
Citation: Shao, Y.; Fan, S.; Sun, H.;

Tan, Z.; Cai, Y.; Zhang, C.; Zhang, L.

Multi-Scale Lightweight Neural

Network for Steel Surface Defect

Detection. Coatings 2023, 13, 1202.

https://doi.org/10.3390/

coatings13071202

Academic Editor: Yuri M.

Strzhemechny

Received: 4 June 2023

Revised: 30 June 2023

Accepted: 3 July 2023

Published: 4 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

coatings

Article

Multi-Scale Lightweight Neural Network for Steel Surface
Defect Detection
Yichuan Shao 1, Shuo Fan 2, Haijing Sun 1, Zhenyu Tan 2, Ying Cai 2, Can Zhang 2 and Le Zhang 1,*

1 School of Intelligent Science & Engineering, Shenyang University, Shenyang 110044, China;
shaoyichuan@syu.edu.cn (Y.S.); suhaijing@syu.edu.cn (H.S.)

2 School of Information Engineering, Shenyang University, Shenyang 110044, China;
fanshuoi2022@163.com (S.F.); tanzhenyu@syu.edu.cn (Z.T.); caiying@syu.edu.cn (Y.C.);
zhangcan@syu.edu.cn (C.Z.)

* Correspondence: zhangle@syu.edu.cn

Abstract: Defect classification is an important aspect of steel surface defect detection. Traditional
approaches for steel surface defect classification employ convolutional neural networks (CNNs)
to improve accuracy, typically by increasing network depth and parameter count. However, this
approach overlooks the significant memory overhead of large models, and the incremental gains
in accuracy diminish as the number of parameters increases. To address these issues, a multi-scale
lightweight neural network model (MM) is proposed. The MM model, with a fusion encoding
module as its core, constructs a multi-scale neural network by utilizing the Gaussian difference
pyramid. This approach enhances the network’s ability to capture patterns at different resolutions
while achieving superior model accuracy and efficiency. Experimental results on a dataset from a
hot-rolled strip steel plant demonstrate that the MM network achieves a classification accuracy of
98.06% in defect classification tasks. Compared to networks such as ResNet-50, ResNet-101, VGG,
AlexNet, MobileNetV2, and MobileNetV3, the MM model not only reduces the number of model
parameters and compresses model size but also achieves better classification accuracy.

Keywords: surface defect detection; defect classification; deep learning; lightweight network

1. Introduction

Defect classification is an important industrial inspection task where defect images
are analyzed and identified to determine their corresponding defect types [1]. Manual
defect detection is commonly used to classify steel surface defects in traditional industries.
It is an essential component of the industrial defect detection process. To replace manual
operations, it is desired that machines can automatically detect steel surface defects using
computer vision technology [2].

The task of classifying defects on steel surfaces using computer vision techniques
poses a significant challenge due to the effects of illumination and material variations
on defect images [3]. In addition, the appearance of defects varies dramatically not only
within categories of steel surfaces but also between categories, thus further complicating
the classification process. Therefore, designing an accurate and reliable defect classification
algorithm to take these complexities into account is an ongoing research topic in the field
of computer vision [4]. Current image classification methods are mainly of two types:
traditional machine learning image classification algorithms and deep learning methods
based on convolutional neural networks [5]. Traditional image classification algorithms
are mainly implemented using two major steps of feature extraction and classifier design,
such as the K-Nearest Neighbor algorithm [6], Support Vector Machine [7], and neural
networks [8], which are widely used in computer vision. Various complex situations
are faced in practical defect classification applications, and it is difficult to achieve the
requirements in terms of accuracy using traditional image processing methods [9].

Coatings 2023, 13, 1202. https://doi.org/10.3390/coatings13071202 https://www.mdpi.com/journal/coatings

https://doi.org/10.3390/coatings13071202
https://doi.org/10.3390/coatings13071202
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/coatings
https://www.mdpi.com
https://doi.org/10.3390/coatings13071202
https://www.mdpi.com/journal/coatings
https://www.mdpi.com/article/10.3390/coatings13071202?type=check_update&version=2

Coatings 2023, 13, 1202 2 of 14

The identification of surface defects in steel undergoes three processes: manual human
detection, prediction using machine learning algorithms, and automatic detection through
deep learning [10]. In recent years, deep learning-based image classification methods
have achieved good results, such as VGGNet (Visual Geometry Group Network) [11] and
ResNet (Residual Network) [12]. U-Net is employed for the task of detecting and classi-
fying welding defects using X-ray images, artificial neural networks, and image analysis
methods [13,14]. We introduced a novel deep learning-based approach for detecting and
classifying surface defects that occur during the steel production process. This method
enhances classification performance through parallel training of residual and attention
structures. LSHADE-SVC-PCD proposes an intelligent method for automatic detection
of pitting corrosion by employing LSHADE metaheuristics, SVM machine learning, and
image processing techniques [15,16]. We proposed a defect detection algorithm based on
deformable networks combined with a multi-scale feature fusion algorithm leveraging a
deformable convolutional neural network. However, state-of-the-art CNNs require bil-
lions of floating-point operations, which makes them unusable for mobile or embedded
devices. For example, ResNet-101 has a complexity of 7.8 × 109 FLOPs (floating-point
operations per second), which makes real-time detection impossible even with powerful
GPUs. Considering the huge computational cost of modern CNNs, lightweight neural
networks have been proposed to be deployed on mobile or embedded devices. For exam-
ple, MobileNetV1 [17] and MobileNetV2 [18] use depth-separable convolution to build
lightweight networks. ShuffleNet [19] uses grouped convolution and depth-separable
convolution to build lightweight networks. SqueezeNet [20] uses the core module Fire to
compress the model parameters, reduce the depth of the network, and decrease the size
of the model. SENet (Squeeze-and-Excitation Network) [21] proposes the SE module as a
lightweight attention mechanism to adaptively calibrate the feature map by learning the
channel importance; however, the SE module only focuses on the influence of the channel
aspect of the feature map and ignores the importance of the spatial dimension.

Lightweight networks [22] can achieve relatively high accuracy with limited computa-
tional budgets. However, existing lightweight networks tend to use “sparsely connected”
convolution, such as deep convolution and group convolution, rather than the standard
“fully connected” convolution. This “sparsely connected” convolution, while reducing the
number of parameters, can to some extent hinder the exchange of information between
groups, resulting in a degradation of network performance. Since a practical steel defect
classification algorithm needs to be deployed on CPUs or even embedded systems, an
algorithm with low computational complexity and high classification accuracy that can
avoid intergroup information loss is needed.

In this paper, a novel multiscale neural network model (MM) is proposed to build a
multiscale neural network model with a fusion coding module as the core and a Gaussian
difference pyramid to obtain better model accuracy and efficiency while improving the net-
work’s ability to capture patterns of different resolutions. The feasibility and effectiveness
of the model and method are verified through experiments on the surface defect detection
of steel sheet products in a factory. By comparing the results with other methods, it can
be concluded that the multiscale neural network model avoids the loss of information
between groups, further reduces the number of parameters and computational effort, and
significantly improves classification accuracy.

