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Abstract: To improve the infrared emissivity and the ablation resistance of HfB2/SiC/TaSi2 coat-
ings for serving in heat flux of 4400 kW/m2, HfB2/SiC/TaSi2 coatings with different contents of
high-emissivity Gd2O3 were prepared using atmospheric plasma spraying. The highest emissivity in
3–5 µm can reach up to 0.92 at 1273 K when the Gd2O3 content is at 10 vol.%. The increase in the
emissivity is attributed to the additional electronic transitions induced by oxygen vacancies, which
are generated by substituting Hf4+ with Gd3+. Due to the high emissivity, the surface temperature of
the coating modified with 10 vol.% Gd2O3 was decreased by ~100 K. Meanwhile, the mass and the
liner ablation rate are confirmed to be 4.28 × 10−7 kg/s and 2.15 × 10−7 m/s, respectively, which
are decreased by 80% and 31% compared to the undoped HfB2/SiC/TaSi2 coating. During ablation,
HfB2/SiC/TaSi2/Gd2O3 coating was oxidized to HfO2, Gd2Ta2O7, HfSiO4, and GdTaO4. A stable
Hf–Ta–Gd–Si–O multiphase glass was formed on the surface of the coating, which could restrain
oxygen penetration. However, the excessive amount of Gd2O3 is detrimental to the ablation perfor-
mance due to its consumption of the SiO2 glass layer. These findings indicate that the addition of an
appropriate amount of Gd2O3 could improve the anti-ablation performance of the modified coating.

Keywords: ablation; HfB2/SiC/TaSi2/Gd2O3; emissivity; oxidation mechanism

1. Introduction

Carbon/carbon (C/C) composites have been used as structural and thermal compo-
nents owing to their excellent mechanical properties and thermal resistance. However, the
poor oxidation resistance of C/C limits its application in hypersonic vehicles [1,2]. The
preparation of ultra-high-temperature ceramics (UHTCs) on the surface of C/C composites
can block direct contact between C/C and oxygen at higher temperatures [3].

HfB2 is a representative UHTC with a low thermal expansion coefficient, high thermal
conductivity, low catalytic coefficient, and high-temperature phase stability [4,5]. It has
been reported that HfB2 has good oxidation resistance below 1473 K by forming liquid
B2O3, which can hinder oxygen penetration and seal cracks and holes. However, when
the temperature exceeds 1473 K, its protective ability is destroyed owing to the rapid
volatilization of B2O3 [6]. It has been reported that adding 20–30 vol.% SiC to HfB2 can
result in excellent antioxidant ablation performance below 1873 K [7]. Nevertheless, the
formation of a SiC-depleted region remains a problem for the HfB2–SiC system. The
additional introduction of TaSi2 improves the density and oxidation resistance of UHTCs
as an additive phase because Ta2O5 reduces the volatilization rate of the glass SiO2 phase.
Opila et al. [8] conducted a detailed analysis of the effect of TaSi2 addition to borides and
showed that the addition of Ta can enhance the glass-phase viscosity and reduce HfO2
oxygen vacancies. However, it was also pointed out that the addition of TaSi2 did not
enhance the antioxidant capacity of the coating at 2073 K and higher. Zhang et al. [9]
have prepared HfB2–SiC–TaSi2 coating by a spark plasma sintering process and studied
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its oxidation behavior below 2073 K; the results showed that the generated Hf–Ta–B–Si–O
composite glass layer could effectively reduce the coating-like diffusion rate and enhance
the oxygen barrier ability of the coating.

However, TaSi2 did not improve oxidation protection capability above 2073 K be-
cause of Ta2O5 volatilization and melting of the metal oxides. This also renders the
HfB2/SiC/TaSi2 system unable to meet the demands for high-temperature use. Therefore,
it is urgent to seek a more stable additive phase for the HfB2-based composite system in
ultra-high-temperature environments (≥2073 K).

In addition to improving the high-temperature properties of UHTCs, adding a radi-
ation component to UHTCs is an effective way to indirectly improve high-temperature
properties through cooling of the surface temperature during hypersonic flight via rera-
diation of the absorbed heat [10]. Preliminary work has indicated that rare-earth iron or
rare-earth oxide doping can improve the surface infrared emissivity of coatings, which, in
turn, enhances the radiation exchange capacity; this coupling can promote the antioxidant
properties of the coatings [11–18]. Tan et al. [19] have studied the oxidation protection
of a rare-earth-modified ZrB2–SiC coating using an oxyacetylene torch and found that
rare-earth-modified coatings (Sm2O3 or Tm2O3 modified ZrB2–SiC) displayed high ther-
mal stability and offered additional oxidation protection. Liu et al. [13] have prepared
REO–HfO2 (REO = rare earth oxide = Tb4O7, Gd2O3, or Sm2O3) coatings and pure HfO2
coatings using atmospheric plasma spraying (APS) and studied the infrared radiation
performance of these coatings. The results showed that the REO–HfO2 coatings displayed
higher infrared emissivity than pure HfO2 coatings and exhibited excellent thermal re-
sistance at 1873 K without undergoing a phase change and exfoliation. Tan et al. [14]
have studied the hemispherical emissivity and ablation resistance of a Sm-doped ZrB2/SiC
coating and found that 5 mol% Sm-doped ZrB2/SiC coating had the highest emissivity with
dense oxide scale formation. Previous studies have shown that doped REOs could exhibit
better oxygen-blocking capability and form a dense oxide scale upon oxidation [20–24].
Feng et al. [20] and Li et al. [21] have prepared La2O3-modified HfC–SiC coatings and ZrB2
coatings by supersonic atmospheric plasma spraying (SAPS), and the results showed that
the incorporation of La2O3 could improve the ablation resistance. Wang et al. [22,23] have
prepared Y2O3-modified MoSi2 coating by SAPS, and the results showed that adding Y2O3
at an appropriate concentration could increase the viscosity of SiO2 glass. Qian et al. [24]
have studied the oxygen-blocking capability of La2O3-modified HfB2–SiC coating and
found that 10 vol.% of La2O3 additive could improve the oxygen barrier properties.

