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Abstract: This study conducted pin disc friction and wear performance tests on polyethylene-lined
oil pipes and four types of centralizing materials (45# steel, nylon, polytetrafluoroethylene (PTFE),
and surface alloy coating) in oil fields. The friction coefficient and wear rate were tested, and the
wear mechanism was analyzed using scanning electron microscopy (SEM) and three-dimensional
confocal microscopy. Using a combination of experimental testing analysis and theoretical research, a
comprehensive evaluation of the current wellbore centering and anti-wear technology for oil was
conducted. The experimental results indicate that the usage limit of polyethylene-lined oil pipes is
400 N, and compared to metal oil pipe materials, the wear rate of both stabilizing material and tubing
material is lower, indicating that it has a certain service life. From the perspective of testing load,
taking into account the factors of friction coefficient and wear rate, the recommended sequence of
straightening material for polyethylene lined oil pipes is (1) surface alloy coating, (2) nylon, (3) PTFE,
and (4) 45# steel.

Keywords: wear test; polyethylene inner lining pipe; straightening material; wear rate

1. Introduction

Directional well technology is one of the most advanced drilling technologies in the
field of petroleum exploration and development in the world today [1–5]. It is a drilling
technology that effectively controls the wellbore trajectory using special downhole tools,
measuring instruments, and process technology, allowing the drill bit to drill in a specific
direction to reach the predetermined underground target. The use of directional well
technology can economically and effectively develop oil and gas resources with limited
surface and underground conditions, significantly increase oil and gas production and
reduce drilling costs, which is beneficial for protecting the natural environment and has
significant economic and social benefits. Directional drilling is a drilling method that allows
the wellbore to drill along a pre-designed wellbore inclination and orientation to reach the
target layer [6].
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Over 95% of the wells in Changqing Oilfield in China are developed as directional
wells, leading to a continuous increase in the number of highly deviated wells in recent
years. At present, the total number of oil wells produced in Changqing Oilfield is about
60,000, of which more than 20% are highly deviated wells. The wellbore trajectory of this
type of well is complex and severely worn, with some wells experiencing coexistence of
wear and corrosion, resulting in a decrease in oil recovery rate, frequent replacement of
pipes and rods, and significant economic losses. Due to the complexity and variability of
oil well trajectories, many serious problems arise, posing new challenges to traditional
oil extraction methods. Among them, the problem of eccentric wear between the sucker
rod and the tubing is a prominent issue in new oil wells [5,7,8]. Eccentric wear shortens
the service life of the sucker rod and tubing, leading to heavy maintenance work and
significantly increasing oil production costs. According to data, the maintenance frequency
of equipment in Changqing Oilfield in 2020 was 42,000 times, with a maintenance cost of
up to 550 million yuan. Among them, the maintenance caused by eccentric wear of sucker
rods and tubing accounted for 42.8% of the total maintenance amount.

After years of rolling development, Changqing Oilfield has entered a stable production
period. With the increase in liquid extraction intensity and the increase in oil well water
content, the pipe and rod working conditions of pumping wells have undergone significant
changes. The dynamic liquid level decreases, the pumping load increases, and the force on
the pumping rod and pipe columns increases. Due to the larger diameter of the coupling
of the sucker rod compared to the sucker rod itself, the coupling often comes into contact
with the inner wall of the oil pipe, resulting in abrasive wear between the coupling and
the oil pipe; Additionally, the wear of the coupling is much more severe than that of the
sucker rod, with about 70% of the wear occurring between the coupling and the oil pipe,
resulting in a decrease in coupling diameter or cracking. From the above analysis, it can
be seen that there is inevitable wear and tear between the pumping rod and the oil pipe,
especially in directional wells, highly deviated wells, and wells with complex wellbore
trajectories. The issue of pipe and rod wear prevention in such wells has always been of
great concern [9–11]. At the same time, researchers around the world have also achieved a
series of important results on the issue of wear and tear [12–17].

At present, there are many anti-wear measures for pipes and pipes in Changqing
Oilfield. Due to differences in blocks, mining time, production processes, and other factors,
there is a lack of optimized design and suggestions on how to select and match straighten-
ing materials and pipes. Especially for the recommendation of non-metallic straightening
materials for non-metallic oil pipe materials, there is an urgent need to carry out rele-
vant research. In this current research, we compared various metallic and non-metallic
straightening materials for polyethylene inner lining pipes, recommended the optimal
straightening material, and determined the usage limits of different materials. At the same
time, we studied the internal reasons and wear mechanisms that cause differences in wear
performance between different matching materials.

