinitiator
TPO-L on the curing performance of the WWO were investigated, and the curing mechanism of the
WWO system induced by photoinitiators was analyzed and characterized by infrared spectroscopy.
Through ultraviolet irradiation experiments and coating quality tests, the effects of incremental
photoinitiators on the properties of the surface drying time, gloss, color, hydrophobicity, and solution
resistance of the treated ash wood were studied. The results indicated that the addition of photoini-
tiators was beneficial for the rapid polymerization of wood wax oil. A UV light intensity of 30 w was
found to be sufficient to initiate the curing process. Specifically, when using TPO-L as the initiator
at a concentration of 3 wt%, the surface could be surface-dried within 10 min under UV exposure.
Under these curing conditions, wood wax oil coatings based on tung oil with comprehensive curing
properties can be obtained. Additionally, adding 6% beeswax to the tung oil can effectively enhance
the hydrophobicity of pure tung-oil-based wood protective coatings.

Keywords: bio-based coating; UV curing; photoinitiator; hydrophobicity

1. Introduction

Due to the growing seriousness of environmental pollution and the excessive con-
sumption of resources, the exploitation and application of coatings derived from renewable
resources have become increasingly important for the woodworking industry [1]. More
research is now focusing on eco-friendly and sustainable wood coatings, particularly those
that are biomass-based. Tung oil, as a type of drying oil, is easily obtained from Vernicia
fordii seeds [2]. Tung oil possesses several advantages such as biocompatibility, biodegrad-
ability, and good corrosion resistance. It finds wide applications in electronic appliances,
architectural decoration, and other fields and has an especially important position in the
light-curing wood coating field [3,4].

Tung oil is a highly unsaturated plant oil, the main component of which is alpha-
eleostearic acid containing octadecyl-conjugated triene and other structures, which can
form a solidified film through auto-oxidation at room temperature [5]. Triglycerides are
an important source of biopolymers [6]; utilizing Diels–Alder, Friedel–Crafts, esterifica-
tion, oxidative polymerization, amidation, photochemistry, and other principles, an active
reaction can be carried out to endow tung oil with functional groups [7]. The prepoly-
mers are synthesized and then applied to polyester resin, epoxy resin coatings, and other
systems [8–10]. Bin Liang et al. used tung oil as a raw material to prepare tung-maleic
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anhydride (TMA) with methyl eleostearate and maleic anhydride. After hydrolysis, it
reacted with epichlorohydrin to synthesize epoxidized tung maleic anhydride. After modi-
fication with pentaerythritol triacrylate (PETA), a prepolymer with good curing efficiency
was synthesized [11]. Based on the former prepolymer, Yugang Huang et al. prepared
an acrylate-functionalized tung-oil-based resin with glycidyl methacrylate (GMA) [12].
They converted vegetable oil into a valuable monomer via a pre-chemical modification and
then synthesized plant-oil-based polymer materials with high added value with excellent
performance; however, the reaction conditions and process were relatively complex, which
cannot give full play to the cost advantage of vegetable oil [13].

The protective layer formed by tung oil on the surface of wood is very thin and
cannot meet all the requirements of wood protection for wood coatings [14]. As a natural
hydrophobic agent, wax has good film formation and water resistance and is widely
used in the home and in automobile, construction, and even food science fields [15].
The hydrophobic modification of poplar wood with a mixed emulsion of paraffin wax
and carnauba wax can delay the process of water infiltration into wood [16]. Paraffin
emulsions combined with titania (TiO2) sol could improve the weathering resistance of
thermo-modified Scots pine (Pinus sylvestris L.) [17]. Polypropylene wax is applied to wood
coatings, and its surface has excellent thermal stability and adhesion [18]. In addition to
synthetic wax, there are many natural waxes with environmental protection properties, such
as beeswax, Chinese wax, palm wax, etc., the main components of which are fatty acids,
long-chain fatty alcohols, and long-chain alkane esters [19–21]. The decoration technology
of natural beeswax hot waxing has a long history in China [22]; it has a low melting point
and high flexibility, contains gallate myricyl ester and other excellent antioxidant properties,
and has certain anti-corrosion and antioxidant properties [23]. The dimensional stability
and anti-fungal properties of bamboo can be effectively improved via the heat treatment of
wood wax oil at 180 ◦C, which is mainly composed of tung oil, linseed oil, and beeswax [24].
Therefore, a natural and sustainable wood protection coating was prepared by using
tung oil and beeswax. The raw materials of wood wax oil are bio-based and renewable.
The reaction conditions and process are relatively simple and low-energy. WWO is very
important in providing surface protection to wood and as a decorative coating to improve
wood’s appearance, protect it from moisture, and prolong its service life.

