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Abstract: To reveal the influence of passive film on the tribocorrosion behaviour of stainless steel,
SUS430 was loaded at 2.0 N or 10.0 N in aqueous solutions with various pH from 1.0 to 10.0. The
pure wear behaviour was investigated in the air for comparison. The polarization behaviour, the
morphology of the worn or tribocorroded surface, and the depth profiles of the formed groove were
measured to discuss the mechanism. The passive state was confirmed at pH = 7.0 and 10.0, but
vanished at pH = 1.0 and 2.0. The pure wear in air depended on the applied loads, rather than the
sliding time. On the other hand, the tribocorrosion in deionised water was much smaller than the
pure wear in air. Under a load of 2.0 N, the tribocorrosion at pH = 1.0 was weaker than pH = 2.0.
However, the situation reversed when increasing the load to 10.0 N. The tribocorrosion in neutral
and alkaline solutions is considerably smaller than in acid solutions.

Keywords: stainless steel; passive film; tribocorrosion; corrosion; wear; pH; load

1. Introduction

Sliding produces physical work in machinery, but simultaneously brings about the
wear of materials. Wear can be classified as adhesive, abrasive, fretting, and fatigue based
on different mechanisms, depending on the composition/microstructure of the materials,
the applied load, and the working environment. In an aqueous solution, the corrosion
of metal causes the so-called tribocorrosion. Tribocorrosion is generally greater than the
separated dry wear or the chemical dissolution, usually accelerating the deterioration of
equipment [1].

Stainless steel is widely used due to its high strength, ductility, and corrosion resis-
tance. Its tribocorrosion behaviour has been well investigated [2–6]. The key point is
the steel’s passive film, which determines the corrosion resistance, mechanical properties,
and tribocorrosion behaviour in various environments. In particular, the pH of a solution
largely affects the thickness and composition of the passive film. The film becomes thin
or disappears in an acid solution, while the thick film forms in a neutral or alkaline solu-
tion [7]. The composition generally changes from oxides to hydroxides with increasing
pH [8–10]. All the above differences in passive film largely affect the tribocorrosion of
stainless steel. In an acid environment, stainless steel suffers from fast dissolution with
hydrogen involvement, while in neutral or alkaline solution, the passive film is composed
of oxide and hydroxide [7,11–13]. This means different surficial materials for tribocorrosion.
The passive film can be worn and detached depending on the load level, followed by repair
after sliding [2,14]. These factors cause the complicated mechanism of tribocorrosion [2]:
the accelerated corrosion due to the removal of the passive film by wear and the accelerated
wear due to the yield of the unstable surface by corrosion.

Many studies on the tribocorrosion behaviour of stainless steel focused on the passive
film’s destruction and repair in weak acid or neutral/alkaline solution. The formation
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and removal of the passive film can be controlled by adjusting the pH. A passive film was
recently confirmed in a solution with pH = 1.5 during tribocorrosion for a type 430 steel
(16Cr) galvanically coupled with a half-moon-shaped graphite: wear accelerated corrosion
occurred under that condition [6]. The noble graphite brought the potential of the steel
from the active zone to the passive zone. The tribocorrosion behaviour of bare stainless
steels without passive film has rarely been studied, perhaps due to its few field applications.
However, with daily changes in severe working conditions for machinery, the application
of bare stainless steel or other alloys becomes inevitable. Therefore, it is necessary to
systemically investigate and discuss the tribocorrosion behaviour of stainless steels or
alloys from bare surfaces to passive film-covered surfaces.

Hydrogen bubbles in acid solution and their detachment or reattachment from/to
the surface are essential factors in discussing the tribocorrosion behaviour in acid solution.
These will affect the sliding zone’s mechanical wear and the total surface’s corrosion reac-
tion. Therefore, focusing on the changes of the entire surface should help in understanding
the mechanism of tribocorrosion. However, the influence of a sliding zone on unworn
surroundings has not been well investigated. Furthermore, the co-influence of load and pH
on the tribocorrosion of stainless steel or alloy should be clarified to enhance the integrity
of machinery in harsh conditions.