2. Experimental
2.1. Materials

The tubing material in this experiment is polyethylene. The tested straightening
materials include 45# steel, nylon, polytetrafluoroethylene (PTFE), paint-coated 45# steel,
and cladded 45# steel, and its related parameters are shown in Table 1. The paint-coating
composition is a nickel 60-coated alloy. The cladded coating is mainly composed of elements
such as W, O, Ni, C, and P, with the coating mainly composed of WC and WO3, as well as
Ni2O3 and Ni.
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Table 1. Analysis results of polyethylene composition.

Type Specifications
Compressive

Strength
(MPa)

Density
(g/cm3)

Tensile
Strength

(MPa)

Elongation
(%)

Molecular
Formula

Molecular
Mass

Polyethylene HDPE 24 0.95 / / (C2H4)n 100,000

Polytetrafluoroethylene 60MM 4 2.2 >15 >150 CF3(CF2CF2)nCF3 100.02

Nylon PA6 >105 1.14 >90 20–30 [-NH-(CH2)5-
CO]n

20,000

Hardness is usually used to represent the resistance of a material to plastic deformation
caused by external indentation. For most materials, there is an approximately proportional
relationship between hardness and flow stress; due to the small size of the micro-hardness
testing indenter, this technique can be used to measure the hardness of materials in different
regions or stages, and these results can be used as a basis for analyzing microstructure
characteristics. The Rockwell hardness of 45# steel is 60, and the results of the Shore
hardness test on the other collected samples are shown in Table 2.

Table 2. Sample microhardness test results.

Material Nylon Polyethylene Polytetrafluoroethylene Paint-Coating

Shore hardness 80 66 60 74

2.2. Experimental Procedure
2.2.1. Friction and Wear Experiment

The pin disc friction and wear test can be used to evaluate the friction and wear
performance of materials such as lubricants, metals, plastics, coatings, rubber, and ceramics.
The friction pair mainly consists of point-to-surface and surface-to-surface contact friction.
The friction and wear tests were carried out according to standard ASTMG99-2017. The
schematic diagram and physical diagram of the pin disc friction and wear testing device are
shown in Figure 1 [18,19]. In this experiment, the oil pipe material is made into a disc, and
the centering material is made into a pin for a disc pin-type friction and wear experiment.
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Figure 1. Pin disc friction and wear experimental device.

To determine the wear test time, corresponding pre-experiments were first conducted
(one set of metal–non-metal and one set of metal–metal friction pairs were selected, respec-
tively, and the wear test time was compared between 30 min and 60 min). The experiments
showed that the friction coefficient tended to stabilize after 20 min of wear; After 30 min,
the change can be neglected. The impact of rotational speed is relatively minimal, and there
is little change in the friction and wear curves under the test conditions of 100 r/min and
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200 r/min. Therefore, based on the above test results, the wear test conditions are set as
follows: wear time of 30 min, friction speed of 100 r/min. Three parallel experiments were
conducted for each group of friction and wear experiments to determine the repeatability
of the experimental data.

The mineralization of the extracted water has a certain degree of impact on friction
and wear performance. To determine the relationship between the effects, this experiment
also conducted friction and wear experiments at different degrees of mineralization for
each stabilizing material. In order to complete the friction and wear experiment of different
mineralization degrees at an aqueous solution environment, this experiment was designed
and processed in an organic glass container, as shown in Figure 2.
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2.2.2. Scanning Electron Microscope

With a field emission gun (Model: JSM-7001F, JEOL, Japan Electronics, Kitakyushu,
Japan) operated at 20 kV, scanning electron microscopy (SEM) analyses were carried out to
characterize the microstructure of worn pins and discs. The image contrast of the SEM is
mainly based on the differences in the micro area characteristics of the sample surface (such
as morphology, atomic number or chemical composition, crystal structure or orientation,
etc.) to generate physical signals of different intensities under the action of the electron
beam, resulting in different brightness differences in different areas of the cathode ray tube
fluorescent screen to obtain images with a certain contrast [20,21].

2.2.3. Three-Dimensional Confocal Microscopy Analysis

A three-dimensional confocal microscope (Model: VHX-600E) is used to measure
surface physical morphology and perform three-dimensional wear morphology analysis
at micro and nano scales, such as 3D surface morphology, 2D depth morphology, contour
(depth, width, curvature, angle), surface roughness.

