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Abstract: Two types of coatings, i.e., monolayer Ta and multilayer Ta/Ti/Zr/Ta coatings, were
deposited on biomedical Ti6Al4V (TC4) alloy by magnetron sputtering to improve its performance.
To evaluate the effect of the two coatings on the alloy properties, the microstructure, composition,
mechanical and tribological properties, in vitro biocompatibility, and corrosion resistance were
investigated. The results showed that α-Ta exists in the monolayer Ta coating, while α-Ta and β-Ta
phases coexist in the multilayer Ta/Ti/Zr/Ta coating. The multilayer Ta/Ti/Zr/Ta coating possessed
the highest hardness and the monolayer Ta coating had the lowest friction coefficient compared to the
Ti6Al4V alloy. The friction and wear tests revealed that the anti-wear performance of the Ta coating is
the best, followed by that of the Ta/Ti/Zr/Ta coating, while the anti-wear performance of TC4 alloy
is relatively poor in comparison with the Ta and Ta/Ti/Zr/Ta coatings. The wear resistance of the
multilayer Ta/Ti/Zr/Ta coating under low normal load is better than that under high load normal
load. Finally, the in vitro and electrochemical corrosion tests showed that the Ta coating modification
provides better biocompatibility and corrosion resistance than those of the uncoated Ti6Al4V alloy.

Keywords: titanium alloy; coating; wear; biocompatibility; corrosion resistance

1. Introduction

Orthopedic biomaterials are used to repair or replace damaged bone tissue in humans,
aiming to reshape the anatomical structure and restore the original function [1]. An ideal
orthopedic biomaterial should not only possess excellent mechanical and corrosion resis-
tance properties, but also exhibit good biocompatibility and bioactivity [2,3]. Medical grade
titanium (Ti) and its alloys are commonly used in bone biomaterials. Although several
novel Ti alloys are emerging, the Ti6Al4V alloy is the most widely (such as hip joints, dental
implants, prostheses, etc.) due to its superior performance in terms of relatively low elastic
modulus, good biocompatibility, and suitable mechanical support [4–8]. Nevertheless,
there are certain disadvantages when it is in contact with body fluids, such as the release
of biotoxic metal ions (e.g., V5+ and Al3+); Moreover, its relatively poor wear resistance
restricts the application in organisms and thus, its application has been limited [9–11].
Hence, further advancements in the surface properties of the Ti6Al4V alloy in terms of high
wear resistance, good corrosion resistance, and biocompatibility are still necessary.

Modification of the Ti6Al4V alloy surface is an important method used to effectively
improve its surface properties [12,13]. Tantalum (Ta) has high hardness, excellent wear
resistance, biocompatibility, as well as other important biological properties [12]. Moreover,
Ta can provide better performance as regards corrosion resistance and biological activity
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compared to Ti alloys. Therefore, more attention has recently been paid to Ta as a bioma-
terial [14–17]. However, Ta is a rare metal with very little reserves and of an extremely
expensive price, which all significantly limit its application [18]. Previous studies have
shown that the properties of a dense Ta coating with a substantial thickness are comparable
to those of Ta metal [19,20]. Consequently, Ta coatings with a certain thickness have become
a hot topic as an alternative. Ta coatings can be deposited on Ti alloys by thermal spraying
(TS), chemical vapor deposition (CVD), and magnetron sputtering (MS) [21,22]. MS is con-
sidered an effective way to deposit a Ta coating, and coatings prepared by the MS method
have many advantages, such as high quality, good completeness, and good controllability.
Ta coatings comprise two crystalline phases, i.e., α-Ta phase with bcc structure and β-Ta
phase with metastable tetragonal structure. In general, the β-Ta phase is harder and more
brittle compared to the α-Ta phase [23,24].

Previous work showed that surface modification was used to enhance the mechanical
and corrosion properties [25,26]. Certain research work has been conducted on the phase
structure of Ta coatings to improve their performance. For example, Su et al. reported that
the form of the α-Ta phase could be promoted at high pulsed bias; inversely, the form of
the β-Ta phase could be promoted at low pulsed bias [27]. Colin et al. reported that there
was no transition from β-Ta phase to α-Ta phase when the film thickness was increased or
the deposited energy was altered [28]. The performance of Ta coatings prepared by MS is
quite different. In addition, monolayer and multilayer Ta coatings have exhibited different
performances [29]; The composite coating design method can improve the hardness and
reduce the friction coefficient and adhesive wear [30]. However, the research studies on the
surface properties of composite Ta have been rare. Therefore, it has become necessary to
investigate the mechanical, corrosion, and biocompatibility properties of monolayer and
multilayer Ta coatings prepared by MS, and determine the optimal performance.