Our main contributions can be summarized as follows:

(1) We propose a method that utilizes the Gaussian difference pyramid to construct a scale
space by iteratively building a pyramid structure at different scales and effectively
detecting key points in images through a scale-invariant feature transform.

(2) We employ the multi-kernel fusion approach to capture both blurred and fine-grained
features at different resolutions, enhancing the accuracy and efficiency of the model.

(3) By integrating the fusion encoding and matching transformation of keypoints with
the original network, we address the challenges of exchanging information, avoiding
information loss, and improving performance in multi-scale space.

Coatings 2023, 13, 1202 3 of 14

(4) The proposed Multi-Scale Lightweight Neural Network (MM) achieves better classifi-
cation accuracy while reducing model parameters and compressing model size.

The structure of this paper is as follows: Section 1 presents an overview of the pro-
posed model’s overall structure. Section 2 discusses the method employed to address
the overfitting issue. In Section 3, the dataset and evaluation of the proposed model are
presented in detail, followed by a discussion of the results. Finally, Section 4 concludes
the paper.

2. Construction of a Multi-Scale Neural Network Model

The problem of compression and acceleration of neural networks has become a hot
research topic in the field of deep learning due to the large computational volume and
model capacity of deep neural networks. As the demand for high-quality deep neural
networks running on embedded devices increases, researchers are exploring the design
of lightweight network models to reduce computational costs. These models often use
“sparsely connected” convolutions, which can lower computational demands but may also
inhibit information exchange between different groups within the network. In this paper,
we propose a multiscale neural network by borrowing the idea of the Gaussian difference
pyramid [23] and adding a fusion coding module [24]. The network improves classification
accuracy while decreasing the computational cost.

2.1. Constructing Key-Point Feature Sets Based on Scale Space

In the steel slice dataset, the representation of images is represented at multiple scales.
To effectively capture these features at different scales, we propose a method to construct
the scale space using Gaussian [25] difference pyramids. In the scale space construction
module, we construct the scale space by Gaussian blurring the image and calculating the
difference between adjacent Gaussian blurred images. This process is iterated over different
scales (i.e., the size or resolution of the image), forming a kind of pyramid structure. In
this structure, each layer of the image is more blurred compared to the previous layer,
and the resolution is reduced accordingly. By using this scale-space building block, we
are able to effectively detect key points in the image during the scale-invariant feature
transform (SIFT).

Gaussian differential pyramids provide an effective scale-space representation that
captures the features of an image at different scales [26]. This is important for dealing with
real-world image problems, as real-world objects can appear at a variety of different scales.
In addition, the Gaussian difference pyramid offers the advantage of precise localization of
feature points in images and provides multi-scale image information for analysis and pro-
cessing. Furthermore, the downsampling of images in the pyramid reduces computational
complexity, thereby enhancing computational efficiency. These characteristics make the
Gaussian difference pyramid widely utilized in the fields of image processing, computer
vision, and pattern recognition.

2.2. Convolution of Key-Point Features

The traditional convolutional layer in convolutional neural networks (CNNs) pre-
serves global spatial information during the convolution process but may overlook crucial
details. Due to the lack of explicit focus on key points, traditional convolutional layers
may not be as effective as key-point feature convolution in extracting important features.
Additionally, traditional convolutional layers do not specifically handle key points, lead-
ing to a lower sensitivity for accurately capturing significant key points in images. This
limitation can restrict the performance of models on tasks related to key points. Key-point
feature convolution is a group convolution of each key-point feature set into a separate
set, which reduces the number of parameters and computational cost [27]. Using the idea
of multi-core combination, convolution using different key point feature sets can enhance
the model’s ability to adapt to varying levels of detail. The network needs both fuzzy

Coatings 2023, 13, 1202 4 of 14

key-point features to capture high-resolution patterns and fine key-point features to capture
low-resolution patterns for better model accuracy and efficiency.

2.3. Key-Point Feature Set Mapping Fusion Module

The key-point feature set mapping fusion module has an advantage over traditional
convolutional layers in convolutional neural networks (CNNs) as it explicitly focuses on
key points and integrates their important information into the network, thereby enhancing
the perception and utilization of crucial details in images and improving the robustness
and accuracy of the model. On the other hand, traditional convolutional layers exhibit
drawbacks in handling key details and tasks related to key points, such as disregarding fine
details, a limited receptive field, and a lack of explicit attention to key points. To address
issues related to information exchange, loss, and performance degradation of key-point
features in multi-scale space [28], The paper suggests using key points to map and encode
information from different scales, then combining it with the original network through
matching transformations in order to enhance the discriminative features.

Key-point feature mapping fusion aims to combine essential feature points and incor-
porate information about their varying scales in order to create a comprehensive feature
map, the process is shown in Figure 1. On top of the original feature map F ∈ RC × H ×W
generated by the Gaussian difference pyramid, the fusion module performs the fusion
encoding transformation TF: RC × H ×W→ RCM × H ×W to achieve the purpose of
aggregating all key-point features. Where: C is the key-point feature of the original feature
map; H and W are the width and height of the original feature map; CM is the key-point
feature of the fused feature map.

The image is decomposed by a Gaussian differential pyramid to produce N different
resolution images, and the Gaussian differential pyramid consists of multiple groups
of pyramids, where each group of pyramids contains several layers, and the Gaussian
differential pyramid consists of layer orders constructed on the basis of the Gaussian
pyramid [29]. The process of decomposing a Gaussian image into its differential pyramid
involves:

Step 1. Initialize i = 0;
Step 2. Standard image I(x,y) is sampled to obtain the first layer of the first set of

Gaussian pyramid images g0,0;
Step 3. Initialize j = 0 and x = 0;
Step 4. The Gaussian kernel Gx is convolved with image gi,0 [30]:

Gx(x, y, σx) =
1

2πσ2
x

e
(x−x0)

2+(y−y0)
2

2σx2 (1)

gi,j+1(x, y) = gi,j(x, y)⊗ Gx(x, y, σx) (2)

where σx is the smoothing parameter.
Step 5. Differentiate the Gaussian image from the Gaussian image to obtain the

Gaussian difference image [31]:

di,x(x, y) = gi,j(x, y)− gi,j+1(x, y) (3)

Step 6. j = j + 1 and x = x + 1, iterate Steps 4 and 5, and when j > n − 1 and x > n − 2,
perform Step 7;

Step 7. Downsample the image to get the Gaussian image of layer i + 1. When i = I + 1,
go to Step 3, and the decomposition process ends when i > m − 1 is satisfied.