3. Results
3.1. The Influence of Different Environmental Media on Wear Performance

Under a load of 150 N, friction and wear experiments were conducted on polyethylene
inner liner pipes and various straightening materials in aqueous solutions with different
mineralization degrees. The friction coefficient curve is shown in Figure 3, and detailed
information on each friction coefficient is shown in Table 3.

For polyethylene inner lining tubing materials, taking friction coefficient as the main
consideration, PTFE, 45# steel, and surface alloy coating straightening materials all have
excellent anti-wear effects. The priority level of the material for straightening is (1) 45# steel,
(2) PTFE, and surface alloy coating, (3) nylon. For Polytetrafluoroethylene and surface alloy
coatings, the friction coefficient slightly increases when the mineralization degree increases
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from 80,000 mg/L to 120,000 mg/L. The friction coefficient between the polyethylene inner
lining pipe and various straightening materials is relatively low but slightly higher under
dry friction conditions.

Coatings 2023, 13, x FOR PEER REVIEW 6 of 23

Figure  3.  Friction  coefficient  of  polyethylene  inner  lining  tubing  material  under  different
mineralization degrees: (a) Polyethylene inner lining pipe (disc)—45# steel (pin), (b) Polyethylene

Coatings 2023, 13, x FOR PEER REVIEW 6 of 23

Figure  3.  Friction  coefficient  of  polyethylene  inner  lining  tubing  material  under  different
mineralization degrees: (a) Polyethylene inner lining pipe (disc)—45# steel (pin), (b) Polyethylene

Figure 3. Friction coefficient of polyethylene inner lining tubing material under different mineraliza-
tion degrees: (a) Polyethylene inner lining pipe (disc)—45# steel (pin), (b) Polyethylene inner lining
pipe (disc)—nylon (pin), (c) Polyethylene inner lining pipe (disc)—PTFE (pin), and (d) Polyethylene
inner lining pipe (disc)—surface alloy coating (pin).

Table 3. Friction coefficient of polyethylene inner lining tubing material under different
mineralization degrees.

Frictional Coefficient 30,000 mg/L 50,000 mg/L 80,000 mg/L 120,000 mg/L Dry Friction

Polyethylene inner lining pipe
(disc)—45# steel (pin) 0.05 0.03 0.02 0.05 0.1

Polyethylene inner lining pipe
(disc)—nylon (pin) 0.06 / / / 0.16

Polyethylene inner lining pipe
(disc)—PTFE (pin) 0.13 / / / 0.12

Polyethylene inner lining pipe
(disc)—surface alloy coating (pin) 0.07 0.06 0.04 0.05 0.12
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The friction coefficient between the polyethylene inner lining tubing material and
various straightening materials at different mineralization degrees is shown in Figure 4.
As can be seen, under the same load conditions, the friction coefficient of dry friction of
polyethylene inner lining pipes is generally significantly greater than that in solutions with
different degrees of mineralization. The friction coefficient of dry friction can be increased
by 20%~450% compared to that in solutions with different degrees of mineralization.
Metal-containing mating pairs are more wear-resistant in aqueous solutions.

In this study, the volume lost during the wear test of the straightening material
and tubing material is represented by calculating the wear rate per hundred kilometers.
Tables 4 and 5 provide the wear rates of the straightening material and the tubing material
per hundred kilometers in aqueous solutions with different degrees of mineralization,
respectively, and their changing trends are shown in Figure 5. For polyethylene-lined
oil pipes, compared to metal oil pipe materials, the wear rate of each stabilizing mate-
rial is relatively low, indicating that it has a certain service life. The wear rate of each
stabilizing material is comparatively high in an aqueous solution. The wear rate of the
tubing material is relatively low under different straightening materials, indicating that
non-metallic polyethylene lined tubing can have an excellent anti-wear effect and a longer
service life. The wear rate of the friction pair composed of polyethylene-lined oil pipes
and various straightening materials does not change significantly in an aqueous solution
environment. From the perspective of mineralization, taking into account the factors of
friction coefficient and wear rate, the recommended sequence for stabilizing materials for
polyethylene-lined oil pipes are (1) polytetrafluoroethylene, (2) nylon, (3) surface alloy
coating, and (4) 45# steel.

Table 4. Wear rate of straightening material per hundred kilometers under different mineraliza-
tion degrees.