Gd3+, as a lanthanide rare earth element in the middle position, has an oxide Gd2O3
with a melting point of ~2603 K, which is higher than that of Ta2O5 (2058 K). Meanwhile,
Gd2O3 can react with the coating oxidation product HfO2 to form Gd2Hf2O7, thus influenc-
ing the structural stability of the oxide layer. Gd2Hf2O7 has a cubic pyrochlore structure
(Fd3m) with a maximum pyrochlore–fluorite transition temperature of 2600–2800 K, and
no Gd2Hf2O7 structural changes are observed below this temperature [17]. Due to the high
melting point of Gd2O3 and high infrared emissivity and its ability to influence thermal
stability, Gd2O3 can be added to HfB2/SiC/TaSi2 coatings to improve the high-temperature
oxidation resistance properties (>2073 K) of the coatings. However, there are few studies
on Gd2O3-modified coatings, and the effect of Gd2O3 at different contents on the ablation
resistance of HfB2/SiC/TaSi2 has not been reported.

In this study, Gd2O3-modified HfB2/SiC/TaSi2 coatings were prepared by APS. The
microstructure and component distribution of the coatings were examined to study the
effect of varying contents of Gd2O3 on the characteristics of the coatings. In addition, the
infrared radiative performance and ablation behavior of the coatings were systematically
investigated to evaluate the effect of emissivity on the anti-ablation resistance properties
of the Gd2O3-modified HfB2/SiC/TaSi2 coatings. Our findings will provide candidate
materials for UHTCS, aiming at its potential ultra-high-temperature application in the
aerospace field.
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2. Experimental Procedure
2.1. Preparation

HfB2 particles (size range 1–3 µm, purity ≥ 99.9%, Beijing Zhongjinyan New Material
Technology Co., Ltd., Beijing, China), SiC particles (size range 1–3 µm, purity > 99.9%,
Beijing Zhongjinyan New Material Technology Co., Ltd.), TaSi2 particles (size range 1–3 µm,
purity ≥ 99.9%, Beijing Zhongjinyan New Material Technology Co., Ltd.) and Gd2O3
particles (500 µm, purity ≥ 99.9%, Beijing HuaweiRuike Chemical Co., Ltd., Beijing, China)
were used as raw materials for the preparation of HfB2, SiC, TaSi2, and Gd2O3 agglomerate
powders, respectively. Five HfB2/SiC/TaSi2/Gd2O3 mixtures with different ratios were
designed, as listed in Table 1. Among the five mixtures, the volume ratio of TaSi2 and
SiC remained unchanged, and the volume ratio of Hf to Si in each group was fixed at 7:3,
whereas the addition of Gd2O3 was varied at 0, 5, 10, 15, and 20 vol.%.

Table 1. As-prepared coating composition.

Sample HfB2 (vol.%) SiC (vol.%) TaSi2 (vol.%) Gd2O3 (vol.%)

Gd0 77.8 11.1 11.1 0
Gd5 73.8 10.6 10.6 5
Gd10 70 10 10 10
Gd15 66.2 9.4 9.4 15
Gd20 62.4 8.8 8.8 20

The raw particles were ball milled (JM-15L, Changsha Tianchuang Powder Co., Ltd.,
Changsha, China) with deionized water (Beijing Wanxin Chemical Industry Trade Center,
Beijing, China) and PVA (0.4 wt%, Forsman Technology (Beijing) Co., Ltd., Beijing, China)
for 5 h to produce a uniform slurry. The slurry was then immediately injected into a spray
drying apparatus (Wuxi Dongsheng LGZ-8 spray drier, Wuxi, China) to agglomerate the
powders. Before spraying, the agglomerated powders were treated using induction plasma
spheroidization (IPS) to improve their density and sphericity. The IPS-treated particles
with a particle size of 10–50 µm were sieved and used as feedstock powders for APS.
The IPS treatment of the powders was carried out using a PL-35 model system (TEKNA
Plasma System Inc., Sherbrooke, Canada). The other parameters of the IPS treatment of the
HfB2/SiC/TaSi2/Gd2O3 agglomerate powders are listed in Table 2.