To clarify the above issues, in this study, the ferritic stainless steel SUS430, which is
usually applied in structures, automobiles, electrical appliances, and daily commodities,
was chosen as the test material due to the easily controlled formation/vanishing behaviour
of passive film based on the pH of the solution. Note that its general resistance to tribo-
corrosion is comparable to other common stainless steels. The galvanic effect between the
worn and the unworn zones was considered without applying any constant potential to the
steel [15,16] or coupling with other materials [6]. Tribocorrosion was carried out in aqueous
solutions with a variety of pH values under different applied loads and sliding periods
and compared to pure wear behaviour in the air. After the tests, the formed groove and its
surroundings were observed with a laser microscope and the groove’s cross-sectional area
and volume accordingly obtained. Finally, the tribocorrosion behaviour was compared and
the corrosion depth, the deformation region, the pH value, the sliding time, the coefficient
of friction, and the Archard wear coefficient were discussed.

2. Experimental

A commercially supplied ferritic stainless steel SUS430 plate (JIS G 4304-2015) with
the following chemical composition was used as the test material: 0.04 mass% C; 0.24%
Si; 0.62% Mn; 0.031% P; 0.007% S; 16.47% Cr; 0.35% Ni; and the balanced Fe. Its ultimate
tensile strength (σu), yield strength (σy) and elastic modulus (E1) are 486 MPa, 324 MPa and
200 GPa, respectively. The plate was machined to 15 mm × 15 mm × 5 mm and polished
with number 2000 emery paper before it was used as a specimen. As shown in Figure 1
(a: left drawing), some specimens were sealed with silicone sealant, exposing only a 10 mm
× 10 mm polished area for the polarization measurement. The other specimens were
embedded into a phenol-formaldehyde resin for the wear or tribocorrosion test (Figure 1a:
right drawing)). As shown in Table 1, the solutions for polarization and tribocorrosion were
laboratory-prepared with deionised water, H2SO4, and NaOH using a pH meter (Horiba:
LAQUA D-72). The pH values were chosen by considering their relationship with the
stability of passive film [7]. Considering the uniform ion strength [17] or the conductivity
of the solution, 0.05 M Na2SO4 was added to the solutions of pH = 7.0 and 10.0.
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In solutions with pH = 7.0 and 10.0, a preliminary polarization was applied at a con-
stant potential of −1.0 V for 60 s to stabilise the surface. The polarization was carried out 
by a potentiostat (Solartron Analytical: 1285A) in a glass cell with a counter electrode of 
the platinum plate and a reference one of saturated calomel electrode (SCE). After natu-
rally keeping the specimen in the designated solution for 300 s, the potential was swept 
from −0.7 V to 1.0 V (vs. SCE) to obtain a full polarization curve from the cathodic to the 
anodic reactions in all the solutions. The polarization curve obtained the corrosion poten-
tial, and the Mansfeld fitting method [7,18] was applied to obtain the corrosion current 
density. 

Figure 1b shows that a home-made acrylic cell was mounted to a frictional resistance 
tester (Heidon Type: 20) for wear and tribocorrosion tests. At least two tests were carried 
out to confirm the reproductivity. A ZrO2 ball (elastic modulus (E2): 210 GPa) with a di-
ameter of 5.0 mm was fixed to the insulated head of the arm for applying load. Except in 
air, 150 mL solution was poured into the cell, and an induction motor rotated the specimen 
at 60 rpm for 1.0 and 3.0 h under a load (F) of 2.0 N or 10.0 N. The ball’s rotation radius 
(R) was set to 5.0 mm through a vernier scale; therefore, a sliding speed of 31.4 mm/s was 
performed. The torque (T) of the induction motor was measured to calculate the coeffi-
cient of friction (μ) with Equation (1). μ TFR (1)

After the test, the specimen was ultrasonically cleaned in water and acetone. Four 
crossed positions of the formed groove were observed with a laser microscope (Olympus 
Co.: LEXT OLS4000) to obtain the width, the maximum depth, and the cross-sectional 

Figure 1. Assembly of the specimen (a) and the tribocorrosion tester (b).

Table 1. Solutions used in polarization and tribocorrosion.

pH Solution Ion Strength

1.0 0.05 M H2SO4 0.150
2.0 0.005 M H2SO4 0.015
2.7 0.001 M H2SO4 0.003
7.0 0.05 M Na2SO4 0.150

10.0 0.0001 M NaOH + 0.05 M Na2SO4 0.150

In solutions with pH = 7.0 and 10.0, a preliminary polarization was applied at a
constant potential of −1.0 V for 60 s to stabilise the surface. The polarization was carried
out by a potentiostat (Solartron Analytical: 1285A) in a glass cell with a counter electrode of
the platinum plate and a reference one of saturated calomel electrode (SCE). After naturally
keeping the specimen in the designated solution for 300 s, the potential was swept from
−0.7 V to 1.0 V (vs. SCE) to obtain a full polarization curve from the cathodic to the anodic
reactions in all the solutions. The polarization curve obtained the corrosion potential, and
the Mansfeld fitting method [7,18] was applied to obtain the corrosion current density.