Wear Rate per Hundred Kilometers
(Straightening Material) (Unit: %) 30,000 mg/L 50,000 mg/L 80,000 mg/L 120,000 mg/L Dry Friction

Polyethylene inner lining pipe
(disc)—45# steel (pin) 2.131 2.496 2.643 2.504 0.259

Polyethylene inner lining pipe
(disc)—nylon (pin) 1.596 1.479 1.634 1.527 1.787

Polyethylene inner lining pipe
(disc)—PTFE (pin) 1.274 1.364 1.524 1.472 0.987

Polyethylene inner lining pipe
(disc)—surface alloy coating (pin) 7.420 7.869 7.582 7.677 0.130

Table 5. Wear rate of polyethylene lined oil pipe material per hundred kilometers.

Wear Rate per Hundred Kilometers
(Oil Pipe Material) (Unit: %) 30,000 mg/L 50,000 mg/L 80,000 mg/L 120,000 mg/L Dry Friction

Polyethylene inner lining pipe
(disc)—45# steel (pin) 14.133 14.826 14.867 14.853 1.176

Polyethylene inner lining pipe
(disc)—nylon (pin) 9.428 9.996 9.783 10.054 1.079

Polyethylene inner lining pipe
(disc)—PTFE (pin) 3.243 3.876 3.548 3.369 0.975

Polyethylene inner lining pipe
(disc)—surface alloy coating (pin) 4.579 4.978 4.669 4.823 1.328
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3.2. The Influence of Different Test Loads on Wear Performance
3.2.1. Under Dry Friction Conditions

The friction and wear test curves of polyethylene-lined oil pipes under different loads
are shown in Figure 6, and specific information on the friction coefficient is given in Table 6.
Figure 7 shows the variation of friction coefficient with the load. For polyethylene-lined oil
pipes, the friction coefficient of each stabilizing material does not vary significantly with
the applied load. The usage limit of polyethylene inner lining pipe is 400 N. The friction
coefficient between the polyethylene inner lining pipe and various straightening materials
is relatively low. The usage limit of polytetrafluoroethylene (PTFE) is 150 N.
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friction): (a) Polyethylene inner lining pipe (disc)—45# steel (pin), (b) Polyethylene inner lining pipe
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Table 6. Friction coefficient of polyethylene lined oil pipe material under different test loads (dry friction).

Frictional Coefficient 50 N 150 N 250 N 400 N

Polyethylene inner lining pipe (disc)—45# steel (pin) 0.21 0.1 0.15 0.15

Polyethylene inner lining pipe (disc)—nylon (pin) 0.02 0.15 0.07 0.08

Polyethylene inner lining pipe (disc)—polytetrafluoroethylene (pin) 0.16 0.14 / /

Polyethylene inner lining pipe (disc)—surface alloy coating (pin) 0.05 0.11 0.08 0.06

Under different load conditions of dry friction, the wear rates of centralizing materials
and tubing materials per 100 km are given in Tables 7 and 8, and their changing trends
are shown in Figure 8. For polyethylene-lined oil pipes, the wear rate of each stabilizing
material does not vary significantly with the applied load. Among them, nylon straight-
ening materials have a higher wear rate and a shorter service life, which is about 1/4 of
the rest of the straightening materials. The wear rate of the pipes varies significantly with
the applied load when the straightening materials form a friction fit pair. Among them,
the wear rate is higher, and the service life is shorter when forming a friction fit pair with
45# steel. From the perspective of testing load, taking into account the factors of friction
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coefficient and wear rate, it is recommended sequentially to use (1) surface alloy coating,
(2) nylon, (3) polytetrafluoroethylene, and (4) 45# steel as the straightening material for
polyethylene lined oil pipes.
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Table 7. Wear rate of straightening material per hundred kilometers under different test loads (dry friction).

Wear Rate per Hundred Kilometers (Straightening Material) (Unit: %) 50 N 150 N 250 N 400 N

Polyethylene inner lining pipe (disc)—45# steel (pin) 0.131 0.259 0.523 0.836

Polyethylene inner lining pipe (disc)—nylon (pin) 0.893 1.787 6.219 7.634

Polyethylene inner lining pipe (disc)—polytetrafluoroethylene (pin) 0.935 0.987 / /

Polyethylene inner lining pipe (disc)—surface alloy coating (pin) 0.129 0.130 0.777 1.035

Table 8. Wear rate of oil pipe material per hundred kilometers under different test loads (dry friction).