Table 2. Parameters of IPS procedure.

Parameter Set Value

Ar flow rate (m3/s) 4.7 × 10−4

H2 flow rate (m3/s) 4.7 × 10−5

Processing chamber pressure (kPa) 1.0 × 102

Power (kW) 30

The coatings were prepared with US-made Praxair GTS-5500 equipment using APS,
and the plasma torch used was SG 100. Powders were plasma sprayed onto C–C substrates
(ø 0.025 m × 0.010 m) with an average coating thickness of roughly 200–250 µm. The
parameters used for the deposition of the coatings are listed in Table 3.

Table 3. Parameters of the APS process.

Parameter Set Value

Current (A) 9.0 × 102

Main gas: Ar (m3/s) 1.5 × 10−3

Auxiliary gas: He (m3/s) 8.3 × 10−4

Carrier gas: Ar (m3/s) 2.0 × 10−4

Spraying distance (m) 7.5 × 10−1
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For convenience, a naming convention based on the actual Gd2O3 concentration was
used. For example, the Gd5 coating contains 5 vol.% Gd2O3 in the HfB2/SiC/TaSi2 coating.

2.2. Ablation Testing

The oxyacetylene flame (OAF) was selected to evaluate the anti-ablation property
of the HfB2/SiC/TaSi2/Gd2O3 coatings. To achieve a long-term ablation of 180 s, the
Mini-spray jet (Gastechnik GmbH & Co. KG, Neustadt/Wied, Germany) equipped with
cooling air was used as the oxyacetylene spray gun in the OAF equipment. The local
heat flux of the flame was measured using a Gordon gauge (AnYi Instrumentation Ltd.,
Shanghai, China), and the surface temperature of the specimens was obtained using an
MR1S dual colorimetric infrared thermometer (Raytek Marathon, Santa Cruz, CA, USA).

During ablation, the distance between the gun and the specimen was 0.045 m. The
pressure and flow rate of oxygen and acetylene were 0.5 MPa, 2.5 × 10−4 m3/s, and
0.05 MPa, 1.7 × 10−4 m3/s, respectively. In this case, the peak heat flux of the flame was
4400 kW/m2. The ablation property of the coatings was characterized using the mass and
linear ablation rates, which were calculated by the following formulae:

Rm =
∆m
∆t

(1)

Rl =
∆l
∆t

(2)

where ∆m and ∆l are the change in the mass and thickness of the sample, respectively, and
∆t is the ablation time. The ablation rates of the samples were based on the average values
calculated for five formulation samples.

2.3. Characterization

The composition of HfB2/SiC/TaSi2/Gd2O3 coatings before and after oxidation testing
was analyzed by X-ray diffraction (XRD, X’ Pert PRO), with Cu Kα radiation, a step-size
of 0.04◦/s, and a 1 s counting rate. The morphology of the coatings was analyzed by
scanning electron microscopy (SEM, JSM-6460), and energy dispersive spectroscopy (EDS)
was used for elemental analysis. The porosity of the sprayed coatings before ablation was
estimated by image analysis using Image J software and the average from 10 pictures was
taken for each sample. An infrared spectrometer (IR-2, Shanghai Chengbo Optoelectronic
Technology Co., Ltd., Shanghai, China) was employed to measure the infrared emissivity
of the coatings at room temperature, whereas the infrared emissivity at 1273 K was tested
using a Nicolet 6700 infrared radiation instrument at the China National Supervision and
Test Center for Infrared and Industry Galvanothermy Product Quality (Wuhan, China).

3. Results and Discussion
3.1. Phase Composition and Morphology of as-Sprayed Coatings

Figure 1 shows the XRD patterns and probable phases of the as-prepared coatings
before ablation. As shown in Figure 1, the phase composition of the as-prepared coatings
was mainly HfB2 (PDF#75-1049, hexagonal, and spatial group structure is P6/mmm (191)),
and diffraction of SiC and TaSi2 was not observed. The reasons for the disappearance of the
SiC and TaSi2 diffraction peaks may be as follows: (i) HfB2 and SiC form a eutectic phase,
HfSi2 (PDF#72-1201, orthorhombic, and spatial group structure is Cmcm (63)), during the
process [25]. (ii) The amount of TaSi2 is relatively small. (iii) There is a low penetration
depth of X-rays in SiC. In addition, the Gd2O3 (PDF#86-2477, cubic, and spatial group
structure is la-3(206)) phase was found in the Gd5, Gd10, Gd15, and Gd20 coatings, and the
intensity of the Gd2O3 diffraction peak gradually increased with increasing Gd2O3 content.
It can be seen in Figure 1 that the Gd2O3 not only reacted with other phases, but also did
not melt with the other phases. The HfO2 (PDF#21-0904, orthorhombic, and spatial group
structure is Pbcm (57)) diffraction peak was observed in all five coatings, indicating that
the powder at the edge of the jet during the spraying process was oxidized by O2 in air
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owing to the absence of a protective atmosphere. In addition, the agglomerated powders
in the center of the jet inevitably react with oxygen when sprayed onto the C–C substrate.
HfO2 was also produced while the powder on the substrate cooled down.
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Figure 2 shows the surface morphology of the as-sprayed coatings. All five coatings
show good powder-spreading characteristics with few surface undulations and flat fusion
condensation spreading layers. This planar laminar feature can increase the contact area
with the deposited powder, reduce the interlayer defects caused by differences in shape
orientation, and facilitate a dense coating. In particular, the spreading performance of the
coating improved with increasing Gd2O3 content. This indicates that the introduction of
Gd2O3 with a lower melting point can improve the deposition effect of the powder and
increase the density of the coating.