In this work, monolayer Ta and multilayer Ta/Ti/Zr/Ta coatings were prepared on
a biomedical grade Ti6Al4V ELI (TC4) alloy by MS. The microstructure and properties
were characterized by X-ray diffraction (XRD), X-photoelectron spectroscopy (XPS), and
scanning electron microscopy (SEM). The mechanical performance, tribological behavior,
biocompatibility, and corrosion resistance were investigated by nano-indentation, friction,
in vitro cytocompatibility, and electrochemical corrosion tests. The purpose of this work
was to evaluate the effect of the monolayer Ta and multilayer Ta/Ti/Zr/Ta coatings on the
TC4 alloy properties to provide a reference for the modification of TC4 alloy.

2. Materials and Methods
2.1. Substrate Preparation

The biomedical Ti6Al4V ELI alloy (ZhongNuo Advanced Material, Beijing, China),
which strictly followed the GB/T 13810-2017 standard (first edition), served as the substrate.
The substrate samples with dimensions of Ø13 mm × 3 mm were progressively ground
by SiC sandpaper from 400# to 5000#, and then mechanically polished for 10 min with
diamond pastes (Landnok Chemical, Guangzhou, China). Subsequently, the substrate
samples were ultrasonically cleaned in 99.5% acetone and 99.5% alcohol (Macklin, Beijing,
China) for 15 min respectively, and then blow-dried at room temperature. After that, their
surface was sputter-cleaned by argon plasma in a vacuum chamber (Kurt J. Lesker PRO
Line PVD, Kurt J. Lesker Company, Jefferson Hills, PA, USA) to remove any contamination.

2.2. Coating Deposition

Two types of Ta coatings were prepared: a monolayer Ta coating and a multilayer
Ta/Ti/Zr/Ta coating. They were deposited on the above substrates using the MS system in
pure argon gas. After the base vacuum of the system reached 2 × 10−1 Pa, the substrate
was heated up to 200 ◦C. Pure Ta (99.95%, ZhongNuo Advanced Material, Beijing, China),
Ti (99.995%, ZhongNuo Advanced Material, Beijing, China), and Zr (99.9%, ZhongNuo
Advanced Material, Beijing, China) targets were driven by the sputtering power system,
while the power was maintained at 150 W. All depositions were performed at a bias voltage
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of −90 V. Prior to coating deposition, each target was cleaned by argon ion sputter-cleaning
for 5 min. The monolayer Ta coating was deposited by the Ta target and the process lasted
about 90 min. The Ti, Zr, and Ta layers were deposited alternately to obtain the multilayer
coating. The deposition times for the Ti, Zr, and Ta targets during the multilayer coating
deposition process were 90, 60, and 30 min, respectively.

2.3. Specimen Characterization

The phase compositions of the samples were examined by XRD analysis using a
D/max-2500/PC diffractometer (DMAX-RB, Osaka, Japan). Their chemical bonding state
was investigated by XPS (ESCALAB 250Xi, Waltham, MA, USA). Their morphology and
thickness were observed by SEM (Hitachi SU5000, Tokyo, Japan). The nano-hardness and
elastic modulus were determined through an in situ nanomechanical Triboindenter system
(Billerica, MA, USA) under a maximum load of 5000 µN, a loading rate of 500 µN/s, and a
dwelling time of 2 s. The tribological performance of the coating samples was assessed by
the ball-disk reciprocating friction method with a load of 0.5 and 2 N at ambient atmosphere.
SiC balls (Ø6 mm) were utilized as the friction partner.