Figure 1b shows that a home-made acrylic cell was mounted to a frictional resistance
tester (Heidon Type: 20) for wear and tribocorrosion tests. At least two tests were carried
out to confirm the reproductivity. A ZrO2 ball (elastic modulus (E2): 210 GPa) with a
diameter of 5.0 mm was fixed to the insulated head of the arm for applying load. Except in
air, 150 mL solution was poured into the cell, and an induction motor rotated the specimen
at 60 rpm for 1.0 and 3.0 h under a load (F) of 2.0 N or 10.0 N. The ball’s rotation radius
(R) was set to 5.0 mm through a vernier scale; therefore, a sliding speed of 31.4 mm/s was
performed. The torque (T) of the induction motor was measured to calculate the coefficient
of friction (µ) with Equation (1).

µ =
T

FR
(1)

After the test, the specimen was ultrasonically cleaned in water and acetone. Four
crossed positions of the formed groove were observed with a laser microscope (Olympus
Co.: LEXT OLS4000) to obtain the width, the maximum depth, and the cross-sectional
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groove area (hereinafter CSGA: S1–S4). The volume of the entire groove was then calculated
from Equation (2) [19].

V =
πR(S1 + S2 + S3 + S4)

2
(2)

The CSGA values were obtained from the hatching parts in Figure 2b–d. Except at
pH = 1.0, the baseline from the neighbouring surface was used (Figure 2b: A, B). In the case
of pH = 1.0, two baselines were set: the neighbouring corroded surface (Figure 2c; A, B)
and the original faraway surface without corrosion (Figure 2d; C)). The original faraway
surface was reserved by shielding the four corners with Teflon tape (Figure 2a). Different
baselines resulted in different values of CSGA.
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Figure 2. Specimen after wear or tribocorrosion (a) and determination of groove width, maximum
depth, and cross-sectional area (b–d).

Note that hereinafter the “free surface” means the surface of a specimen for immersion
or polarization, which is free from sliding (see Figure 1a: left). The specimen was not
connected to the frictional resistance tester in this case. On the other hand, the “unworn
surface” means the partial surface of a specimen for tribocorrosion, except for another
surface suffering from the sliding of the ZrO2 ball (see Figure 2a: A, B).

3. Results and Discussion
3.1. Corrosion Behaviour

Figures 3 and 4 show the polarization curves, the corrosion potential (Ecorr.), and the
corrosion current density (icorr.) of SUS430 steel in aqueous solutions with a variety of
pH values from 1.0 to 10.0. The solution was exposed to air in an aerated condition in
this measurement. In the polarization curves, three potentials corresponding to the zero
current appeared at pH = 1.0, 2.0, and 2.7. Here, the left one was treated as the Ecorr. The
other two were caused by the higher oxygen reduction current than the passivation current.
The cathodic current zone at the noble (passive) side, which corresponds to the excessive
oxygen reduction [20], disappeared in a confirmed polarization in a deaerated solution.
The corrosion current density was obtained by a Mansfeld fitting method [18], in which
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the polarization data within Ecorr. ± 5 mV (at pH = 1.0, 2.0, and 2.7) and Ecorr. ± 15 mV (at
pH = 7.0, and 10.0) were used. The cathodic slope was directly obtained from the cathodic
curve, while the anodic slope was determined by fitting the Mansfeld curve.
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Figure 4. Corrosion potential (a) and corrosion current density (b) obtained in various solutions with
different pH.

The polarization curves at pH = 7.0 and 10.0 were almost the same. The corrosion po-
tential became noble with the pH increase from 1.0 to 10.0 (Figure 4a). At pH = 1.0 and 2.0,
the corrosion potential dropped below −400 mV. By referring to the in situ-confirmed dis-
appearance of the passive film of SUS304 stainless steel by EC-AFM technology in solutions
at pH < 2.7 (with corrosion potential lower than −400 mV) [7] and other reports [21–23],
here, both the largely decreased potential (Figure 4a) and the drastically increased corrosion
current density (Figure 4b) indicate the loss of passive film from the steel surface. On the
other hand, a stable passive film should have covered the surface at pH = 7.0 and 10.0 based
on their noble potential and low corrosion current density. The passive film at pH = 2.7
should be in an unstable or transient state [7]. The formation of passive film is related to
the hydration of metal atoms followed by dehydration or deprotonation [12].