For pure biomass coatings, there is a certain gap between their curing film formation
speed and that of petroleum-based coatings, but their environmental protection properties
are the focus of research, and providing a feasible method for their rapid curing is one of
the purposes of this paper. The addition of drying agents, including metal drying agents
and rare-earth drying agents, can effectively promote the decomposition of peroxides and
speed up the curing speed of tung oil, but metals such as cobalt, manganese, and lead, as
well as other metal complexes, are harmful to the environment and human body [25,26].
The current proven approach is carried out with the help of ultraviolet curing technology,
which is one of the most efficient, clean, and sustainable technologies in coating and
composite crosslinking applications [27–29]. UV light induces photoinitiators to change
from a ground state to a free radical or cationic transition state and promotes the conversion
of monomers to polymers, completing the crosslinking curing behavior [30]. Its light
absorption properties directly affect the structure of crosslinked polymers and the properties
of cured coatings [31,32]. UV-curable coatings are an important development direction for
wood coatings.

In summary, to realize the wood protection effect of wood wax oil more quickly
and reduce the processing time, the induction effect of photoinitiators was studied to
promote the direct and efficient application of tung oil in the field of wood coatings. In this
paper, the effect of photoinitiators on the curing behavior and the photopolymerization
mechanism of tung oil is studied using the self-made WWO as a surface-coating material
of ash wood. Surface performance and related characterization, such as the surface gloss,
color, hydrophobicity, and solvent resistance, were tested to discuss the influence of the
initiator amount on the curing property of the coating comprehensively.
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2. Materials and Methods
2.1. Materials

Tung oil (TO), containing 81.5% alpha-eleostearic acid, was purchased from Wuhan
Linde Chemical Co., Wuhan, China, LTD. Beeswax (BW) was obtained from GuiSen Bee
Farm in YiChun, China, and the center part of wax block samples was melted in distilled wa-
ter to remove impurities before use. The photoinitiator TPO-L (ethyl(2,4,6-trimethylbenzoyl)
phenylphosphinate), an analytical-grade reagent, was purchased from Ron’s reagent. The
above reagents can be used without further purification. White ash wood (Fraxinus spp.),
a type of ring-porous hardwood that is commonly used as a material for home decoration
and buildings [33], was sourced from a furniture factory in Harbin, Heilongjiang Province.
According to coating and performance testing requirements, three groups of repeated experi-
ments were performed. The uncracked and defect-free areas of the white ash wood were cut
into 50 mm (L) × 50 mm (R) × 5 mm (T) wood blocks along the fiber direction after naturally
drying in the atmosphere. Some structures of the above materials are shown in Figure 1.
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Figure 1. Structure diagrams of tung oil (a) and photoinitiators TPO-L (b).

2.2. Preparation of Polymerized Tung Oil

We added quantitative tung oil into a 500 mL three-port round-bottom flask and
connected a condensing device and thermometer to the flask. The device was placed in
a constant-temperature oil bath at 105 ◦C with a stirring rate of 300 r/min to dehydrate
the tung oil for 15 min. Subsequently, we set the desired temperature and stirring rate
separately to 180 ◦C and 300 r/min and maintained this constant temperature for 90 min
to allow polymerization to occur. After that, the heating and stirring device was turned
off and the polymerized tung oil cooled to room temperature. Then, we obtained the
polymerized tung oil.

2.3. Synthesis of Wood Wax Oil

A certain amount of beeswax was added to the pre-polymerized tung oil, and the
temperature was set at a constant 75 ◦C. The stirring rate was set at 400 rpm and the mixing
time was 15 min until the mixture was uniform and free of particles. The resulting mixture
was a light yellow and transparent wood wax oil (WWO). When the WWO was cooled to
room temperature, it appeared like a translucent gel. Photoinitiator TPO-L was added at
concentrations of 1 wt%, 2 wt%, 3 wt%, 4 wt%, and 5 wt% to the WWO, separately labeled
as N1 to N5, and stored in a shady place. The group without photoinitiator served as the
control group (N0) to investigate the effects of different photoinitiator concentrations on
the curing performance of the WWO. The specific compositions of the wood wax oil are
detailed in Table 1.