Coatings 2023, 13, 1202 5 of 14

Coatings 2023, 13, x FOR PEER REVIEW 5 of 15

, , , 1(,) (,) (,)i x i j i jd x y g x y g x y (3)

Step 6. j = j + 1 and x = x + 1, iterate Steps 4 and 5, and when j > n − 1 and x > n − 2,

perform Step 7;

Step 7. Downsample the image to get the Gaussian image of layer i + 1. When i = I +

1, go to Step 3, and the decomposition process ends when i > m − 1 is satisfied.

Data
Data layer

Slice layer

Conv 1

...

...

...

...

Conv 2

Relu1
Pooling1

Convolution、 pooling

Concat layer
Feature Merge

Figure 1. Key-point feature convolution and mapping fusion.

2.4. MM Network Construction

Based on Section 2.1 “Constructing Key-Point Feature Sets Based on Scale Space”,

Section 2.2 “Convolution of Key-Point Features” and Section 2.3 “Key-Point Feature Set

Mapping Fusion Module”, the MM network is proposed in this paper. The MM network

is shown in Figure 2. The network consists of three branches from bottom to top: the

standard branch, the dimension reduction branch, and the fusion branch. The standard

branch directly maps the original feature map. The dimension reduction branch reduces

computational costs and then performs “Constructing Key-Point Feature Sets Based on

Scale Space” 2.1 operations to construct a set of key-point features. The fusion branch

utilizes mixed convolutional kernels to obtain more stable feature maps at different

resolutions, where the large convolutional kernel in the mixed convolution retains more

feature information. It serves as a bridge connecting the dimension reduction branch and

the fusion branch by combining the processed feature maps from the fusion branch. The

final single-point group convolution is used to restore the channel dimension to match the

standard branch. The fusion branch performs fusion encoding on the network and

combines with the dimension reduction branch using element-wise multiplication before

the single-point group convolution, which helps to reduce the loss of inter-group

Figure 1. Key-point feature convolution and mapping fusion.

2.4. MM Network Construction

Based on Section 2.1 “Constructing Key-Point Feature Sets Based on Scale Space”,
Section 2.2 “Convolution of Key-Point Features” and Section 2.3 “Key-Point Feature Set
Mapping Fusion Module”, the MM network is proposed in this paper. The MM network
is shown in Figure 2. The network consists of three branches from bottom to top: the
standard branch, the dimension reduction branch, and the fusion branch. The standard
branch directly maps the original feature map. The dimension reduction branch reduces
computational costs and then performs Section 2.1 “Constructing Key-Point Feature Sets
Based on Scale Space” operations to construct a set of key-point features. The fusion
branch utilizes mixed convolutional kernels to obtain more stable feature maps at different
resolutions, where the large convolutional kernel in the mixed convolution retains more
feature information. It serves as a bridge connecting the dimension reduction branch and
the fusion branch by combining the processed feature maps from the fusion branch. The
final single-point group convolution is used to restore the channel dimension to match the
standard branch. The fusion branch performs fusion encoding on the network and combines
with the dimension reduction branch using element-wise multiplication before the single-
point group convolution, which helps to reduce the loss of inter-group information during
the convolution process. In this figure, “GC” represents Group Convolution, “Conv”
represents Convolution, and “BN” represents Batch Normalization.

Coatings 2023, 13, 1202 6 of 14

Coatings 2023, 13, x FOR PEER REVIEW 6 of 15

information during the convolution process. In this figure, “GC” represents Group

Convolution, “Conv” represents Convolution, and “BN” represents Batch Normalization.

K
e
y
 p
o
in
t
fe
a
tu
re

se
ts

M
i
x
e
d

c
o
n
vo
lu
ti
on

M
u
l
t
i
p
l
y

A
d
d

1 x 1 Conv

3 x 3 Conv

1 x 1 Conv

B
N

R
e
LU

BN ReLU

BN ReLU
Key point feature sets

mapping fusion module

BN Sigmoid

B
N B
N

R
eL
U1
x1
 G
C

1
x1
 G
C

Figure 2. MM network construction.

3. Solving the Overfitting Problem

To avoid overfitting problems, We perform batch normalization of the network as

well as Dropout operations on the last two fully connected layers of the network [32].
Unlike L1 and L2 normalization, Dropout does not rely on the modification of the cost

function; in Dropout, the network itself is changed. Assuming training data x and a

corresponding target output y, the contribution to the gradient is normally determined by

forward propagating x in the network and then back-propagating. However, using the

Dropout operation, this paper starts by randomly removing half of the hidden neurons in

the network while leaving the neurons in the input and output layers unchanged, after

which the input x is forward propagated and the contribution to the gradient is

determined by modifying the network, back-propagating the result, and repeating the

process. The overall execution process is: first reset the neurons of Dropout; then select a

new random subset of hidden neurons for deletion; and finally, update the weights and

biases by estimating the gradient for a different small batch of data before determining.

Batch normalization is a normalization technique applied in hidden layers that

normalizes the inputs of each layer by subtracting the batch mean and dividing by the

batch standard deviation. This normalization process helps stabilize the distribution of

activation values in the network, reducing the range of gradient variations, thereby

accelerating training and improving the generalization ability of the network.

In practice, batch normalization not only improves training effectiveness but also has

a certain regularization effect. By introducing randomness in each batch, it reduces

reliance on dropouts. This is because the introduced randomness in batch normalization

reduces the dependence of the network on individual neurons, thus reducing the risk of

overfitting. Therefore, in networks with batch normalization, lower dropout rates can

typically be used, or dropout operations may not be necessary at all.

Batch normalization plays a significant role in reducing dropout rates. By

standardizing the inputs and stabilizing the distribution of activation values in the

network, the reliance on Dropout operations is alleviated. This allows for a better balance

between model capacity and the risk of overfitting, thereby improving the generalization

ability and training effectiveness of the model.

4. Experiment

Figure 2. MM network construction.

3. Solving the Overfitting Problem

To avoid overfitting problems, We perform batch normalization of the network as
well as Dropout operations on the last two fully connected layers of the network [32].
Unlike L1 and L2 normalization, Dropout does not rely on the modification of the cost
function; in Dropout, the network itself is changed. Assuming training data x and a
corresponding target output y, the contribution to the gradient is normally determined by
forward propagating x in the network and then back-propagating. However, using the
Dropout operation, this paper starts by randomly removing half of the hidden neurons in
the network while leaving the neurons in the input and output layers unchanged, after
which the input x is forward propagated and the contribution to the gradient is determined
by modifying the network, back-propagating the result, and repeating the process. The
overall execution process is: first reset the neurons of Dropout; then select a new random
subset of hidden neurons for deletion; and finally, update the weights and biases by
estimating the gradient for a different small batch of data before determining.