Figure 3a–e show the cross-sectional morphology of the as-sprayed coatings. It can be
seen that the thickness of all the coatings was 200–300 µm, and these coatings were perfectly
integrated with the C–C substrate. It can be seen that the Gd0 coating has a large coarse area.
With an increase in Gd2O3 addition, the loose area decreases and the cross-sectional spalling
crater characteristics gradually weaken. Table 4 lists the porosity of the five coatings. It
can be seen that the coating porosity decreases from 19.91% to 11.28%, indicating that the
introduction of Gd2O3 improves the powder deposition efficiency and helps to enhance the
coating density. With increased density, resistance to oxidation improves. Figure 3f shows
the elemental distribution of the Gd10 coating, and it can be seen that the Hf, Ta, Si, and
Gd in the coating are uniformly distributed, indicating that there was no elemental bias
inside the coating.

Table 4. Porosity of as-prepared coatings.

Sample Porosity (%)

Gd0 19.91
Gd5 18.55

Gd10 16.73
Gd15 12.32
Gd20 11.28
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3.2. Infrared Radiation Property of as-Prepared Coatings

Figure 4 shows the infrared emissivity of the Gd2O3-modified coatings at room and
high temperature in the 3–5 µm band. At room temperature, the emissivity increased from
ε = 0.69 for the Gd0 coating to ε = 0.72, 0.73, 0.74, and 0.71 for the Gd5, Gd10, Gd15, and
Gd20 coatings, respectively. At temperature T = 1273 K, the emissivity increased from
ε = 0.85 for Gd0 coating to ε = 0.88, 0.92, 0.91, and 0.89 for the Gd5, Gd10, Gd15, and Gd20
coatings, respectively. The emissivity improved with an increase in Gd2O3 content, and the
highest emissivity was reached for the Gd15 coating at room temperature and the Gd10
coating at high temperatures. Moreover, the high-temperature emissivity was much higher
than that at room temperature for all five coatings. This is attributed to the increased lattice
vibration and electron–phonon coupling at high temperatures, which improves infrared
lattice absorption and multi-phonon absorption.
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The above variation in emissivity can be attributed to two reasons: Gd2O3 has a high
emissivity [26] and Gd3+ ions with larger radii and lower atomic weights enter the HfO2
lattice, occupying the Hf4+ ion positions. Some oxygen ions in the lattices spill over to form
oxygen vacancies, which then attract and trap electrons to form color centers [27]:

Gd2O3
H f O2→ 2Gd′H f + 3OO + V..

O

OO → V..
O + 2e− + 1/2O2

where Gd′H f is a Gd3+ ion occupying the position of Hf, OO represents O2− ion in its normal
position, V..

O is an oxygen vacancy, and e− is an electron.
The oxygen vacancies and color centers are the same as those in this discussion.

Oxygen vacancies can cause localization of the electronic state in the material bandgap,
promoting additional electronic transitions. According to [28], neutral oxygen vacancies
significantly increase the emissivity of ZrO2, owing to a mid-gap state caused by oxygen
vacancies in ZrO2. In this study, the oxygen vacancies produced by the substitution of Hf4+

with Gd3+ have energy levels inside the HfO2 band gap. Thus, both the Gd3+ emission
band and the oxygen vacancies produce localized energy levels inside the HfO2 band
gap, such that exciting electrons into these localized energy levels promotes increased
infrared emissivity. In addition, Gd2O3 could react with oxidation products (e.g., HfO2)
to form a new phase, Gd2Hf2O7. Because the cation radii ratio (rGd

3+/rHf
4+) is lower than

1.46 and there is an excess amount of anions (O2−), Gd2Hf2O7 has a defective fluorite-type
structure [13,29], which is expected to improve material emissivity.

When compared with the Gd0 coating, the maximum difference of the high-temperature
emissivity of Gd2O3-modified coating in the 3–5 µm band is 0.07, which is an improvement
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of 8.2%, indicating that the introduction of Gd2O3 has better infrared radiation performance,
and Gd2O3 mainly acts in the high-temperature oxidation phase of the coating.