Table 1. Compositions of wood wax oil samples (mass ratio: wt%).

Group Tung Oil Beeswax TPO-L

N0 94 6 0
N1 94 6 1
N2 94 6 2
N3 94 6 3
N4 94 6 4
N5 94 6 5
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2.4. Preparation of Wood Wax Oil Coatings

The wood block surfaces were polished using sandpaper with three different grades
(180, 240, and 600 mesh). Any dust on the surface was removed to ensure it was smooth
and flat. Figure 2 illustrates the simplified process of the partial experiment. The above-
mentioned wood wax oil was used to prepare WWO coatings on wood. The WWO was
evenly brushed following the direction of the wood fibers onto the surface with a coating
amount of 25 ± 0.5 g·cm−2. The wood surface was wiped with a cotton cloth to allow the
WWO to infiltrate into wood pores. Subsequently, the wood blocks were placed in a UV
curing machine and the surface drying time was recorded. The selected UV wavelength
was 320~400 nm, with a radiant power of 30 w. The control group was cured and dried
in a room-temperature environment with good ventilation, and the drying time and hard
time were also recorded. The wood samples coated with group N0~N5 were recorded as
W0~W5.
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2.5. Curing Performance Characterization
2.5.1. Surface Drying Time Test

To investigate the curing behavior of N0~N5, the wood wax oil was cured in the air at
room temperature and under ultraviolet irradiation for a certain time. According to the
Chinese national standard (GB/T 1728-89) [34], the wood wax oil surface drying time was
determined as specified. According to the standard, we used the finger contact method
of method B to measure the surface drying time. The coated wood surfaces were lightly
touched with the finger every two minutes. If there was no WWO adhering to the finger, it
could be considered that WWO was solidified on the surface of the wood. And then, we
recorded the surface drying time.

2.5.2. Fourier Transform Infrared Spectroscopy (FTIR) Test

The surface chemical changes of WWO-coated wood samples were analyzed by
Fourier transform infrared spectroscopy (FTIR) employing a Nicolet is50 FTIR spectrometer
(Thermo Fisher, Waltham, MA, USA). The spectra were obtained over the wavenumber
range of 500–4000 cm−1 with a resolution of 4 cm−1 and averaged over 32 scans. The
differences between active functional groups of N0~N5-coated ash wood were compared
and analyzed.

2.5.3. Gloss Test

According to the Chinese national standard (GB/T 4893.6-2013) [35], the WCG-60 gloss
meter (Pushen Chemical Machinery Co., Ltd., Shanghai, China) was used to determine
the surface gloss of untreated wood and WWO-coated wood samples. The gloss meter
was first calibrated by adjusting the gloss value while placed on a calibrated glass surface.
Measurements were taken at a 60◦ incidence angle and along the grain, five various points
were selected for each sample, and the arithmetic mean values were recorded.

2.5.4. Surface Color Test

The surface color of WWO-coated (UV: 120 min) and uncoated wood samples were
tested by a CM-2300d spectrophotometer (Konica Minolta, Tokyo, Japan). The surface color
test was based on the CIELAB color system. The lightness index L* (from black, 0, to white,
100), green–red-axis chromaticity index a* (from the negative value of green to the positive
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value of red), and blue–yellow-axis chromaticity index b* (from the negative value of blue
to the positive value of yellow) were measured. The differences in surface color between
the samples were expressed as ∆E. According to the standard ASTM D2244-02 [36], ∆E is
calculated using L*, a*, and b* which is shown in Equation (1).

△E = [(Ln* − L0*) + (an* − a0*) + (bn* − b0*)]1/2 (1)

where Ln*, an*, and bn* are the measured values of the samples after irradiating with UV
light for 120 min; L0*, a0*, and b0* are the measured values of the samples before coating.