Batch normalization is a normalization technique applied in hidden layers that nor-
malizes the inputs of each layer by subtracting the batch mean and dividing by the batch
standard deviation. This normalization process helps stabilize the distribution of activation
values in the network, reducing the range of gradient variations, thereby accelerating
training and improving the generalization ability of the network.

In practice, batch normalization not only improves training effectiveness but also has
a certain regularization effect. By introducing randomness in each batch, it reduces reliance
on dropouts. This is because the introduced randomness in batch normalization reduces
the dependence of the network on individual neurons, thus reducing the risk of overfitting.
Therefore, in networks with batch normalization, lower dropout rates can typically be used,
or dropout operations may not be necessary at all.

Batch normalization plays a significant role in reducing dropout rates. By standard-
izing the inputs and stabilizing the distribution of activation values in the network, the
reliance on Dropout operations is alleviated. This allows for a better balance between
model capacity and the risk of overfitting, thereby improving the generalization ability and
training effectiveness of the model.

4. Experiment

This section first describes the system that utilizes a CCD camera to capture images
of the surface of hot-rolled steel strips, which are then subjected to normalization pre-
processing. A sliding window approach is employed to extract image patches, which
are used to construct a dataset of standard defect images. The dataset consists of six
defect categories, including transverse cracks, wrinkles, longitudinal cracks, edge cracks,
seams, and water stains. The training and validation of the system are performed using

Coatings 2023, 13, 1202 7 of 14

a multi-scale lightweight neural network model, and the performance of the model is
evaluated and analyzed. Experimental results demonstrate that the proposed model
achieves high accuracy and efficiency in detecting surface defects in hot-rolled steel strips.
Compared to other classical and lightweight neural network models, the proposed model
exhibits superior capability in detecting minor defects with high classification accuracy and
performance.

4.1. Common Defects and Detection Process

The defect images are acquired based on a machine vision technology acquisition
system, using a system consisting of CCD cameras as well as a deep neural network server.
The images of the hot rolled strip surface are obtained through CCD cameras, and then the
image data are received and transmitted to process the defect images of the hot rolled strip
surface obtained within the cameras. The defect images are acquired based on a machine
vision technology acquisition system, using a system consisting of CCD cameras as well
as a deep neural network server. The images of the hot rolled strip surface are obtained
through CCD cameras, and then the image data are received and transmitted to process
the defect images of the hot rolled strip surface obtained within the cameras [33]. The data
sets used in this paper are obtained through such image acquisition units, taken from a
hot-rolled strip mill specializing in the production of cover hot-rolled strip surfaces, with
more than 20,000 original sample images taken from different production batches.

There are gaps in the images of hot-rolled strip steel surface defects acquired under
different light intensities, light directions, etc. Therefore, the original images are normalized
and pre-processed. In this paper, a sliding window of 128 × 128 pixels is used to intercept
the whole CCD-captured hot-rolled strip surface defect images, and the complete defect as
well as defect-free images are selected to establish a standard image dataset of hot-rolled
strip surface defects, which reaches more than 60,000 standard sample images. This paper
artificially augments the standard image dataset by adding rotated images to enhance
model training quality, reaching a total of more than 120,000 standard sample images,
which contain horizontal cracking, pleats, Side Splits, seams, vertical cracks, and water
stains (as seen in Figure 3).

Coatings 2023, 13, x FOR PEER REVIEW 7 of 15

This section first describes the system that utilizes a CCD camera to capture images

of the surface of hot-rolled steel strips, which are then subjected to normalization pre-

processing. A sliding window approach is employed to extract image patches, which are

used to construct a dataset of standard defect images. The dataset consists of six defect

categories, including transverse cracks, wrinkles, longitudinal cracks, edge cracks, seams,

and water stains. The training and validation of the system are performed using a multi-

scale lightweight neural network model, and the performance of the model is evaluated

and analyzed. Experimental results demonstrate that the proposed model achieves high

accuracy and efficiency in detecting surface defects in hot-rolled steel strips. Compared to

other classical and lightweight neural network models, the proposed model exhibits

superior capability in detecting minor defects with high classification accuracy and

performance.

4.1. Common Defects and Detection Process

The defect images are acquired based on a machine vision technology acquisition

system, using a system consisting of CCD cameras as well as a deep neural network

server. The images of the hot rolled strip surface are obtained through CCD cameras, and

then the image data are received and transmitted to process the defect images of the hot

rolled strip surface obtained within the cameras. The defect images are acquired based on

a machine vision technology acquisition system, using a system consisting of CCD

cameras as well as a deep neural network server. The images of the hot rolled strip surface

are obtained through CCD cameras, and then the image data are received and transmitted

to process the defect images of the hot rolled strip surface obtained within the cameras

[33]. The data sets used in this paper are obtained through such image acquisition units,

taken from a hot-rolled strip mill specializing in the production of cover hot-rolled strip

surfaces, with more than 20,000 original sample images taken from different production

batches.

There are gaps in the images of hot-rolled strip steel surface defects acquired under

different light intensities, light directions, etc. Therefore, the original images are

normalized and pre-processed. In this paper, a sliding window of 128 × 128 pixels is used

to intercept the whole CCD-captured hot-rolled strip surface defect images, and the

complete defect as well as defect-free images are selected to establish a standard image

dataset of hot-rolled strip surface defects, which reaches more than 60,000 standard

sample images. This paper artificially augments the standard image dataset by adding

rotated images to enhance model training quality, reaching a total of more than 120,000

standard sample images, which contain horizontal cracking, pleats, Side Splits, seams,

vertical cracks, and water stains (as seen in Figure 3).

Horizontal Cracking Pleats

Side Splits Seams

Vertical Cracks Water Stains

Figure 3. Example defect image and corresponding label.

Among them, horizontal cracking has the greatest impact on the quality of hot-rolled
strip and is the biggest safety hazard, while the effects of folds, pleats, side splits, seams,
vertical cracks, and water stains decrease in order. The obtained standard sample image
dataset was divided into 3 parts: partitioning the data into subsets based on a specific
proportion (as shown in Table 1).

Coatings 2023, 13, 1202 8 of 14

Table 1. Standard defect image data set.

Dataset Horizontal Cracking Pleats Vertical Cracks Side Split Seams Water Stains Total

Training set 20,000 20,000 15,000 15,000 15,000 15,000 100,000
Validation set 2000 2000 1500 1500 1500 1500 10,000
Test set 2000 2000 1500 1500 1500 1500 10,000

The dataset faces three main challenges: (1) defects within classes vary greatly in
appearance; (2) defects between classes have similar aspects, and (3) the grayscale of defect
images between classes can change due to the effect of defect images on illumination and
material variations.

For the content and criteria of common defects on the surface of a hot-rolled strip of
cover, this paper uses the constructed multi-scale convolutional neural network model to
experimentally validate the detection of defects on the surface of a hot-rolled strip, and the
main process is as follows:

Step 1. Selection of the Pytorch open-source framework for deep learning as the
experimental environment for building multi-scale convolutional neural network models.