Therefore, the improvement in infrared emissivity with increasing Gd2O3 content
from 0 to 10 vol.% can be attributed to the production of Gd-doped HfO2 and Gd2Hf2O7
phase because they both have high emissivity. When doped with 10 vol.% Gd2O3, the
Gd-doped HfO2 reaches a saturated doping state. The decrease in infrared emissivity with
an increase in Gd2O3 content from 10 to 20 vol.% is due to the reduction of Gd-saturated
HfO2, which has a higher emissivity than Gd2Hf2O7.

3.3. Ablation Resistance of Coatings
3.3.1. Macro-Oxidation Behavior of the Coatings

Figure 5 shows the local heat flux distribution and surface temperature curves of
the coatings during 180 s of ablation. As shown in Figure 5a, the peak heat flux was
4400 kW/m2 within a radial distance of 0.002 m, and the heat flux values decreased radially
outwards. Illustrations (i) and (ii) in Figure 5b show flame photographs during the free
jet and ablation tests, respectively. Because the ablation gun in this study had a cooling
device, the free jet flame length was 91 mm, which is shorter than the flame length without
a cooling device [30].
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Figure 5. Local heat flux distribution of oxyacetylene flame (a) and surface temperature curves of
Gd0, Gd5, Gd10, Gd15, and Gd20 coatings during ablation processes (b).

Figure 5b presents the surface temperature curves of the five coatings during heating.
The surface temperature increased rapidly for the Gd0 and Gd20 coatings and, subsequently,
it reached a steady state value equal to ~2173 K for the Gd0 coating and ~2073 K for the
Gd20 coating. For the Gd5, Gd10, and Gd15 coatings, the surface temperature increased
continuously during the ablation process, indicating that their oxidation products change
continuously in this ablation environment. During ablation, identical heating and thermal
convections occur in the ablation center; thus, the surface temperature is dominated by
heat radiation and conduction of the coating materials. Compared with Gd0 coating, the
Gd2O3-modified coatings exhibited a surface temperature ~100 K lower; this is consistent
with Gd2O3-doped coatings having a lower emissivity than Gd0 coating.

Macrographs of all the coatings before and after ablation are shown in Figure 6. The
ablation centers of the coatings that suffered the most heat flux were chosen to evaluate
their ablation resistance and detailed microstructure. Before ablation, the surfaces of all the
coatings appeared dark grey; therefore, Figure 6a was used to represent all the coatings. In
Figure 6b–f, the ablation edges of the five coatings changed to white. The ablation centers
of Gd0, Gd5, and Gd10 were white, whereas those of the other two coatings were yellow,
which is related to the Gd2O3 content. Additionally, edge warping appeared in the Gd0
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and Gd5 coatings, and spalling areas and bubbles appeared in the Gd20 coating. It can be
speculated that the Gd10 and Gd15 coatings exhibit better ablation resistance.
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Figure 7 shows the mass and linear ablation rates under the same ablation conditions.
The Gd0 coating exhibits the highest mass and linear ablation rates of 2.14 × 10−6 kg/s and
3.13 × 10−7 m/s, respectively. With an increase in the Gd2O3 content, the mass and linear
ablation rate of the composites decreased. When the addition of Gd2O3 was 10 vol.%, the
mass and linear ablation rates were 4.28 × 10−7 kg/s and 2.15 × 10−7 m/s, 80% and 31%
lower than those of the Gd0 coating, respectively. These results suggest that the oxidative
ablation resistance of the surface-modified composites was effectively improved by adding
Gd2O3. There are three possible reasons for this. First, the modified coatings have a denser
microstructure, as seen in Figures 2 and 3. Second, the emissivity of the modified coatings
is much higher than that of the coatings without modification, as shown in Figure 4. Third,
the ablative oxidation products of the modified coatings are more stable, producing a better
oxygen barrier.
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3.3.2. Microstructure Analysis of the Ablation Layer

Figure 8 shows the surface morphology and related EDS results of the ablated Gd0
and Gd5 coatings. After ablation for 180 s, a porous structure formed on the surface of the
ablated Gd0 coating (Figure 8a,b), and these open pores have a size larger than 10 µm. In
addition, the main phase is composed of Hf–Ta–O in the Gd0 coating in Figure 8c and no
SiO2 phase is detected. At a surface temperature of ~2173 K in the Gd0 coating, the SiO2
glass phase volatilizes violently, which causes serious structural damage to the surface,
resulting in a large number of open pores. Therefore, the oxide penetrates the internal
coating and causes a high mass ablation rate of the Gd0 coating (see Figure 7).
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(c,f). (a,b) Gd0; (c) EDS results of spot 1 in Figure 8b; (d,e) Gd5;(f) EDS results of spot 2 in Figure 8e;
(g,h) Gd10; (i,j) Gd15; (k,l) Gd20.
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With the incorporation of Gd2O3, the compactness of the oxide layer increases signifi-
cantly, as indicated by the surface morphology in Figure 8d–l. For the Gd5 coating, it can
be seen that there is a grayish-black liquid droplet that covers the surface of the cluster
particle tissue and occluded pores, and other defects can be seen on the surface, as shown
in Figure 8d,e. In Figure 8f, it can be inferred that the grayish-black liquid droplet is a
borosilicate glass phase, which is mainly composed of SiO2 and B2O3, and the presence of
this self-healing glass phase maintains the sealing property of the oxide layer.