Except for the lowest value at pH = 2.7, the corrosion current density decreased with
pH increase, which corresponds to the above judgment of the presence or the absence of
passive film. Except for pH = 2.7, all other passive current densities converged to a narrow
range. The low corrosion current density and passive current density at pH = 2.7 were



Coatings 2023, 13, 1539 6 of 18

ascribed to the solution’s low conductivity without Na2SO4. The state of the passive film
and the corrosion current should primarily affect the tribocorrosion behaviour, which will
be investigated later.

The steel immersion was also carried out in a solution at pH = 1.0 with different
dissolved oxygen levels. Figure 5 shows the weight loss with immersion time, showing the
almost unchanged dissolution rate. In either air exposure or deaeration, the polarization
curves (here omitted), except for the difference in the cathodic current (oxygen reduction)
at the noble (passive) side, were almost the same.
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3.2. Wear or Tribocorrosion Behaviour in Air or Water

In the air and under a load of 2.0 N, the obtained CSGAs after 1.0 h and 3.0 h
are almost identical (Figure 6a1). The error bars show the standard deviation. The
wear grooves (Figure 6a2,a3) show severe wear after cracking and fracturing. Under
the static point contact at a load of 2.0 N from a ZrO2 ball to SUS430 steel, the mean Hertz
stress (pmean) on the limited contact area can be calculated as 622 MPa (= 1.92σy) from
Equation (3) and Equation (4) [24,25]. Here, r (= 2.5 mm) is the radius of the ZrO2 ball, F is
the applied load, and E1, E2, ν1, and ν1 are the elastic modulus and the Poisson ratios of
SUS430 and ZrO2, respectively.

pmean =
2

3π

(
3FE2

2r2

) 1
3

(3)

1
E
=

1
2

(
1 − ν2

1
E1

+
1 − υ2

2
E2

)
(4)

In general, the Hertz stress at 1.1σy causes a region of plastic deformation at the
interior of the steel with a depth of 0.47α (α: radius of contact area) [24,25].

α =

(
3Fr
2E

) 1
3

(5)
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The higher Hertz stress that is applied, the wider the plastic region appears. Note that
even a slight loss of the ball from the contact point will enlarge the contact area, resulting
in much smaller lower stress levels than the calculated one. On the other hand, shear stress
further occurs along the sliding direction during a dynamic movement. Under a load of
2.0 N, the plastic region is limited and not significantly expanded from the contact point.
Therefore, the wear was not as severe as at 10.0 N. The unchanged CSGA after 1.0 and
3.0 h sliding can be mainly ascribed to the accumulation of wear particles on the groove.
Even under this low stress and slight wear of the ball, fatigue fracture, related to the elastic
shakedown [26], occurs in surficial and sub-surficial metal and produces wear particles.
Free and hard particles sliding between the ZrO2 ball and the steel can play the role of
a third body in abrasive wear [2,14]. The cyclically crushed powder would also adhere
to the steel, which becomes a hard layer due to the oxidization and the internal residual
stress [27].

On the other hand, under the load of 10.0 N, the mean Hertz stress was calculated as
1060 MPa (= 3.27σy). In this case, at least at the early sliding stage, without the occurrence of
the wear of the ball, the interior plastic region is greatly enlarged to the surficial deformation
under the contact point. Hence, the CSGA under 10.0 N (Figure 6b1) climbed to more
than 10 times that under 2.0 N. The CSGA under 10.0 N also apparently increased when
prolonging the sliding time. In the case of considering the wear of the ball, the actual stress
level will essentially decrease. Perhaps the accumulation of powder under 10.0 N became
less due to the enhanced removal ability of the ZrO2 ball. In addition, broader wear cycles
were observed under 10.0 N.