Step 2. While constructing the experimental environment, the CCD camera acquires
image data of the surface of the hot rolled strip, and the images of the defects on the surface
of the hot rolled strip obtained within the camera are processed and displayed on the
monitor.

Step 3. Intercept the images of defects on the surface of the hot-rolled strip obtained in
the camera, select the complete defective and defect-free images, normalize the detection
of “defective images”, obtain the image size of 128 × 128, establish the defective standard
image data set, and form the experimental sample.

Step 4. Training and validation of the samples based on a multiscale convolutional
neural network model labeled with six types of defects.

Step 5. Randomly selected images from each category in the standard sample image
dataset become the test samples, and the classification results and accuracy of the model to
detect surface defects in images of hot-rolled strip steel are analyzed.

The whole process is shown in Figure 4.
Coatings 2023, 13, x FOR PEER REVIEW 9 of 15

Testing begins

Image data acquisition
Building MCNN models based on

Caffe framework

Image data interception

Establishing a Defect
Standard Image Dataset

Perform classification
and identification

Build Softmax/SVM classifier

MCNN+Softmax/SVM
detection model

Training and Validation

6 types of glass
defect data

Analysis of outcome
evaluation

End

Figure 4. Detection process.

4.2. Model Training

The MM models experimentally designed in this paper are performed based on the

open-source framework of Pytorch deep learning, which provides a complete toolkit for

training, testing, fine-tuning, and developing models. The models and corresponding

optimizations are given in textual form rather than in code.

Steps during model training tests:

Step 1. Interception of the entire CCD-captured image of the hot-rolled strip surface

defects using a sliding window of 128 × 128 pixels, selection of the complete defects, image

normalization to obtain a standard defect picture, and collation into a standard defect data

set.

Step 2. SIFT extraction of Gaussian differential pyramidal images from standard

defect images to obtain a dataset for training a multi-scale convolutional neural network.

Step 3. The obtained multi-resolution image training data set is directly input to the

network, and the four multi-scale images are divided by the slice layer and convolved

separately to extract features. Initialize the network weights with “Gaussian”, where the

bias is set to “Constant”.

Step 4. Select a batch training sample from the training set and input it into the

network.

Step 5. Samples are propagated forward through the mapping between layers until

Concat for feature merging, and then continue to propagate forward until the output layer

to obtain the actual output vector.

Step 6. Calculates the error between the actual output vector and the label, and if the

error is less than a predetermined threshold (or if the number of training iterations reaches

Figure 4. Detection process.

Coatings 2023, 13, 1202 9 of 14

4.2. Model Training

The MM models experimentally designed in this paper are performed based on the
open-source framework of Pytorch deep learning, which provides a complete toolkit for
training, testing, fine-tuning, and developing models. The models and corresponding
optimizations are given in textual form rather than in code.

Steps during model training tests:
Step 1. Interception of the entire CCD-captured image of the hot-rolled strip surface

defects using a sliding window of 128 × 128 pixels, selection of the complete defects, image
normalization to obtain a standard defect picture, and collation into a standard defect
data set.

Step 2. SIFT extraction of Gaussian differential pyramidal images from standard defect
images to obtain a dataset for training a multi-scale convolutional neural network.

Step 3. The obtained multi-resolution image training data set is directly input to the
network, and the four multi-scale images are divided by the slice layer and convolved
separately to extract features. Initialize the network weights with “Gaussian”, where the
bias is set to “Constant”.

Step 4. Select a batch training sample from the training set and input it into the
network.

Step 5. Samples are propagated forward through the mapping between layers until
Concat for feature merging, and then continue to propagate forward until the output layer
to obtain the actual output vector.

Step 6. Calculates the error between the actual output vector and the label, and if the
error is less than a predetermined threshold (or if the number of training iterations reaches
a predetermined threshold), the network training is stopped; otherwise, the network
continues.

Step 7. Tuning the weight parameters of the whole network model by backpropagation
according to the principle of minimum error cost.

Step 8. Revert to Step 4 and continue the training.
Step 9. A randomly selected test dataset is fed into the trained model (convolutional

kernel set, network weight parameters, etc.) for recognition detection.
The multi-scale defect image detection models constructed in this paper are all su-

pervised training methods, and their training image sets are composed of vector pairs of
(defect image, category label), where “defect image” is a normalized image, and the size
of the image obtained after normalization is 128 × 128. The “category labels” represent
the classification labels of the input defect images, which are divided into six categories:
horizontal cracks, folds, vertical cracks, edge cracks, seams, and water stains.

In training, the experiments were conducted on the Ubuntu 20.04.2 LTS operating
system, using the PyTorch deep learning framework and Python as the programming
language. The CPU utilized was an Intel Core i7-9700F, while the GPU employed was an
NVIDIA GeForce RTX 2080Ti. The images in the input layer are fixed-size 128 × 128 RGB
images, and for the training set, the preprocessing is performed to subtract the average RGB
value per pixel. The training network parameters are set as follows: The network uses the
AdamW [34] optimization algorithm in the training phase to iteratively update the weights
of the neural network based on the training data and the selected small batch training size;
each batch contains 64 images. The weight decay is 0.005, the memory factor is 0.9, the
learning rate is 0.001, and the learning strategy is STEP. The normalization factor is used
to accelerate the training process in GPU mode, and the maximum number of training
iterations is 1000.

4.3. Analysis of Results

The Figure 5 illustrates the training process of the MM model network, including
the curves for accuracy, training loss, and validation loss. It can be observed from the
graph that with the increase in the number of iterations, the model’s accuracy on the

Coatings 2023, 13, 1202 10 of 14

validation set continues to rise while its loss decreases continuously. The model exhibits
good convergence and achieves an accuracy of around 98.4% after 700 iterations.

Coatings 2023, 13, x FOR PEER REVIEW 10 of 15

a predetermined threshold), the network training is stopped; otherwise, the network

continues.

Step 7. Tuning the weight parameters of the whole network model by

backpropagation according to the principle of minimum error cost.

Step 8. Revert to Step 4 and continue the training.

Step 9. A randomly selected test dataset is fed into the trained model (convolutional

kernel set, network weight parameters, etc.) for recognition detection.

The multi-scale defect image detection models constructed in this paper are all

supervised training methods, and their training image sets are composed of vector pairs

of (defect image, category label), where “defect image” is a normalized image, and the

size of the image obtained after normalization is 128 × 128. The “category labels” represent

the classification labels of the input defect images, which are divided into six categories:

horizontal cracks, folds, vertical cracks, edge cracks, seams, and water stains.