2.4. In Vitro Cytocompatibility Evaluation

Cell counting kit-8 (CCK-8, Merck, Rahway, NJ, USA) was adopted to evaluate the
effect of the monolayer Ta and multilayer Ta/Ti/Zr/Ta coatings on the viability of MC3T3
pre-osteoblasts. After high-temperature and high-pressure steam sterilization, the samples
were transferred to 24-well culture plates. Subsequently, 10% fetal bovine serum and 1%
penicillin/streptomycin (Shanghai Yes Service Biotech, Shanghai, China) were added in
the 24-well culture plates, which were then seeded with MC3T3 pre-osteoblast cells, and
the extraction solution collected. Then, the control group was cultivated by complete
medium, and the three treated groups were cultivated at a concentration of 25% extraction
solution [31] in a humidified atmosphere (5% CO2; 37 ◦C) for 24, 96, and 168 h, followed by
phosphate buffered solution (PBS) washing (two times) to remove any unattached cells.
After replacing the medium and cultivation at 37 ◦C for 4 h, the optical density (OD) of
each well was determined according to the instructions of the manufacturer.

Furthermore, live and dead cell assay tests were conducted to further illustrate the
coating cytotoxicity. The MC3T3 pre-osteoblasts cultivated for 24, 96, and 168 h with the
sample were stained using a mixture of calcein-AM (4 mmol/L, Wuhan Chemstan Biotech-
nology, Wuhan, China) and propidium (2 mmol/L, Shanghai Honshun Biotechnology,
Shanghai, China). After cultivation in the dark for 15–20 min, the cells were examined by
fluorescence microscopy (MF52-N, Dongguan, China). The live cells appeared green in
color and the dead cells appeared red.

2.5. Electrochemical Corrosion Tests

A potentiodynamic polarization technique was employed to assess the corrosion
resistance of the uncoated TC4 and the monolayer Ta and multilayer Ta/Ti/Zr/Ta coatings.
The potentiodynamic polarization measurements were conducted in simulated body fluid
(SBF) solution [32] using a conventional three-electrode setup, where the sample functioned
as the working electrode, a saturated calomel electrode was the reference electrode, and a
Pt plate was utilized as the counter electrode. The tests were conducted within a potential
range from −1.0 V vs. open circuit potential (OCP) to 2.0 V vs. OCP at a scanning rate of
1 mV/s.

3. Results and Discussion
3.1. Cross-Sectional Morphology

Figure 1a–c illustrates the schematic structure and macroscopic morphology of the
uncoated TC4, monolayer Ta, and multilayer Ta/Ti/Zr/Ta coatings. It can be observed
that the surface of all samples was smooth, while the monolayer and multilayer coatings
appeared slightly yellow compared to the uncoated TC4 alloy. The TC4 alloy was composed
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of α and β phase, with a near-equiaxed structure (Figure 1d). SEM images of the cross-
sections of coating samples are exhibited in Figure 1e,f, where their thickness and structure
can be observed. The Ta coating layer appeared relatively bright, while the Ti and Zr
layers were dark. The thicknesses of the Ta and Ta/Ti/Zr/Ta coatings were about 3.28
and 3.10 µm, respectively (Figure 1b,c). Moreover, the thickness of each layer in the
Ta/Ti/Zr/Ta coating was measured based on the coating structure and it was found to be
0.70 µm (first layer/Ta), 0.93 µm (second layer/Ti), 0.75 µm (third layer/Zr), and 0.72 µm
(fourth layer/Ta). Moreover, it was observed that a columnar structure occurred in all
coatings as in Figure 1e,f. In particular, the monolayer Ta coating in Figure 1e exhibited
an apparent columnar structure perpendicular to the surface. In contrast, a less columnar
structure was observed in the multilayer Ta/Ti/Zr/Ta coating. Su et al. [27] showed that
the formation of the coarse columnar structures could be attributed to the longer deposition
time of the monolayer Ta coating. The higher kinetic energy is considered to be responsible
for the apparent columnar morphology observed in the monolayer Ta coating. Due to
the longer sputtering time for the monolayer Ta coating preparation, more kinetic energy
was accumulated, which caused an increase in the substrate temperature and led to a
larger columnar structure. However, the large columnar structure was effectively inhibited
during the multilayer coating preparation; that is, the growth of the continuous columnar
structure was interrupted by inserting the Ta/Ti/Zr layers. In addition, except for being
observed in each layer of the columnar structure, it could also be observed where the layers
interface penetrated.
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Figure 1. Schematics and macro-appearance of the (a) TC4 alloy, (b) Ta coating, and (c) Ta/Ti/Zr/Ta
coating structure; (d) optical micrograph of the TC4 alloy; (e,f) cross-sectional SEM images of the Ta
and Ta/Ti/Zr/Ta coatings, respectively.