The CSGAs obtained in deionised water (Figure 6c,d; without Na2SO4) were smaller
than in the air. This was ascribed to the water’s lubrication effect and the passivated
surface’s existence: a smaller coefficient of friction at 0.43 in water than that at 0.66 in the
air. This will be shown later. Under the load of 2.0 N, the groove (Figure 6c2,c3) became
wider with the increase in sliding time. From the profile after 1.0 h sliding (Figure 6c2),
the groove became even higher than the original surface, which is strong evidence of the
accumulation of wear particles. Severer tribocorrosion occurred under a load of 10.0 N
than 2.0 N. The wear particle flowed out to the solution, leaving a groove. Considering the
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passivation tendency of SUS430 in water is strong, the passive film could also significantly
influence the above plastic deformation [28–30].

3.3. Tribocorrosion Behaviour in Solutions with Various pH

Figures 7–10 depict the CSGAs, the morphologies, and the depth profiles of the formed
grooves after sliding in solutions with various pH under different loads, respectively. Only
at pH = 1.0 does apparent corrosion occur from the unworn surface (without direct contact
with the ZrO2 ball); therefore, two types of CSGA based on the original and the corroded
surfaces were drawn (Figures 7 and 8). Their difference corresponds to the corroded depth.
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3.3.1. Tribocorrosion in Acid Solutions

At pH = 1.0, the ratios of CSGA based on the original surface for 3.0 h vs. 1.0 h sliding
are 6.0 (under 2.0 N; Figure 7) and 4.7 (under 10.0 N; Figure 8), respectively. Remarkably,
under 2.0 N, the CSGA at pH = 1.0 was even smaller than at pH = 2.0, indicating their
different tribocorrosion mechanism. Significantly different from values obtained in air
and water (Figure 6), the groove at pH = 1.0 and under 2.0 N was smooth, indicating the
simultaneously occurrence of wear and the loss of wear particles. The wear particles might
have dissolved or flowed out to the solution. Inoue and Tsuchiya suggested that an increase
in the cathodic reaction occurred on the freshly cracked surface of stainless steel in acid
solution with low corrosion potential [31,32]. Therefore, the dissolution of wear particles
here should be evident for the enhanced cathodic reaction from the worn surface. Under
the load of 10.0 N, the groove surface (Figure 8c1,c2) became rougher, leaving small pits
(black) after 1.0 h and large concaves (bright zones) after 3.0 h.
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For any designated load and sliding time, the CSGAs at pH = 2.0 are larger than
pH = 2.7. The larger load or the longer sliding period brought about by larger CSGA is
usually described as Archard’s coefficient [6]. The ratios of CSGA at pH = 2.0 for 3.0 h vs.
1.0 h are 2.8 (under 2.0 N; Figure 7) and 4.4 (under 10.0 N; Figure 8), while those at pH = 2.7
are 3.3 (under 2.0 N; Figure 7) and 3.9 (under 10.0 N; Figure 7). Under 2.0 N (Figure 7),
sites of spalling from the groove surface can be seen, more in the order of pH = 2.0 after
1.0 h > 3.0 h > pH = 2.7 after 1.0 h > 3.0 h. Under 10.0 N (Figure 8), small spalling and
remarkable scratches were observed.

3.3.2. Tribocorrosion in Neutral and Alkaline Solutions

As shown Figures 6c and 9, under the load of 2.0 N, the CSGA obtained at pH = 7.0
(containing 0.05 M Na2SO4) is near 20 times that in deionised water (absence of Na2SO4).
The free ions in the solution should have promoted tribocorrosion through the enhanced
macro-cell reaction. According to the polarization measurement (Figures 3 and 4), the
corrosion in either solution with pH = 7.0 and 10.0 is slow and the passivation tendency is
high. The tribocorrosion in these cases should be closely related to the cyclically destroyed
and fixed passive films, which play both roles of accumulation and lubrication.

However, the tribocorrosion behaviour at pH = 7.0 and 10.0 seemed much different.
Under the load of 2.0 N (Figure 9), the CSGA ratio of 3.0 h vs. 1.0 h at pH = 7.0 is 3.6. On the
other hand, the CSGA at pH = 10.0 after 1.0 h is much larger than at pH = 7.0, dramatically
decreasing to a much smaller value after 3.0 h. The latter is ascribed to the accumulation of
wear particles, which can be inferred from the observed higher zones (right dark brown)
than their surrounds. Although almost the same polarization curves were obtained at
pH = 7.0 and 10.0, the passive film at pH = 10.0 was thicker [7]. The cyclic detachment of
passive film at pH = 10.0 during the initial 1.0 h resulted in a large CSGA. Under the load
of 10.0 N (Figure 10), the scratch from the ZrO2 ball effectively removed the wear particle
from the groove, causing a highly increased CSGA value after 3.0 h.
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3.4. Comparison of Wear and Tribocorrosion Volumes