In training, the experiments were conducted on the Ubuntu 20.04.2 LTS operating

system, using the PyTorch deep learning framework and Python as the programming

language. The CPU utilized was an Intel Core i7-9700F, while the GPU employed was an

NVIDIA GeForce RTX 2080Ti. The images in the input layer are fixed-size 128 × 128 RGB

images, and for the training set, the preprocessing is performed to subtract the average

RGB value per pixel. The training network parameters are set as follows: The network

uses the AdamW [34] optimization algorithm in the training phase to iteratively update

the weights of the neural network based on the training data and the selected small batch

training size; each batch contains 64 images. The weight decay is 0.005, the memory factor

is 0.9, the learning rate is 0.001, and the learning strategy is STEP. The normalization factor

is used to accelerate the training process in GPU mode, and the maximum number of

training iterations is 1000.

4.3. Analysis of Results

The Figure 5 illustrates the training process of the MM model network, including the

curves for accuracy, training loss, and validation loss. It can be observed from the graph

that with the increase in the number of iterations, the model’s accuracy on the validation

set continues to rise while its loss decreases continuously. The model exhibits good

convergence and achieves an accuracy of around 98.4% after 700 iterations.

0 100 200 300 400 500 600 700 800 900 1000
0.0

0.5

1.0

1.5

2.0

2.5
Re

co
gn

i
ti

on
 a

cc
ur

ac
y/

Va
li

da
ti

on
 l

os
s

Iteration number

 Recognition accuracy
 Validation loss
 Training loss

Figure 5. Defective image recognition accuracy and loss curves.

Figure 5. Defective image recognition accuracy and loss curves.

To evaluate the performance of our classification model, we have introduced a con-
fusion matrix, which serves as a valuable tool for assessing prediction accuracy. The
confusion matrix is a square matrix that represents the relationship between actual and
predicted classes. Rows of the matrix correspond to the true classes, while columns denote
the predicted classes. Each element in the matrix represents the count of instances classified
into a specific combination of true and predicted classes. As shown in Table 2.

Table 2. Confusion matrices.

Prediction of
Horizontal
Cracking

Prediction
of Pleats

Prediction of
Vertical Cracks

Prediction of
Side Split

Prediction
of Seams

Prediction of
Water Stains

Actual Horizontal
Cracking 1984 5 3 3 2 3

Actual Pleats 10 1987 1 1 0 1
Actual Vertical Cracks 6 5 1486 2 1 0

Actual Side Splits 4 4 1 1488 1 2
Actual Seams 5 2 1 2 1490 0

Actual Water Stains 2 0 0 1 3 1494

The first row represents the samples with the true label “horizontal cracking”. Among
these samples, 1984 were correctly predicted as “horizontal cracking”, 5 were wrongly
predicted as “pleats”, 3 were wrongly predicted as “vertical cracks “, 3 were wrongly
predicted as “side splits”, 2 were wrongly predicted as “seams”, and 3 were wrongly
predicted as “water stains”.

The second row represents the samples with the true label “pleats”. Among these
samples, 10 were wrongly predicted as “horizontal cracking”, 1987 were correctly predicted
as “pleats”, 1 was wrongly predicted as “vertical cracks”, 1 was wrongly predicted as “side
splits”, 0 were wrongly predicted as “seams”, and 1 was wrongly predicted as “water
stains”.

Coatings 2023, 13, 1202 11 of 14

The following rows follow the same pattern, representing the remaining labels. This
confusion matrix helps us understand the performance of the MM model for each defect
type and the possible misclassification of the model situation.

To verify the impact of different modules on network performance, five evaluation
indices were introduced in this article: computing power, which refers to the number
of floating-point operations executed per second (FLOPs), feature memory, recall, F1
score, and accuracy. The MM network was compared with four popular classical networks
(ResNet-101, ResNet-50, VGG, and AlexNet) as well as the new lightweight neural networks
MobileNetV2 and MobileNetV3. Table 3 shows the detailed comparison results.

Table 3. Comparison of the comprehensive performance of different networks.

Models Precision Feature
Memory

Number of
Floating-Point

Operations (FLOPs)
Recall F1

Resnet-50 89.7% 60 MB 10 GFLOPs 87.2% 0.92
ResNet-101 97.38% 155 MB 8 GFLOPs 92.6% 0.93

VGG 93.56% 96 MB 15.5 GFLOPs 93.7% 0.90
AlexNet 91.30% 300 MB 0.72 GFLOPs 91.6% 0.92

MobileNetV2 94.6% 57 MB 0.98 GFLOPs 94.6% 0.95
MobileNetV3 96.7% 52 MB 0.76 GFLOPs 95.4% 0.97

MM 98.06% 50 MB 0.67 GFLOPs 98.7% 0.99

After 1000 iterations, AlexNet, ResNet-50, and VGG achieved classification accuracies
of 91.30%, 89.7%, and 93.56%, respectively, while ResNet-101, MobileNetV2, and Mo-
bileNetV3 achieved slightly better accuracies of 97.38%, 94.6%, and 96.7%, respectively.
Compared to Resnet50, MM increased the accuracy by 8.36 percentage points, by 0.38 per-
centage points compared to ResNet-101, by 4.5 percentage points compared to VGG, by
6.76 percentage points compared to AlexNet, by 3.46 percentage points compared to Mo-
bileNetV2, and by 1.36 percentage points compared to MobileNetV3. Additionally, MM
had a faster decrease in training loss compared to the other models, with a final loss value
approaching zero as shown in Figure 6. Moreover, MM had smaller feature memory and
fewer floating-point computations, while its recall and F1 metrics were relatively higher.
These results fully demonstrate that the key-point feature convolutional operation reduces
the number of network parameters and that the key-point feature set mapping fusion oper-
ation promotes information exchange between key points, making it effective in reducing
performance losses.

From the comprehensive analysis of the experiments above, MM has the best per-
formance in all indicators. Resnet-50, ResNet-101, VGG, AlexNet, MobileNetV2, and
MobileNetV3 models lack the ability to detect small defects on the surface of steel. The
MM proposed in this paper, with the fusion encoding module as the core, constructs a
multiscale neural network model through the Gaussian difference pyramid. It not only
improves the network’s capture ability for different resolution modes but also achieves
better model accuracy and efficiency. The recognition accuracy on the steel surface defect
dataset is the best. The recognition accuracy of various neural network models for different
types of defects is shown in Table 4.

Coatings 2023, 13, 1202 12 of 14

Coatings 2023, 13, x FOR PEER REVIEW 12 of 15

and MobileNetV3 achieved slightly better accuracies of 97.38%, 94.6%, and 96.7%,

respectively. Compared to Resnet50, MM increased the accuracy by 8.36 percentage

points, by 0.38 percentage points compared to ResNet-101, by 4.5 percentage points

compared to VGG, by 6.76 percentage points compared to AlexNet, by 3.46 percentage

points compared to MobileNetV2, and by 1.36 percentage points compared to

MobileNetV3. Additionally, MM had a faster decrease in training loss compared to the

other models, with a final loss value approaching zero as shown in Figure 6. Moreover,

MM had smaller feature memory and fewer floating-point computations, while its recall

and F1 metrics were relatively higher. These results fully demonstrate that the key-point

feature convolutional operation reduces the number of network parameters and that the

key-point feature set mapping fusion operation promotes information exchange between

key points, making it effective in reducing performance losses.