3.2. Phase Characterization

Figure 2 depicts the XRD diagrams of the uncoated TC4, monolayer Ta, and multilayer
Ta/Ti/Zr/Ta coatings. The diffraction peaks of the uncoated TC4 matched well with the
peaks of the α-TC4 and β-TC4 phases. That is, the XRD patterns confirmed the existence
of a dual-phase α + β microstructure in the uncoated TC4 substrate. As depicted in
Figure 2, the monolayer Ta coating exhibited a simple pattern, and a main diffraction peak
appeared, corresponding to the (110) face of α-Ta. Nevertheless, as regards the multilayer
Ta/Ti/Zr/Ta coating, apart from the main diffraction peak, a relatively weak diffraction
peak was found, with the two peaks corresponding to the (110) face of α-Ta and (002)
face of β-Ta, respectively. Myers et al. [23] showed that the formation of the β-Ta phase
can be attributed to the reduction of the coating thickness, and it is easier to form β-Ta
phase in the thin-film Ta layer. Furthermore, no diffraction peak of the uncoated TC4 was
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detected in both the monolayer and multilayer coatings, indicating that they covered the
substrates entirely.
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Figure 2. XRD patterns of the TC4 substrate and the two different Ta coatings.

Figure 3 presents the chemical states of the main elements in the uncoated TC4, mono-
layer Ta, and multilayer Ta/Ti/Zr/Ta coatings obtained by XPS. According to Figure 3a,
the TC4 alloy surface contained Ti4+ elements, which indicates that the passive film of
the TC4 alloy was primarily composed of TiO2. As can be observed in Figure 3b, the
core-level spectrum of Ta 4f contained four groups of Ta peaks, and three chemical valence
states of Ta existed. According to the literature [33], the peaks with a binding energy of
28.0 eV and 26.0 eV correlate to Ta2O5, which are located at binding energies of 22.7 and
21.3 eV [27]. Colin et al. [28] reported that the presence of high valence oxides can stabilize
the passivation film. Moreover, the main ingredients of the Ta coating also include TaO2
and metallic Ta. In Figure 3c, it can be seen that the peak positions are identical with those
in Figure 3b; that is, the main components of the multilayer coating surface were consistent
with those of the monolayer coating surface.
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3.3. Mechanical Performance

The hardness (H) and elastic modulus (E) of the uncoated TC4, monolayer Ta, and
multilayer Ta/Ti/Zr/Ta coatings were investigated by nano-indentation tests, and the
corresponding results are presented in Figure 4. It can be observed that the load–depth
curves are smooth, and the detection depth is less than 1/10 of the coating thickness,
indicating that the effect of the substrate on the results was negligible. The maximum
indentation and residual depths of the coated samples were both small compared to those of
the uncoated TC4 sample, implying that the resistance to plastic deformation was enhanced
after Ta coating deposition. In Figure 4b, it can be observed that both the nano-hardness
and elastic modulus of the monolayer and multilayer Ta coatings are clearly higher than
those of the uncoated TC4 substrate; that is, Ta coating deposition can improve the hardness
of TC4 alloy. More specifically, the nano-hardness of the multilayer Ta/Ti/Zr/Ta coating
was the highest, i.e., 10.3 GPa. This result reflects that the multilayer Ta/Ti/Zr/Ta coating
performed better than the monolayer Ta one as regards the hardness of the TC4 substrate.
In general, the hardness of the coatings is affected by the grain size, lattice type, and coating
thickness. Combined with the above analysis, it can be deduced that the multilayer coating
with alternately deposited layers can prevent the growth of the continuous columnar
structure and efficiently refine the grain size. In addition, the sharp interlayer transitions
could inhibit the motion of dislocations, which also is conducive to improving the hardness.
Furthermore, previous studies have revealed that the typical hardness values of β-Ta are
higher than those of α-Ta [23]. The above XRD results suggest that only α-Ta existed in
the monolayer coating; on the contrary, one more phase of β-Ta existed in the multilayer
coating, which is another important factor contributing to the higher micro-hardness of the
multilayer coating.
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Figure 4c presents the major parameters of H/E and H3/E2 obtained by calculation.
The H/E is an important index for the wear resistance of coatings, while the H3/E2 can be
used to evaluate the wear loss of coatings [34,35]. In general, the wear resistance of coatings
with higher H/E and H3/E2 values is better that that of coatings with lower H/E and H3/E2