2.5.5. Contact Angle Test

Under the conditions of relative humidity at 50% and temperature at 25 ◦C, the static
contact angles of the distilled water on the films of untreated wood samples and WWO-
coated wood samples were measured using a contact angle goniometer (CA-100B, Yingnuo
Instrument Ltd., Shanghai, China). The contact angle was measured by the drop method
and the volume of the deionized water droplet was 5 µL. The contact angle was immediately
measured when the in-needle droplet contacted the sample surface. The measurements
were taken 60 s after deposition using software to record the pictures. Three measurements
per sample were taken at random locations along the grain.

2.5.6. Solvent Resistance Test

The surface solvent resistance performances of the cured coatings were tested accord-
ing to the Chinese national standard (GB/T 17657-2013) [37]. The specimens were placed
horizontally in a normal-temperature environment. We then cleaned the surfaces and
dropped three drops of a normal-temperature sodium chloride solution, acid solution,
alkaline solution, and anhydrous ethanol on the cured surfaces. And then, a sheet of
glass was used to cover them separately; after remaining in contact for 16 h, the surfaces
of the specimens were rinsed with deionized water. One hour later, the contamination
and deformation of the specimens’ surfaces were observed. The evaluation was divided
into five grades, with grade I meaning the surface has serious discoloration and grade V
meaning the surface is not contaminated.

2.5.7. Surface Microscopy Characterization

The surface microscopy of uncoated wood and WWO-coated wood was observed by
scanning electron microscopy (SEM, QUANTAN200, FEI, Eindhoven, The Netherlands).
Tangential sections of the samples irradiated with UV light for 120 min were cut and
exposed with pathological blades, and sample slices were fixed on a sample holder with
conductive glue. Before testing, the coatings were sputter-coated with gold in a vacuum
environment for 60 s. The voltage used in the microscope during image capture was 5.0 kV
and the working distance was 10 mm.

3. Results and Discussion
3.1. Curing Behavior Analysis
3.1.1. Surface Drying Time

Figure 3 shows the surface drying time of WWO-coated wood with different amounts
of photoinitiators. The W0 surface required more than 180 min to dry, which is faster
than pure tung oil. The surface drying time decreased from 36 min to 10 min as the
amount of photoinitiators increased from 1 wt% to 3 wt%. When the TPO-L was added at a
concentration of more than 3 wt%, the curing rates of the coatings began to decrease, which
meant that the wood coating needed more time to cure. The changing trend of surface
drying time is similar to values reported in the literature in which different photoinitiators
were used to research the UV curing activity of pure tung oil [38]. UV curing involves
radical polymerization of the tung oil molecule which is converted from a wet to solid state.
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The crosslinking density of wood wax oil increased rapidly due to excessive amounts
of photoinitiators, and molecular weight significantly increased in a short time. The
synergistic effect between the tung oil film formed on the surface and the condensed
beeswax impeded oxygen and ultraviolet radiation from infiltrating into the interior of
the coating. Therefore, it reduced the rate of oxidation polymerization in the deep layer of
the WWO system. In addition, excessive photoinitiators may produce excess free radicals,
resulting in the quenching of active radicals which means termination of polymerization.
Therefore, when the amount of photoinitiator added was 4 wt%, the promotional effect on
curing was not obvious.
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3.1.2. Fourier Transform Infrared Spectra (FTIR) Analysis

The FTIR spectra of wood wax oil-coated wood (W0~W5) with TPO-L (N1~N5) and
without TPO-L (N0) are shown in Figure 4. The broad band of untreated white ash wood at
3332 cm−1 corresponds to the stretching vibration of hydroxyl groups (–OH) in wood, and
this band did not change obviously in the FTIR spectrum of W0. It was not hard to find that
the number of hydroxyl groups in W0~W5 wood was relatively reduced and the –C–O–
band of saturated ester was enhanced at 1157 cm−1. It can be reasonably inferred that
alpha-eleostearic acid and other unsaturated fatty acids in tung oil undergo esterification,
resulting in a decrease in the number of hydroxyl groups in wood, and the unsaturated
components of tung oil change under the action of photoinitiator.
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Figure 4. FTIR spectra of W0~W5.