For the Gd10, Gd15, and Gd20 coatings, it was found that the characteristics of glass-
phase coverage are gradually weakened compared with those of Gd5, and the surfaces
are mainly characterized by particle clusters (see Figure 8g,l). There are large micropores
(<1 µm) observed on these particle clusters under high magnification for the ablated Gd10,
Gd15, and Gd20 coatings (see Figure 8h,j and Figure 8l, respectively). The size of the micro-
pores decreased with increasing Gd2O3 content. The pores suggest the possible formation
of a liquid phase during oxidation. The liquid phase eventually becomes volatilized as the
local temperature exceeds the evaporation temperature. This liquid phase is likely B2O3,
SiO2, or a combination of both. Owing to the strong sealing of the coating resulting in
a shallow depth of oxygen erosion, there is no internal oxide layer of sufficient depth to
provide SiO2 transport for the surface layer. When the oxidation temperature is higher than
2073 K or the oxygen partial pressure is low, SiC undergoes active oxidation to generate
gaseous SiO, intensifying the generation of surface-layer pores.

Because of the similar surface morphology of the Gd10, Gd15, and Gd20 coatings,
the Gd10 coating was used for detailed morphology analysis. Figure 9 shows a high-
magnification image and the related EDS results for the ablated Gd10 coating shown in
Figure 8g,h. Lighter and darker regions can be observed. In Figure 9b,c, it can be seen that
spot1 (lighter region) is mainly composed of Hf, Ta, and Gd oxides, whereas spot2 (darker
region) is mainly composed of Hf and Gd oxides and a small amount of Si. Combined with
the fact that the surface of Gd10 still shows excellent oxidation resistance, it can be inferred
that in addition to the sealing effect of the glass phase, the introduced Gd2O3 is also a key
factor determining the oxidation resistance of the coating under the test conditions.
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The cross-sectional morphology of the ablated coatings is shown in Figure 10. Com-
pared with the cross-sectional morphology before ablation in Figure 3, the cross-sectional
morphology of the five coatings changed significantly after the ablation test, and the Gd2O3-
modified coatings show similar layered structure. Figure 11 shows the EDS point-to-point
line scan obtained across the Gd10 coating, starting from the ablated surface (x = 0 µm) to
the interior coating (x = 150 µm). The O content of the outer layer is significantly higher
than that of the inner layer, indicating that the outer layer is an oxide layer where oxidation
reactions occur, whereas the inner layer is non-oxidized. Therefore, the ablated coating can
be separated into a loose porous oxidized layer and a dense non-oxidized layer, and there
is a clear film between the two layers.
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The Gd0 coating was completely oxidized and there were many loose areas and large
holes in the cross-section. This may be due to internal B2O3 and SiO escaping to the surface
layer as well as the depletion of SiC. During the escape, the volatile gas damages the particle
structure, loosening the porous oxide layer. Because the surface temperature (~2173 K) of
the Gd0 coating is above the glass-phase volatilization temperature (Figure 5), the glass-
phase self-healing function cannot be performed, and, because of the large porosity of the
Gd0 coating, oxygen quickly penetrates the inner coating during the ablation process, and
the coating loses its oxygen barrier function.

With Gd2O3-modified coating, a layered structure can be observed. In the Gd5 coating,
large pores similar to those in the Gd0 coating are also observed, and the formation of these
pores is likely related to the depletion of SiC. However, the oxide layer of the Gd5 coating
is significantly thinner than that of the Gd0 coating. This can be attributed to the fact that
the addition of Gd2O3 increases the density of the Gd5 coating (Table 4), which, in turn,
hinders the diffusion of oxygen into the interior of the coating.

In the Gd10 coating, the oxidized layer appears relatively dense, and the thickness of
the oxidized layer is lower than that of the Gd5 coating. The microstructure of the Gd15
coating is similar to that of the Gd10 coating, which has a denser structure. In the Gd20
coating, the oxidized layer contains many pores and the thickness of the oxidized layer
increases compared to that of the Gd10 coating, further revealing that excessive Gd2O3
content aggravates the oxidation of the coating.

The thicknesses of the oxidized and non-oxidized layers of all the ablated coatings were
measured and are summarized in Table 5. It can be seen that the Gd10 and Gd15 coatings
exhibit the best oxidation resistance among all the coatings, having impact macrostructure
and the largest thickness of non-oxidized coatings after 180 s ablation. However, the Gd0
coating was completely oxidized during the ablation test. Therefore, doping with Gd2O3
was beneficial for oxidation resistance.

Table 5. Thickness of oxidized and non-oxidized layers for different coatings.