values. According to Figure 4c, the H/E and H3/E2 values of the multilayer Ta/Ti/Zr/Ta
coating were the highest, suggesting that it might possess a better wear resistance.

3.4. Tribological Performance

Figure 5 shows the friction and wear curves of the uncoated TC4, monolayer Ta, and
multilayer Ta/Ti/Zr/Ta coating samples sliding against SiC balls under normal loads of
0.5 and 2 N in an atmospheric environment, respectively. As can be observed, the friction
coefficient curves of all samples are composed of two periods, i.e., the running-in and
steady-wear periods; in all cases, the running-in periods were very short. During the
running-in period, all friction coefficients increased with the elapsed friction time, which
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can be attributed to the situation where the true contact area between the friction pairs
increased rapidly, and the integrity of the sample surface was disrupted. Moreover, the
friction coefficient curves of the samples tested under different conditions were quite differ-
ent. Under a normal load of 0.5 N, the average friction coefficients of the uncoated TC4,
monolayer Ta coating, and multilayer Ta/Ti/Zr/Ta coating were 0.618, 0.412, and 0.329,
respectively. Apparently, the friction coefficient of the multilayer Ta/Ti/Zr/Ta coating
was the lowest, under 0.5 N. Notably, both the curves of the monolayer Ta and multilayer
Ta/Ti/Zr/Ta coatings presented two steady-wear periods (Figure 5a), which indicates that
the wear of the friction pairs went through two different working environments. In the
first steady-wear period, the friction coefficients were very small, since the coatings were
undamaged during the early friction and wear stages; in contrast, in the second steady-
wear period, the friction coefficients were relatively high. Under the normal load of 2 N
(Figure 5b), all curves exhibited a longer running-in period compared to the correspond-
ing curves obtained under 0.5 N. The average friction coefficients of the uncoated TC4,
monolayer Ta coating, and multilayer Ta/Ti/Zr/Ta coating were 0.611, 0.529, and 0.564,
respectively. This result shows that the friction coefficients of the two coatings were lower
than that of the TC4 alloy, and that of the multilayer Ta/Ti/Zr/Ta coating was higher than
that of the monolayer Ta coating, indicating the weaker adhesion strength of the multilayer
coating under the higher normal load.
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coatings under normal loads of (a) 0.5 N and (b) 2 N.

Although the friction coefficient can quantify the lubrication effect of a material, it
cannot directly reflect its wear resistance performance. To this end, the wear tracks were
further investigated. Figure 6a–c. displays SEM and optical microscopy images of wear
tracks on the uncoated and coated TC4 alloy samples sliding against SiC balls under a
normal force of 0.5 N in an atmospheric environment. Obvious wear traces could be
observed on the surface under 0.5 N normal load. More specifically, the uncoated TC4 alloy
exhibited apparent parallel grooves with a considerable amount of adhered black debris.
This was formed by micro-protrusions detached from the surface under the cutting action
of the friction pair, indicating that the wear behavior of the uncoated TC4 was primarily
adhesive wear. The corresponding 2D and 3D cross-sectional profiles are displayed in
Figure 6(a3,a4), which demonstrate that the wear width and depth were 553.2 µm and
8.8 µm, respectively. Conversely, as depicted in Figure 6(b1–b4), the wear scar of the
monolayer Ta coating was the slightest and with shallow grooves, and the corresponding
2D and 3D cross-section profiles in Figure 6(b3,b4) show that the wear track width and
depth had minimum values of 409.6 µm and 1.9 µm, respectively. On the other hand,
the multilayer Ta/Ti/Zr/Ta coating exhibited a relatively better wear resistance, with a
wear width of 456.4 µm and depth of 5.6 µm, while a small amount of wear debris was
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observed in the track. The wear width and depth of the three samples decreased in the
order of TC4 > Ti/Zr/Ta > Ta. The wear rates of the uncoated and coated TC4 samples
based on the wear track profiles are presented in Figure 6d. It can be observed that the
uncoated TC4 alloy exhibited the highest wear rate (2.16 × 10−6 mm3/N·m), indicating
that the wear resistance of the TC4 alloy was significantly enhanced after Ta coating
modification. Among the coated samples, the monolayer Ta coating presented the lowest
wear rate of 3.46 × 10−7 mm3/N·m, which was about 30% lower than that of the multilayer
Ta/Ti/Zr/Ta coating (1.14 × 10−6 mm3/N·m), and one order of magnitude lower than
that of the TC4 alloy, suggesting an excellent anti-wear performance.
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different samples.