The CSGAs and groove profiles are depicted in Figures 6–10. Here, the wear and
tribocorrosion volumes were further calculated from CSGA by Equation (2), as shown in
Figure 11. Since all the sliding radii are set to 5.0 mm, the wear or tribocorrosion volumes
are linearly proportional to CSGA. The smallest volume was obtained under either load or
sliding time in the deionised water, followed by the second-smallest values at pH = 7.0 or
10.0. In these neutral and alkaline solutions, the easily formed or reformed passive film
should have played an essential role in suppressing the tribocorrosion. Furthermore, fewer
free ions in the deionised water enhanced the above effect.
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Under the load of 2.0 N and after the 1.0 h sliding (Figure 11a), although the apparent
corrosion only occurred at pH = 1.0, the largest tribocorrosion volume was obtained at
pH = 2.0, followed by the next-largest one at pH = 2.7. The volume based on the corroded
surface at pH = 1.0 was even less than that at pH = 10.0, indicating their large difference in
tribocorrosion mechanisms. Under the load of 2.0 N and after the 3.0 h sliding (Figure 11b),
the largest volume was also still obtained at pH = 2.0, but the second-largest one reached
that at pH = 1.0. Their volumes are much larger than in the air, indicating a strong impact
of corrosion. Accumulation of wear particles occurred in the air, but not in acid solutions.
Under the load of 10.0 N and after the 1.0 h sliding (Figure 11c), the largest volume was
obtained in the air. The second-largest volume was obtained at pH = 1.0 and gradually
decreased with pH increase. The volume from the corroded surface at pH = 1.0 was larger
than pH = 2.0, showing the large impact of protons on tribocorrosion. The large load
enwidens the interior plastic region to the surficial side, accelerating the tribocorrosion.
Under the load of 10.0 N and after the 3.0 h sliding (Figure 11d), the largest volume was
obtained at pH = 1.0, while the second-largest in air depicts almost the same level as in
other acid solutions. The volumes in air and solutions at pH = 2.0 and 2.7 were near that at
pH = 1.0 from the corroded surface.
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3.5. Comparing Coefficients of Friction and Archard Wear Coefficients

The coefficient of friction and the tribocorrosion behaviour mutually influence each
other. A higher friction coefficient brings about higher shear stress to the steel. Figure 12
shows the averaged friction coefficient under the load of 2.0 N at the rotation of 60 rpm for
900 s. The error bar means the maximum and the minimum values. Note that the friction
coefficient in either solution increased with the sliding time, indicating the continuously
varying contact state. The friction coefficient gradually increased with the increase in pH
values, while the value in deionised water was near that at pH = 10.0. Compared to air,
deionised water should have played a role in lubrication through the passivated surface.
In the neutral and alkaline solutions, the passive hard film with a different composition
from the substrate changes the contact state. In the acid solutions without passive film, the
dissolution of the metal adhered to the ball should have been promoted, resulting in a low
friction force. Although the fatigue failure of the surficial and sub-surficial metal has been
observed with shakedown [26], a clear relationship between friction coefficient and wear
volume was not observed here, showing the complicated mechanism of the tribocorrosion.
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The Archard wear coefficient (k) was computed by Equation (6) to express the tribo-
corrosion tendency under unit load and sliding period (Figure 13). Here, H is the Vickers
hardness of the steel (1.7 GPa: 1.0 kg, 12.5 s, six measurements), and d is the sliding distance.
The environmental factor of the pH value is not included in the equation; therefore, each k
value means a property of the steel in a specific solution.

k =
V·H
F·d (6)

The k value largely decreased from the acid to the neutral/alkaline solution, similarly
to the nonlinear relationship obtained from the steel coupled with graphite (with passive
film) [6]. In acid solutions and under the load of 2.0 N, the largest k value at pH = 2.0 can
be attributed to a synergistic effect from the weak scratch, the weak active corrosion, and
the galvanic accelerated corrosion. Under the load of 10.0 N, the k value monotonously
decreased from pH = 1.0 to 2.7, indicating that reduced corrosion played a significant
role. On the other hand, except under 2.0 N for 3.0 h, the k value at pH = 10.0 was larger
than pH = 7.0, which might be due to the cyclically lost thicker film at pH = 10.0. Even in
a solution with the same pH, the k value varied with different loads and sliding periods.
Except for the load and the sliding time, the accumulation of corrosion powder and its
lubrication cannot be neglected in discussing the mechanism of tribocorrosion.
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3.6. Synergistic Influence for Corrosion and Wear