0 100 200 300 400 500 600 700 800 900 1000
0.0

0.2

0.4

0.6

0.8

1.0

Re
co

gn
it

io
n

ac
cu

ra
cy

Iteration number

 MM
 ResNet-50
 ResNet-101
 VGG
 AlexNet
 MobileNetV2
 MobileNetV3

(a) Verification of the accuracy curve.

0 100 200 300 400 500 600 700 800 900 1000
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Tr
ai

ni
n
g

lo
ss

Iteration number

 MM
 Renet50
 ResNet-101
 VGG
 AlexNet
 MobileNetV2
 MobileNetV3

(b) Training loss curves

Figure 6. Performance comparison of different models. Figure 6. Performance comparison of different models.

Table 4. Accuracy of different networks for defect recognition in various categories.

Transverse Crack ResNet-50 ResNet-101 VGG AlexNet MobileNetV2 MobileNetV3 MM

Horizontal Cracking 92.4% 91.6% 86.2% 92.1% 91.2% 92.6% 99.2%
Pleats 72.6% 98.2% 82.9% 97.2% 97.7% 97.2% 99.3%

Side Splits 93.2% 97.2% 92.6% 92.2% 98.6% 98.6% 99.2%
Seams 81.7% 98.9% 93.5% 93.2% 95.8% 93.5% 99.3%

Water Stains 91.2% 99.7% 92.4% 95.2% 96.6% 99.2% 99.6%
Vertical cracks 93.9% 93.2% 97.9% 96.2% 94.2% 98.7% 99.0%

5. Conclusions

To address the issues of increasing parameter count and computational cost in convolu-
tional neural networks as well as the challenge of preserving key-point feature information
in existing lightweight networks, this paper proposes a novel lightweight network, referred
to as MM. The core of this model is a fusion encoding module that leverages Gaussian
difference pyramids to construct a multi-scale neural network model. By enhancing the

Coatings 2023, 13, 1202 13 of 14

network’s ability to capture patterns at different resolutions, the proposed model achieves
higher model accuracy and efficiency. Experimental results show that the network avoids
the loss of feature information at key points, improves the classification accuracy, and signif-
icantly improves the overall performance compared with other networks, which provides
strong support for the mobile classification task of steel surface defects. It provides strong
support for the mobile deployment of steel surface defect classification tasks. In the future,
we plan to improve the model’s ability to perform well on new data and optimize it to
meet the requirements for commercialization. Furthermore, the proposed model can be
applied to real-time object detection and tracking tasks, mobile device applications, and
image super-resolution reconstruction. These directions leverage the lightweight nature
and multi-scale capabilities of MM, offering possibilities for real-time image analysis, edge
computing, and enhanced image processing in various domains.

Author Contributions: Conceptualization, Y.S.; Methodology, Y.S., S.F. and H.S.; Software, S.F., Z.T.,
Y.C. and C.Z.; Validation, C.Z. and L.Z.; Formal analysis, L.Z.; Investigation, L.Z.; Resources, Z.T.;
Data curation, S.F.; Writing—original draft, H.S., Z.T. and L.Z. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by Shenyang Science and Technology Plan (grant number
22-319-2-26) and the APC was funded by Shenyang University.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. He, Y.; Wen, X.; Xu, J. A Semi-Supervised Inspection Approach of Textured Surface Defects under Limited Labeled Samples.

Coatings 2022, 12, 1707. [CrossRef]
2. He, Y.; Song, K.; Meng, Q.; Yan, Y. An End-to-End Steel Surface Defect Detection Approach via Fusing Multiple Hierarchical

Features. IEEE Trans. Instrum. Meas. 2020, 69, 1493–1504. [CrossRef]
3. Liu, Y.; Yuan, Y.; Balta, C.; Liu, J. A Light-Weight Deep-Learning Model with Multi-Scale Features for Steel Surface Defect

Classification. Materials 2020, 13, 4629. [CrossRef] [PubMed]
4. Boudiaf, A.; Benlahmidi, S.; Harrar, K.; Zaghdoudi, R. Classification of Surface Defects on Steel Strip Images using Convolution

Neural Network and Support Vector Machine. J. Fail. Anal. Prev. 2022, 22, 531–541. [CrossRef]
5. Nizan, O.; Tal, A. k-NNN: Nearest Neighbors of Neighbors for Anomaly Detection. arXiv 2023, arXiv:2305.17695. [CrossRef]
6. Shamsi, M.; Beheshti, S. Separability and Scatteredness (S&S) Ratio-Based Efficient SVM Regularization Parameter, Kernel, and

Kernel Parameter Selection. arXiv 2023, arXiv:2305.10219. [CrossRef]
7. Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci.

Remote Sens. 2004, 42, 1778–1790. [CrossRef]
8. Wen, X.; Shan, J.; He, Y.; Song, K. Steel Surface Defect Recognition: A Survey. Coatings 2023, 13, 17. [CrossRef]
9. Yang, Z.; Zhang, M.; Chen, Y.; Ping, E. Research progress on surface defect detection methods based on machine vision. Mod.

Manuf. Eng. 2023, 511, 143. [CrossRef]
10. Choi, E.; Schuetz, A.; Stewart, W.F.; Sun, J. Using Recurrent Neural Network Models for Early Detection of Heart Failure Onset. J.

Am. Med. Inform. Assoc. 2017, 24, 361–370. Available online: https://academic.oup.com/jamia/article/24/2/361/2631499?login=
false (accessed on 23 June 2023). [CrossRef]

11. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556.
[CrossRef]

12. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. Available online:
https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html (accessed on 23
June 2023).