The absorption peaks of =C–H disappeared at 3014 cm−1 and the tensile vibration
peaks of =C–H at 990 cm−1 became weakened in group W1~W5. This means that conju-
gated double bonds participated in polymerization during the curing of wood wax oil. The
photoinitiator successfully cracked to produce free radicals after light irradiation, which
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led to crosslinking curing of the tung oil monomer. The peak at 1732 cm−1 corresponds to
the stretching vibration of unconjugated carbonyl groups of esters [39]. With an increase
in photoinitiator concentration, the main functional groups of beeswax did not change
significantly, which meant that beeswax and wood only underwent a physical combination,
rather than a chemical combination.

The above analysis shows that photoinitiators were activated during the curing re-
action and were then copolymerized with a conjugated double bond from a tung oil
molecule. The interfacial bonding between beeswax and wood mainly involved weak
physical interactions.

3.2. The Effect of Photoinitiator Addition on Coating Properties
3.2.1. Hydrophobicity

The surface of uncoated wood is hydrophilic, which leads to a low water contact angle
and the water drop was completely absorbed by capillary forces within 5 s. Figure 5a
shows the initial water contact angle of W0 was 105◦ and decreased to 82◦ after 60 s. The
wood surface changed from hydrophilic to hydrophobic after coating with wood wax oil.
Furthermore, the initial water contact angle of W3 was 134◦ and slightly changed to 133◦

after 60 s. In the control group, no photoinitiator was added to wood wax oil; therefore,
the coating was discontinuous and hydrophilic due to incomplete curing during the same
reaction time. Figure 5b shows the water contact angle of coated wood at 0 s and 60 s for
all groups. Compared to the other experimental groups, the water contact angle of W1 was
lowest. The proportion of early wood in W1 was more and the structure was compacter.
Therefore, the penetration rate of oil was slow. The TPO-L content of 1 wt% was not enough
to promote the curing of all WWO so the protective coating formed was too thin to obtain a
lower contact angle.
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The hydrophobicity of wood was significantly enhanced by adding photoinitiators to
the WWO coating. The photoinitiators were induced by UV light and cleaved into active
intermediates, which accelerated the ionic reactivity of the WWO system and was conducive
to free radical polymerization of tung oil double bonds. At the same time, it accelerated
the solidification of beeswax and increased the intermolecular force between tung oil and
beeswax. The content of long-chain fatty acid esters and alcohols in beeswax is higher, and
the synergistic effect with tung oil also plays a role in improving the hydrophobicity of
wood [40]. It was beneficial for the wood wax oil to cover the grooves on the wood and
form a coating that covered the hydrophilic functional groups of wood.

3.2.2. Gloss

Figure 6a shows the surface gloss of WWO-treated wood with different photoinitiator
concentrations. In the beginning, the change degree of gloss was obvious. As the coating
solidified, the gloss of groups W1 to W5 became stable gradually after UV irradiation for
40 min. It is worth noting that the stable gloss of the wood wax oil coating containing
photoinitiator was lower than control group W0. According to the European standard (EN
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ISO 2813) [41], the stable gloss decline was not substantial. But it shows that the just-coated
gloss of WWO coating was affected by the amount of photoinitiator added. For the control
group, although the ultraviolet light exceeded 120 min, the surface still kept wet, so the
gloss was continuously reduced.
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As shown in Figure 6b, the surface gloss results of groups W0 and W1 were higher
than those of uncoated wood. However, the stable gloss of WWO coating containing
photoinitiator is lower than that of uncoated wood. The reason may be that an excessive
concentration of photoinitiator will form excessive free radicals locally, causing the recom-
bination of free radicals [42], resulting in incomplete curing of the wood wax oil coating.
And beeswax formed a relatively rough coating on the wood surface, which caused diffuse
reflection of incident light between the wax particles Previous research has shown that
the gloss of photocurable coatings is related to UV irradiation time, and gloss is affected
by many factors. The photoinitiator will cause the coating to turn yellow, and the oxygen
inhibition will also cause a decrease in gloss.