Coating Oxidized (µm) Non-Oxidized (µm)

Gd0 250 ± 10 0
Gd5 80 ± 10 170 ± 10

Gd10 16 ± 10 234 ± 10
Gd15 25 ± 10 225 ± 10
Gd20 52 ± 10 198 ± 10

To further compare the differences between the oxidized and non-oxidized layers of the
coatings, the Gd10 coating with the best oxidation resistance was selected for observation
at higher magnification, as shown in Figure 12. The oxide layer on the upper side of the
red dashed line in Figure 12a is loose and contains holes, whereas the non-oxide layer
below the red line retains the sprayed state characteristics and is dense. Figure 12b shows a
magnified cross-section of the oxide layer, which is composed of minor oxide particles and
dark, glassy phases embedded in the interstices. The EDS analysis in Figure 12b shows that
region 1 contains Hf, Ta, Gd, Si, and O, indicating that the particle organization is mainly a
compound of Hf–Ta–Gd–Si–O, mainly Hf, Si, and O with a small amount of Gd, indicating
that the glass phase is SiO2 and HfSiO4, consistent with the results obtained by ablating
the surface. Figure 12c shows a magnified image of the non-oxidized layer wherein the
interstitial-phase distribution of bright and dark bands in the non-oxidized layer, with
no loose particles, indicates a good ablation protection effect of Gd10 coating under the
oxyacetylene combustion flow test of 4400 kW/m2.

Figure 13 shows the XRD patterns and probable phases of the ablated coatings. The
phase compositions of the Gd0 coatings are primarily cubic c-HfO2 (PDF#53-0560) and
Hf6Ta2O17 (PDF#44-0998, orthorhombic). HfO2 undergoes a transition from monoclinic
to cubic at 1650 ◦C accompanied by volume shrinkage and a transition from cubic to
monoclinic, causing volume expansion during cooling. HfSiO4 (PDF#77-1759, tetragonal,
and spatial group structure is 141/amd (141)), GdTaO4 (PDF#24-0441, monoclinal, and



Coatings 2023, 13, 1397 14 of 18

spatial group structure is 12/A), and m-HfO2 (PDF#78-0049, monoclinic, and spatial group
structure is P21/c(14)) were detected in the Gd5, Gd10, and Gd15 coatings. With an
increased content of Gd2O3, Gd2Hf2O7 (PDF#24-0425, cubic, and spatial group structure is
Fm3m (225)) was detected in the Gd10, Gd15, and Gd20 coatings. Gd2Hf2O7 has excellent
high-temperature thermal stability of the oxide layer, which can reduce stress within the
coating and hinder crack sprouting [31]. Considered together with the edge warping of the
ablated Gd0 and Gd5 coatings, it can be assumed that the introduced Gd2O3 plays a role
in stabilizing the HfO2 phase, suppressing volume change in the coating owing to phase
change and improving the thermal suitability of the coating and substrate.
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3.4. Ablation Mechanism

During the ablation process, HfB2, SiC, TaSi2, and Gd2O3 may react as follows [32–35]:

HfB2(s) + 5/2O2(g) = HfO2(s) + B2O3(l) (3)

TaSi2(s) + 13/4O2(g)= 1/2Ta2O5(s)+2SiO2(l) (4)

B2O3(l) = B2O3(g) (5)

Ta2O5(s) = Ta2O5(l) (6)

SiC(s) + 2O2(g) = SiO2(l) + CO2(g) (7)

2SiC(s) + 3O2(g) = 2SiO2(l) + 2CO(g) (8)

SiC(s) + O2(g) = SiO(g) + CO(g) (9)

SiO2(l) = SiO2(g) (10)

HfO2(s) + SiO2(l) = HfSiO4(s) (11)

Gd2O3(s) + 2HfO2(s) = Gd2Hf2O7(s) (12)

Gd2O3(s) + Ta2O5(s) = 2GdTaO4(s) (13)

Ta2O5(s)+6HfO2(s) = Hf6Ta2O17(s) (14)

To analyze the oxidation mechanism of the coatings, the Gibbs free energies (∆G)
for reactions R3-R4, R7-R9, and R11 were calculated, as shown in Figure 14. The related
thermodynamic data were obtained from FactSage 8.2 software. From Figure 14, in the
temperature range of 500~2200 K, the ∆G of all reactions is negative, indicating all the
reactions can occur spontaneously. From the thermodynamic calculation results, it indicates
that TaSi2 of the outer layer is preferentially oxidized to form a porous Ta2O5 layer owing
to its lower Gibbs free energy, and the oxidation trend of HfB2 is slightly weaker than TaSi2.
Owing to the lower ∆G of reaction 7 than those of reaction 3-4, the generated silica glass
with a good self-healing ability can fill defects of the loose structure and porous Ta2O5 and
HfO2 forming a relatively dense outer layer.

In the Gd0 coating, the HfB2/SiC/TaSi2 coating is oxidized to HfO2, Ta2O5, and SiO2
according to reactions (3), (4), and (7). HfO2 reacts with Ta2O5 to generate a new stable
phase (Hf6Ta2O17) (reaction (14)). When the ablation temperature (2173 K) is higher than
the melting points of Ta2O5 (~2058 K) and SiO2 (1873–1973 K), a portion of SiO2 and Ta2O5
melt and evaporate. Evaporation of the gaseous products (CO, CO2, B2O3, SiO2, and Ta2O5)
leaves small pores in the coating. The Ta–Si–O glass layer can seal some of these voids.
Because Hf6Ta2O17 has low thermal conductivity (2.89 W/m K) and a high melting point
(~2723 K), Hf6Ta2O17 particles play a pinning role in the Ta–Si–O glassy layer, inhibiting
the formation and propagation of cracks [36]. Unfortunately, the porous structure of the
original Gd0 coating (see Table 2) offers channels for oxygen diffusion, thereby degrading
the ablation performance (see Figures 5 and 8).