As described before, the locally occurring tribocorrosion caused the loss of steel
both from the sliding circle and from the unworn surface, either of which can be directly
measured by the profile analysis. The loss of steel from the unworn surface is apparent at
pH = 1.0. Furthermore, the volume of the groove includes both the corroded and the worn
steel. The former electrochemically dissolved and the latter mechanically detached from
the steel. They synergistically affect each other. As mentioned later, the corrosion rate at the
sliding circle is not equal to either the freely immersed one or that at the unworn surface.
Even measuring the concentration of the dissolved metal ions in the solution cannot be
used to induce the electrochemically corroded amount, considering the self-dissolution of
the loose particles from the steel. The mechanical wear is more complex than that in air
or deionised water. Several papers have mentioned the combined influence of corrosion
and wear in the tribocorrosion process [2,14,33–36]. Here, simply not considering the
self-dissolution of the leaved particles from the steel, the total lost steel (Vt) under the ZrO2
ball from the sliding circle in tribocorrosion can be ideally depicted as Equation (7).

Vt = Vwc + Vcw (7)

Vwc and Vcw represent the mechanical wear containing that accelerated by corrosion
and the chemical corrosion containing that accelerated by wear, respectively. Corrosion
generally roughens and destabilizes the surface [37–39], promotes crack propagation [40,41],
and dissolves the work-hardened layer [37] or the wear particle. On the other hand,
wear also roughens the surface and produces the wear particle, which brings about a
local electric field for corrosion [37]. Wear removes the passive film, works to harden
the surface layer, and yields dislocations, which results in an unstable surface for easy
corrosion [42,43]. The surface change during tribocorrosion brings about a galvanic effect
on the whole surface. Therefore, the separation of Vwc and Vcw can give deep insight
into the actual mechanism of tribocorrosion. Equation (7) is near that proposed by Jiang
et al. [41,44], but not that proposed by Uhlig’s model [14]. The latter did not consider the
synergistic effect of corrosion and wear. The synergistic effect was contained in Vwc and
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Vcw, but not the separately listed ones in the literature [45]. Much more compilated models
containing the influence of cyclic loading, corrosion fatigue, and stress corrosion cracking
were also proposed; however, experimentally distinguishing each specific effect is still
challenging [44].