3.2.3. Color Changes of Wood Surface

After UV curing for 120 min, the color changes of ash wood in the experimental
group and the control group are shown in Figure 7. It can be seen that the wood wax
coating changes the color of the white ash wood. Compared with the color index of W0,
the lightness index (L*) of W1~W5 wood samples decreased; this was consistent with
the results of the gloss test. The green–red-axis color index (a*) and blue–yellow-axis
color index (b*) increased, indicating that the color of the wood surface deepened and
changed to red and yellow after wood wax oil treatment. In general, the values of index
△E* of experimental groups were all greater than W0 (△E* = 6.042). Among them, the
changes in color parameters of W3~W5 were similar but higher than those of W1 and W2.
Photoinitiators were very sensitive to UV light, and photoinitiator additions exceeding
3 wt% led to more obvious changes in the wood surface. According to the six-degree
measurement scale [43], the total color difference ∆E* values ranged from degree five to
six. The discoloration varied from just visually detectable changes up to a completely new
color. To some extent, the coating influence was positive and the deepened color was closer
to precious wood.
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3.2.4. Solvent Resistance

It can be seen from Table 2 that the WWO-coated wood surfaces of W0~W5 exhibited
varying resistance to different solvents. All the curing surfaces were grade V after contact
with the sodium chloride solution, and there was basically no change. The curing surface
was grade IV after contact with acetic acid, and there was a slight change. There were only
slight changes noted after exposure to acetic acid. The surfaces coated with WWO were
seriously discolored under the influence of alkali liquor. The changes in the W1 and W2
groups were grade I, which were more obvious than grade II.

Table 2. Solvent resistance class of photocurable coatings.

Group Salt Water Acetic Acid Alkali Liquor Ethyl Alcohol

W0 V IV I IV
W1 V V I IV
W2 V V II IV
W3 V V II IV
W4 V V II IV
W5 V V II IV

These results indicate that the crosslinking density of the UV-cured wood wax oil
coating increases, leading to a relatively dense three-dimensional network structure. Con-
sequently, the solvent resistance of the cured coating is significantly improved, effectively
slowing down the damage caused by salt, acid, ethanol, or other solutions to white ash
wood. After contact with the alkali solution, the surface changes, as the tung oil acid still
contained in the WWO is sensitive to alkaline substances, resulting in slightly weaker alkali
resistance than other solutions. Considering the problem of poor durability of tung oil in
outdoor applications, it is necessary to further study the enhancement of wood wax oil
coatings [44].

3.2.5. Scanning Electron Microscopy (SEM) Analysis

The SEM images of the tangential section of W3 in Figure 8b,d are compared with
untreated wood in Figure 8a,c. The characteristic tangential structure of uncoated wood
with open cell walls and pits can be observed. After coating with N3, these microstructures
were covered by a rough coating formed by wood wax oil. WWO was found in wood rays,
fibers, and vessels and filled in the wood cell cavities. This resulted in a protective layer
covering the wood surface on a macro level [45]. The photocurable coating exhibited a
micron-scale roughness; according to the lotus effect, a rough micro/nanolayered structure
can make the surface non-wettable [46]. WWO-coated ash wood had better hydrophobicity,
which was also proved by the contact angle test results. Additionally, the induction of
photoinitiators resulted in faster tung oil polymerization within the same UV exposure
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time. The presence of wrinkled oil film and beeswax particles contributed to the formation
of a rough surface, which in turn led to reduced gloss due to diffuse reflection between the
concave and convex layers of the wax.
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4. Conclusions

In this fundamental study, we prepared a UV-curable wood-protective coating using
natural materials. The practical impact of different amounts of photoinitiator TPO-L on
the photochemical reaction of wood wax oil was investigated through Fourier transform
infrared spectroscopy. The surface drying time was directly affected by the additive
amount. Specifically, when it was 3 wt%, the surface drying time was found to be the
shortest. Wood wax oil can fill in the wood cell cavity, leading to an improvement in
wood’s hydrophobicity. The resulting cured coatings exhibited moderate chromaticity and
demonstrated good solvent resistance. The stability of the surface gloss was found to be
directly linked to the addition of the initiator, with excessive photoinitiators leading to a
reduction in gloss.

Wood wax oil, as a bio-based environmental protection material, holds significant po-
tential for use in environmentally friendly wood coatings, especially when combined with
ultraviolet curing technology. The synergistic effect of other natural waxes in WWO can be
studied in the future. This work can serve as a starting point for future exploration and
application in the preparation of improved coatings based on drying oils and natural wax.
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