For the HfB2/SiC/TaSi2/Gd2O3 coating, the introduction of Gd2O3 results in a lower
surface temperature under the same test conditions due to the increased emissivity, which
directly reduces the oxidation rate of the coating and the volatilization rate of the glass
phase. Moreover, the melting point of Gd2O3 (~2573 K) is significantly higher than those
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of Ta2O5 (~2058 K) and SiO2 (1873–1973 K), avoiding the negative impact of lowering the
oxide eutectic temperature on the thermal stability of the oxide layer. When the surface
temperature is 2073 K, Gd2O3 replaces Ta2O5 and SiO2 to play a role in stabilizing the
HfO2 phase transition owing to its high melting point, thus promoting a dense oxide layer.
Gd2O3 reacts with Ta2O5 to generate GdTaO4 (reaction 12), and HfO2 reacts with SiO2 to
generate a new stable phase (HfSiO4) (reaction 11). In the Gd5 coating, HfSiO4, GdTaO4,
and HfO2 are the main phases on the ablated surface and have a pinning effect on the
glass layer because of their high melting points. Therefore, the Gd5 coating has a thinner
oxidation layer than the Gd0 coating (Figure 10b); however, the oxidation layer exhibits a
porous structure owing to the presence of a small amount of Gd2O3.
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With an increasing amount of Gd2O3, a new phase of Gd2Hf2O7 (melting point
~2573 K) is generated. The Gd2Hf2O7 phase can suppress the volume expansion accompa-
nying the HfO2 cubic/monoclinic phase transition during the cooling process and reduce
stress concentration in the coating. However, the decomposition temperature of Gd2Hf2O7,
with a cubic pyrochlore structure, is ~2373 K [17], so it can maintain phase stability when
T ≥ 2073 K. In the Gd10 and Gd15 coatings, HfSiO4, GdTaO4, HfO2, and Gd2Hf2O7 are the
main phases. The dissolution of higher-melting-point oxides forms a stable Hf–Ta–Gd–Si–O
multiphase glass on the surface of the coating (see Figure 9c). High-melting-point particles,
such as HfO2, GdTaO4, HfSiO4, and Gd2Hf2O7, are dispersed in the Hf–Ta–Gd–Si–O glassy
layer as “hard particles” when the glass layer is softened during oxidation at high tempera-
tures. As a result, the Gd10 and Gd15 coatings exhibit better resistance to oxidation than
the Gd5 coating (See Figure 10c,d).

However, excessive Gd2O3 can cause excessive consumption of SiO2 in the Gd20
coating, resulting in the formation of more Gd2Hf2O7, making the generated glass very
viscous and imparting its self-healing ability. Therefore, doping with a high content of Gd2O3
(>15 vol.%) negatively affects the oxidation-blocking capability of the HfB2/SiC/TaSi2 coating.

4. Conclusions

Gd2O3-modified HfB2/SiC/TaSi2 coatings were successfully prepared by APS. Through
the oxyacetylene flame test, the ablation resistance of the modified coatings was evaluated at
4400 kW/m2 for 180 s. The effects of varying Gd2O3 contents on the microstructure, infrared
radiative property, and ablation resistance of the HfB2/SiC/TaSi2 were investigated. With
the growth of Gd2O3 content increased from 0 vol.% to 20 vol.%, the coating porosity
decreased from 19.91% to 11.28%, indicating that the addition of Gd2O3 improved the
coating density. Moreover, because of the additional electronic transitions promoted by
oxygen vacancies in HfO2, the addition of Gd2O3 improved the infrared emissivity of the
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HfB2/SiC/TaSi2 coatings. The Gd10 coating possessed the highest emissivity in the 3–5 µm
band at 1273 K, up to 0.92. Due to the highest emissivity, the Gd10 coating possessed
the lowest surface temperature of 2073 K. Thus, the Gd10 coating had mass and linear
ablation rates of 4.28 × 10−7 kg/s and 2.15 × 10−7 m/s, 80% and 31% lower than those
of the Gd0 coating, respectively. Further, the Gd10 coating showed excellent oxygen
barrier performance due to the stable Hf–Ta–Gd–Si–O glass formed on the surface of the
Gd10 coating, which inhibited oxide penetration into the internal coating. Nevertheless,
an excessive amount of Gd2O3 is detrimental to the ablation performance owing to its
excessive consumption of SiO2. This study demonstrates that the addition of an appropriate
amount of Gd2O3 is an effective way to improve the ablation resistance of HfB2/SiC/TaSi2
coatings at a heat flux of 4400 kW/m2.
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