Figure 7a–c demonstrates the wear tracks along with the 2D and 3D morphologies of
the uncoated and coated TC4 alloy samples sliding against SiC balls with a normal force
of 2 N in an atmospheric environment. Under the normal load 2 N, the surface became
severely worn compared to that of the corresponding samples tested under 0.5 N. Moreover,
typical wide wear grooves and parallel furrows with a certain amount of wear debris
occurred on all sample surfaces, indicating that the main wear mechanism was abrasive
wear. The wear track data demonstrated that the Ta coating possessed the minimum width
and depth values of 624.4 and 6.7 µm, respectively, and the uncoated TC4 presented the
worst wear resistance. The corresponding values of the multilayer Ta/Ti/Zr/Ta coating
were in the middle, i.e., width and depth of 629.8 µm and 10.0 µm, respectively. It is
worth noting that the track depth on the Ta/Ti/Zr/Ta coating increased, which could be
attributed to the weak adhesion strength of the coatings to the substrate under high normal
load. This might have been caused by the poor adhesion of the multiple layers, and because
each layer had a smaller thickness [36]. Moreover, Figure 7d presents the wear rate of the
different samples based on the wear track profiles; the descending order of the wear rate
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is as follows: TC4 > Ta/Ti/Zr/Ta > Ta. This agrees well with the result under the normal
load of 0.5 N.
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To further investigate the wear behavior, Figure 8 shows high-magnification micro-
graphs of the wear tracks on the uncoated and coated TC4 alloy samples sliding against
SiC balls under normal loads of 0.5 and 2 N. Figure 8a–c demonstrates the typical worn
surface morphologies obtained under a normal load of 0.5 N. As regards the TC4 alloy,
a large amount of wear debris and a large adhesive area could be observed on the wear
track (high-magnification image; rectangular region in Figure 8a), indicating that the wear
mechanism involved adhesion wear. Since the harder friction pair wore down the TC4 alloy
surface repeatedly, the detached debris produced a “cold welding” effect on the contact
surface of the sample, forming adhesive nodes. Nevertheless, this bonding mode formed
by “adhesion” is not strong. With the repeated trajectory movement of the friction pairs on
the sample surface, the generated shear force continues to act on the trajectory of the wear
track, driving some loosely bonded debris to form nodes and causing them to detach and
transfer again, generating new accumulation nodes. As for the monolayer Ta coating under
the normal load of 0.5 N, it can be observed that the coating fractured apparently after
the wear experiment (Figure 8b). At higher magnification, it can be seen that the coating
gradually peeled off, and there existed a cracked area, which was the main cause for the
generation of abrasive particles. In contrast, the multilayer Ta/Ti/Zr/Ta coating was not
worn away gradually, but a whole piece was worn away due to poor adhesion (Figure 8c).
In addition, based on the higher magnification image, the edges of the coating were sharp,
with a bright surface and cleavage plane. The presence of the coating could smooth the
wear track morphology and reduce the wear adhesion zone.
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Figure 8. SEM images with magnified regions of the worn surfaces of (a) TC4 alloy under 0.5 N,
(b) Ta coating under 0.5 N, (c) Ta/Ti/Zr/Ta coating under 0.5 N, (d) TC4 alloy under 2 N, (e) Ta
coating under 2 N, and (f) Ta/Ti/Zr/Ta coating under 2 N.