13. Kothari, J.D. Detecting Welding Defects in Steel Plates using Machine Learning and Computer Vision Algorithms. Int. J. Adv. Res.
Electr. Electron. Instrum. Eng. 2018, 7, 3682–3686. Available online: https://papers.ssrn.com/abstract=3729754 (accessed on 23
June 2023).

https://doi.org/10.3390/coatings12111707
https://doi.org/10.1109/TIM.2019.2915404
https://doi.org/10.3390/ma13204629
https://www.ncbi.nlm.nih.gov/pubmed/33081388
https://doi.org/10.1007/s11668-022-01344-6
https://doi.org/10.48550/arXiv.2305.17695
https://doi.org/10.48550/arXiv.2305.10219
https://doi.org/10.1109/TGRS.2004.831865
https://doi.org/10.3390/coatings13010017
https://doi.org/10.16731/j.cnki.1671-3133.2023.04.020
https://academic.oup.com/jamia/article/24/2/361/2631499?login=false
https://academic.oup.com/jamia/article/24/2/361/2631499?login=false
https://doi.org/10.1093/jamia/ocw112
https://doi.org/10.48550/arXiv.1409.1556
https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
https://papers.ssrn.com/abstract=3729754

Coatings 2023, 13, 1202 14 of 14

14. Demir, K.; Ay, M.; Cavas, M.; Fatih, D. Automated Steel Surface Defect Detection and Classification Using a New Deep Learning-
Based Approach. Neural Comput. Appl. 2023, 35, 8389–8406. Available online: https://link.springer.com/article/10.1007/s00521
-022-08112-5 (accessed on 23 June 2023). [CrossRef]

15. Hoang, N.-D. Image Processing-Based Pitting Corrosion Detection Using Metaheuristic Optimized Multilevel Image Thresholding
and Machine-Learning Approaches. Math. Probl. Eng. 2020, 2020, e6765274. [CrossRef]

16. Zhao, W.; Chen, F.; Huang, H.; Li, D.; Cheng, W. A New Steel Defect Detection Algorithm Based on Deep Learning. Comput. Intell.
Neurosci. 2021, 2021, e5592878. [CrossRef]

17. Jeon, Y.-J.; Choi, D.; Lee, S.J.; Yun, J.P.; Kim, S.W. Steel-surface defect detection using a switching-lighting scheme. Appl. Opt. 2016,
55, 47–57. [CrossRef] [PubMed]

18. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient
Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861. [CrossRef]

19. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 4510–4520. Available online: https://openaccess.thecvf.com/content_cvpr_2018/html/Sandler_MobileNetV2_Inverted_
Residuals_CVPR_2018_paper.html (accessed on 23 June 2023).

20. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 6848–6856. Available online: https://openaccess.thecvf.com/content_cvpr_2018/html/Zhang_ShuffleNet_An_Extremely_
CVPR_2018_paper.html (accessed on 23 June 2023).

21. Iandola, F.N.; Han, S.; Moskewicz, M.W.; Ashraf, K.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level accuracy with 50× fewer
parameters and <0.5 MB model size. arXiv 2016, arXiv:1602.07360. [CrossRef]

22. Choi, S.; Choi, J. Arithmetic Intensity Balancing Convolution for Hardware-aware Efficient Block Design. arXiv 2023,
arXiv:2304.04016. [CrossRef]

23. Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. Available online: https://openaccess.thecvf.com/
content_cvpr_2018/html/Hu_Squeeze-and-Excitation_Networks_CVPR_2018_paper.html (accessed on 23 June 2023).

24. Wan, C.; Ma, S.; Song, K. TSSTNet: A Two-Stream Swin Transformer Network for Salient Object Detection of No-Service Rail
Surface Defects. Coatings 2022, 12, 1730. [CrossRef]

25. Bergstrom, A.C.; Conran, D.; Messinger, D.W. Gaussian Blur and Relative Edge Response. arXiv 2023, arXiv:2301.00856. [CrossRef]
26. Lindeberg, T. Scale-Space Theory: A Basic Tool for Analyzing Structures at Different Scales. J. Appl. Stat. 1994, 21, 225–270.

[CrossRef]
27. Guo, Q.; Wu, X.-J.; Kittler, J.; Feng, Z. Self-grouping convolutional neural networks. Neural Netw. 2020, 132, 491–505. [CrossRef]

[PubMed]
28. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. arXiv 2015,

arXiv:1512.02325. Available online: https://arxiv.org/abs/1512.02325v5 (accessed on 25 June 2023).
29. Lowe, D.G. Object recognition from local scale-invariant features. In Proceedings of the Seventh IEEE International Conference

on Computer Vision, Corfu, Greece, 20–27 September 1999; Volume 2, pp. 1150–1157. [CrossRef]
30. Simoncelli, E.P.; Freeman, W.T. The steerable pyramid: A flexible architecture for multi-scale derivative computation. In Proceed-

ings of the International Conference on Image Processing, Washington, DC, USA, 23–26 October 1995; Volume 3, pp. 444–447.
[CrossRef]

31. El-Sennary, H.A.E.-F.; Hussien, M.E.; Ali, A.E.-M.A. Edge Detection of an Image Based on Extended Difference of Gaussian. Am.
J. Comput. Sci. Technol. 2019, 2, 35–47. [CrossRef]

32. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks
from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

33. Zhang, C.; Hu, H.; Fang, D.; Duan, J. The CCD sensor video acquisition system based on FPGA&MCU. In Proceedings of the 2020
IEEE 9th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), Chongqing, China, 11–13
December 2020; pp. 995–999. [CrossRef]

34. Loshchilov, I.; Hutter, F. Decoupled Weight Decay Regularization. arXiv 2019, arXiv:1711.05101. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://link.springer.com/article/10.1007/s00521-022-08112-5
https://link.springer.com/article/10.1007/s00521-022-08112-5
https://doi.org/10.1007/s00521-022-08112-5
https://doi.org/10.1155/2020/6765274
https://doi.org/10.1155/2021/5592878
https://doi.org/10.1364/AO.55.000047
https://www.ncbi.nlm.nih.gov/pubmed/26835620
https://doi.org/10.48550/arXiv.1704.04861
https://openaccess.thecvf.com/content_cvpr_2018/html/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Zhang_ShuffleNet_An_Extremely_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Zhang_ShuffleNet_An_Extremely_CVPR_2018_paper.html
https://doi.org/10.48550/arXiv.1602.07360
https://doi.org/10.48550/arXiv.2304.04016
https://openaccess.thecvf.com/content_cvpr_2018/html/Hu_Squeeze-and-Excitation_Networks_CVPR_2018_paper.html
https://openaccess.thecvf.com/content_cvpr_2018/html/Hu_Squeeze-and-Excitation_Networks_CVPR_2018_paper.html
https://doi.org/10.3390/coatings12111730
https://doi.org/10.48550/arXiv.2301.00856
https://doi.org/10.1080/757582976
https://doi.org/10.1016/j.neunet.2020.09.015
https://www.ncbi.nlm.nih.gov/pubmed/33039787
https://arxiv.org/abs/1512.02325v5
https://doi.org/10.1109/ICCV.1999.790410
https://doi.org/10.1109/ICIP.1995.537667
https://doi.org/10.11648/j.ajcst.20190203.11
https://doi.org/10.1109/ITAIC49862.2020.9339037
https://doi.org/10.48550/arXiv.1711.05101

	Introduction
	Construction of a Multi-Scale Neural Network Model
	Constructing Key-Point Feature Sets Based on Scale Space
	Convolution of Key-Point Features
	Key-Point Feature Set Mapping Fusion Module
	MM Network Construction

	Solving the Overfitting Problem
	Experiment
	Common Defects and Detection Process
	Model Training
	Analysis of Results

	Conclusions
	References