Only at pH = 1.0 was apparent corrosion detected on the unworn surface. Figure 14
depicts the corroded depth from the unworn surface in this case. Here, the condition of
0.0 N means free immersion, i.e., no contact of the ZrO2 ball with the specimen. A Teflon
tape protected four corners of the rectangle specimen as the uncorroded surface. After free
immersion or tribocorrosion, the corrosion depth was measured between the protected
and corroded surfaces. The corroded depth after 1.0 h free immersion (without sliding:
0.0 N) was also calculated from the polarization curve’s current density, as shown with a
white triangle in the same figure. The directly measured depth by laser microscopy and
the polarization curve’s calculated depth were almost identical. On the unworn surface,
the corroded depth under the load of 2.0 N after 1.0 h sliding (0.64 µm) was only about
half of that without load (free immersion: 1.15 µm), and the depth after 3.0 h (5.50 µm)
was larger than that without load (free immersion: 4.28 µm). Under the load of 10.0 N,
the corroded depth on the unworn surface after 1.0 h sliding was almost the same as that
without load, and the depth after 3.0 h sliding (8.34 µm) was much larger than that without
load (4.28 µm). Therefore, it is in no doubt that the corrosion on the unworn part was
primarily affected by the sliding. Significantly, the reduced corrosion by sliding under
2.0 N for 1.0 h seems complex.
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The above facts show the distribution of cathodic and anodic currents on the free surface
and the unworn/sliding surface at pH = 1.0, schematically demonstrated in Figure 15 a,b. In
the absence of load and sliding, equal cathodic and anodic currents are evenly distributed on
either part of the surface (Figure 15a; F and F*: free surface). During the first hour of sliding,
the anodic current on the unworn surface was only half that of the free immersion (Figure 14).
From an additional electrochemical noise (EN) measurement, an electron flow was confirmed
from the unworn part to the sliding track (W**: worn surface) (Figure 15b). Therefore, the
cathodic current on the unworn surface should be weaker than its neighbouring anodic one.
The anodic current on the sliding surface (corresponding Vcw in Equation (6)) should be weaker
than its neighbouring cathodic one. Moreover, considering the hydrogen gas bubbles were
removed from the sliding surface by the moving ZrO2 ball, both the active sites for protons’
reduction and the proton density on the sliding surface should be more than on the unworn
surface. As a result, the cathodic current on the worn surface (Figure 15b) was reasonably
higher than before applying load (Figure 15a). Tsuchiya et al. [31] also proposed a proton’s
increased cathodic reaction on a scratched SUS304 surface at pH = 5.6 and corrosion potential of
-390 mV vs. SCE, explained by the activated surface for the reduction of protons. Accelerated
corrosion on the unworn surface of carbon steel of AISI 1045 was also observed in seawater
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with pH = 8.2, but the reason was not clarified [36]. On the other hand, the anodic current on
the sliding surface (Figure 15b) should be lower than that without applying load (Figure 15 a)
because the maximum depth of the groove (1.30 µm) was very near to the corroded depth in
the absence of load (1.15 µm). More work is necessary to clarify such a phenomenon. Perhaps
the promoted cathodic reaction on the sliding surface occurred due to the direct removal of
hydrogen bubbles and then caught electrons from the near sliding surrounds (Figure 15b: right).
Next, electrons immigrated from the unworn surface (Figure 15b: left) with the cathodic reaction
suppression, followed by the suppressed anodic reaction on the unworn surface. Such changed
hydrogen evolution might influence the hydrogen entry behaviour in steel [46]. On the other
hand, the reason for deeper corrosion under 10.0 N or for 3.0 h (Figure 14) is not known. Under
the load of 2.0 N, a reversed electron flow at pH = 2.0 was confirmed in the EN measurement
from the sliding track to the unworn part, which should be the reason for obtaining the severer
tribocorrosion than at pH = 1.0.
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Figure 15c,d show the distribution of cathodic and anodic currents on the free surface
and the unworn/sliding surface in neutral and alkaline solutions. The passive film forms
on the surface, resulting in an anodic current much lower than dissolved oxygen’s diffusion
limit current density. An electron flow from the sliding track to the unworn part with
a potential drop was in situ-detected when sliding started. This phenomenon means
an accelerated anodic reaction on the sliding track [37,47]. In these neutral and alkaline
solutions, corrosion fatigue and stress corrosion cracking might also occur under cyclic
loading, which Von Der Ohe proposed as the multi-degradation model [44].

As described before, clarifying Vwc and Vcw helps to understand the mechanism of
tribocorrosion, which can promote the development of a practical assessment method. In
particular, the influence of sliding on the corrosion at the unworn surface is meaningful
in clarifying the whole mechanism of tribocorrosion. To clarify such tribocorrosion issues
for stainless steels and other alloys, well-designed in situ measurement of electrochemical
signals is necessary in future investigations.

4. Conclusions

The tribocorrosion behaviour of SUS430 stainless steel was investigated in aqueous so-
lutions with different pH to clarify the influence of passivation. Different loads and sliding
times were applied to examine the impact of plastic deformation and the accumulation of
wear particles. Together with the polarization behaviour, the worn or tribocorroded surface
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was observed by laser microscopy. The depth profiles of the formed groove were used to
discuss the mechanism of the tribocorrosion. The obtained conclusions were as follows.

The polarization behaviour of SUS430 steel essentially changed with the pH of the
solution. Passive film existed at pH = 7.0 and 10.0, but vanished at pH = 1.0 and 2.0.

The wear in the air largely depended on the applied loads. Less influence of sliding
time was detected under 2.0 N due to the accumulation of wear particles. On the other hand,
the tribocorrosion in deionised water was much less than the pure wear in air, partially
ascribed to the low friction coefficient in water.

Depending on the load and the sliding period, spalling off from steel occurred at
pH = 1.0–2.7. The formed grooves were smooth without the accumulation of wear power.
Under the load of 2.0 N, the tribocorrosion at pH = 1.0 was weaker than pH = 2.0. However,
the situation reversed when the load was increased to 10.0 N.

Due to slow dissolution and the cyclically reformed passive film, tribocorrosion in
neutral and alkaline solutions is considerably less than in acid solutions.
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