Under the normal load of 2 N, the worn surface of the coated samples exhibited
different characteristics from those under the normal load of 0.5 N. It can be observed
that plastic deformation and multiple pear grooves parallel to the sliding direction of the
friction pair appeared on the worn surface of the TC4 alloy (Figure 8d), indicating that
the main wear mechanism was abrasive wear. Typical parallel grooves with black debris
and plastic deformation morphology were observed on the worn surface of the Ta and
Ta/Ti/Zr/Ta coatings, indicating abrasive wear (Figure 8e,f). In the magnification images
of the typical morphologies, it can be seen that the phenomenon of debris accumulations
occurred, especially in the multilayer Ta/Ti/Zr/Ta coating. This is due to that part of the
coating being gradually peeled off which produces debris during the wear process, and the
friction pair with increasing roughness scratch the surface, ultimately forming apparent
grooves, corresponding to typical abrasive wear morphology. The coatings could protect
the substrate and prevent wear over a certain period of time, reducing the overall plastic
deformation of the alloy. Moreover, the Ta coating exhibited a better anti-wear performance
than the Ta/Ti/Zr/Ta coating, which can be attributed to the poor adhesion of the multiple
layers. On the other hand, the presence of β-Ta, which is harder than the α-Ta of the
Ta/Ti/Zr/Ta coating, could promote brittle fracture.

3.5. In Vitro Cytocompatibility Evaluation

To illustrate the biocompatibility, the relative cell viability was tested to evaluate the
cytotoxicity, and the results are depicted in Figure 9. As can be observed, the uncoated
TC4 group had the lowest relative cell viability, and the number of cells decreased during
incubation for 168 h. The monolayer and multilayer coating groups exhibited a higher
relative cell viability than the uncoated TC4 group, which was close to that of the control
group. Contrary to the uncoated TC4 group, the cell viability index of the Ta coating groups
was significant increased by more than 10%, 30%, and 40% after incubation for 24 h, 96 h,
and 168 h, respectively. To further evaluate the cytotoxicity of the coatings, live/dead
staining was conducted to distinguish the live and dead cells. Figure 10 displays the
fluorescence micrographs of live (green) and dead (red) cells on the control, uncoated TC4,
monolayer Ta, and multilayer Ta/Ti/Zr/Ta coating groups after incubation for 24 h, 96 h,
and 168 h. As shown in Figure 10, the cell morphology of the three experimental groups
was similar to that of the control group. Almost every cell cultivated on the four groups
was spindle-shaped and well-spread with lamellar extension and normal form. In addition,
it was observed that, in each group, the cells proliferated with incubation time, and no
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dead cells were found. Nevertheless, the cells in the uncoated TC4 group were relatively
less than those in the other groups. After incubation for 24 and 96 h, the monolayer and
multilayer coating groups possessed more cells than the control group. Notably, after 168 h,
the number of cells in the multilayer coating group was relatively closer to that in the
control group, while that in the monolayer group was lower than that in the control group.
In addition, Li et al. [37] studied the cytotoxicity of metal Ta, and their results proved that
the metal Ta exhibited excellent biocompatibility. This is consistent with our results. These
results indicate that the Ta coating modification reduced the cytotoxicity of the TC4 alloy
and improved its biocompatibility.
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3.6. Anti-Corrosion Properties

Corrosion resistance is another important index to evaluate the safety of implants.
Therefore, the OCP-time and potentiodynamic polarization curves of the uncoated TC4,
monolayer Ta, and multilayer Ta/Ti/Zr/Ta coating samples in SBF solution were obtained
(Figure 11). According to Figure 11a, the OCP of the TC4 alloy shifted towards a lower value
with increasing immersion time. Inversely, the OCP of the monolayer Ta and multilayer
Ta/Ti/Zr/Ta coatings shifted towards a higher value with increasing time. This indicates
that the passivation film on the surface of the TC4 alloy dissolved gradually with increasing
immersion time, while the Ta and Ta/Ti/Zr/Ta coatings were stable and effective. The
relevant electrochemical parameters, including the corrosion potential (Ecorr), corrosion
current density (Icorr), and passivation current density (Ip) obtained by the Tafel curve
extrapolation method are listed in Table 1. The results suggest that the Icorr of both coating
samples was lower than that of the uncoated TC4. In addition, the corrosion behavior
of the uncoated TC4 and the two coated samples were clearly different. According to
the polarization curves (Figure 11b), when the potential reached about 0.20 V, activation
characteristics still existed in the anodic polarization curve of the uncoated TC4 alloy.
In contrast, as regards the monolayer Ta sample, a long and stable passivation district was
observed near the potential of 0.19 V. Notably, the polarization curve of the multilayer
Ta/Ti/Zr/Ta coating exhibited a similar trend with the monolayer Ta coating. In general,
the low Icorr and stable passivation zone suggest that the anti-corrosion performance of the
two coatings was excellent compared to that of the uncoated TC4. This improvement in
the corrosion resistance can be attributed to the change in the passivation film composition
after Ta modification. Previous research reported that the presence of high valence oxides
can stabilize the passivation film and reduce the corrosion rate [38]. Combined with the
above XPS analysis results, it can be deduced that the major components in the surface of
the monolayer and multilayer coatings were Ta2O5 and TaO2; therefore, both the Ta and
Ta/Ti/Zr/Ta coatings possessed better corrosion resistance.
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Figure 11. (a) OCP-time, and (b) potentiodynamic polarization curves of the uncoated TC4, mono-
layer, and multilayer coatings in SBF.

Table 1. Electrochemical corrosion parameters of the TC4 alloy with and without coatings.

Sample Icorr (A/cm2) Ecorr (V)

TC4 alloy 2.974 × 10−7 −0.350
Mono-Ta 0.994 × 10−7 −0.412

Multi-Ta/Ti/Zr/Ta 1.093 × 10−7 −0.428
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4. Conclusions

In this study, monolayer Ta and multilayer Ta/Ti/Zr/Ta coatings were deposited
on the surface of biomedical Ti6Al4V by MS. Their structure and basic properties were
investigated, and the main conclusions can be drawn as follows:

(1) The monolayer Ta coating was composed of α-Ta phase and exhibited an apparent
columnar structure due to the higher kinetic energy caused by the longer sputtering
time. In contrast, the multilayer Ta/Ti/Zr/Ta coating consisted of α-Ta and β-Ta
phases, and the columnar structure was effectively suppressed. Moreover, the prin-
cipal compositions of the two coatings were consistent, including Ta2O5, TaO2, and
metallic Ta.

(2) In comparison to the uncoated TC4 alloy, the surface hardness of both the Ta and
Ta/Ti/Zr/Ta coatings was improved, with that of the Ta/Ti/Zr/Ta coating being
higher than that of the Ta coating. This can be attributed to the suppression of the
columnar structure and the presence of the β-Ta phase. The friction and wear tests
revealed that the friction coefficient of the TC4 alloy was decreased after depositing
the monolayer or multilayer coatings, and the anti-friction effect of the multilayer
Ta/Ti/Zr/Ta under 0.5 N was better than that under 2 N due to the poor adhesion
under high normal load. Overall, the order of the wear resistance regardless of the
load magnitude was Ta > Ta/Ti/Zr/Ta > TC4.

(3) The cell viability index was significantly improved, and the cytotoxicity was low
after the coating modification. The electrochemical tests demonstrated that both the
monolayer and multilayer coating modification could provide excellent corrosion
resistance to the TC4 alloy. This study can thus provide a feasible way to improve the
performance of Ta coatings on TC4 alloys.

The results show that the multilayer Ta/Ti/Zr/Ta coating will face the risk of weak
layer-substrate and layer–layer adhesion in practical application, and the possibility of
coating failure is greater. Compared to multilayer Ta/Ti/Zr/Ta coating, the monolayer Ta
coating possessed better surface hardness and tribological properties, because its structure
type and phase composition were easier to control. Moreover, the monolayer Ta coating
had a certain wear reduction effect. In summary, the monolayer Ta coating is beneficial
for preventing the precipitation of harmful elements such as Al and V in the substrate,
reducing the risk of TC4 substrate wear and has greater application potential. In future
work, we will continue to conduct research on multilayer coatings, and are committed to
solving the problem of insufficient adhesion strength in multilayer coating. We hope to
develop high-performance coating technology with better surface properties and more
conducive to human implantation, providing theoretical support and expanding new ideas
for the research and development of orthopedic implant products.
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