Wear Rate per Hundred Kilometers (Oil Pipe Material) (Unit: %) 50 N 150 N 250 N 400 N

Polyethylene inner lining pipe (disc)—45# steel (pin) 0.927 1.176 2.712 3.787

Polyethylene inner lining pipe (disc)—nylon (pin) 0.968 1.079 1.176 1.341

Polyethylene inner lining pipe (disc)—polytetrafluoroethylene (pin) 0.568 0.975 / /

Polyethylene inner lining pipe (disc)—surface alloy coating (pin) 0.774 1.328 1.633 1.934
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3.2.2. Under Aqueous Solution Environment

To comprehensively consider the effects of mineralization degree and applied load on
the friction and wear performance of polyethylene inner lining pipes, this study conducted
friction and wear performance tests under different loads in a 30,000 mg/L mineralization
degree aqueous solution. The friction coefficient curve is shown in Figure 9. The corre-
sponding specific friction coefficients are given in Table 9. In addition, Tables 10 and 11
provide the wear rates per hundred kilometers of polyethylene lined oil pipe materials and
straightening materials, respectively.

Coatings 2023, 13, x FOR PEER REVIEW 13 of 23

Figure 9.  Friction coefficient  of  polyethylene lined oil  pipe material  under different test  loads
(aqueous  solution):  (a)  Polyethylene inner  lining pipe  (disc)—45# steel  (pin),  (b)  Polyethylene
inner lining pipe (disc)—nylon (pin), (c) Polyethylene inner lining pipe (disc)—PTFE (pin), and (d)
Polyethylene inner lining pipe (disc)—surface alloy coating (pin).

Table  9.  Friction  coefficient  of  polyethylene  lined oil  pipe  material  under  different  test  loads
(aqueous solution).

Frictional Coefficient 50 N 150 N 250 N 400 N
Polyethylene inner lining pipe (disc)—45# steel (pin) 0.04 0.03 0.05 0.06

Polyethylene inner lining pipe (disc)—nylon (pin) 0.02 0.06 0.04 0.06
Polyethylene inner lining pipe (disc)—polytetrafluoroethylene (pin) 0.15 0.14 / /

Polyethylene inner lining pipe (disc)—surface alloy coating (pin) 0.03 0.02 0.05 0.05
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Table 9. Friction coefficient of polyethylene lined oil pipe material under different test loads
(aqueous solution).

Frictional Coefficient 50 N 150 N 250 N 400 N

Polyethylene inner lining pipe (disc)—45# steel (pin) 0.04 0.03 0.05 0.06

Polyethylene inner lining pipe (disc)—nylon (pin) 0.02 0.06 0.04 0.06

Polyethylene inner lining pipe (disc)—polytetrafluoroethylene (pin) 0.15 0.14 / /

Polyethylene inner lining pipe (disc)—surface alloy coating (pin) 0.03 0.02 0.05 0.05
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Table 10. Wear rate of straightening material per hundred kilometers under different test loads
(30,000 mg/L mineralization degree aqueous solution).

Wear Rate per Hundred Kilometers (Straightening Material) (Unit: %) 50 N 150 N 250 N 400 N

Polyethylene inner lining pipe (disc)—45# steel (pin) 0.124 0.147 0.409 0.694

Polyethylene inner lining pipe (disc)—nylon (pin) 0.798 1.620 6.044 7.105

Polyethylene inner lining pipe (disc)—polytetrafluoroethylene (pin) 0.779 0.872 / /

Polyethylene inner lining pipe (disc)—surface alloy coating (pin) 0.127 0.129 0.694 0.925

Table 11. Wear rate of oil pipe material per hundred kilometers under different test loads (30,000
mg/L mineralization degree aqueous solution).

Wear Rate per Hundred Kilometers (Oil Pipe Material) (Unit: %) 50 N 150 N 250 N 400 N

Polyethylene inner lining pipe (disc)—45# steel (pin) 0.872 1.013 2.521 3.462

Polyethylene inner lining pipe (disc)—nylon (pin) 0.761 0.972 0.991 1.136

Polyethylene inner lining pipe (disc)—polytetrafluoroethylene (pin) 0.524 0.861 / /

Polyethylene inner lining pipe (disc)—surface alloy coating (pin) 0.679 1.156 1.346 1.721

From the variation of friction coefficient with applied load in the aqueous solution
environment shown in Figure 10, it can be seen that for polyethylene-lined oil pipes,
the friction coefficient of each stabilizing material does not change significantly with the
applied load. The friction coefficient between the polyethylene inner lining pipe and various
straightening materials is low, among which the friction coefficient with PTFE is higher.
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Figure 10. Variation of friction coefficient of polyethylene inner lining pipe with applied load
(30,000 mg/L mineralization degree aqueous solution).

In terms of the wear rate of the straightening material and oil pipe material, the trend
of variation is extremely similar to the wear rate under dry friction conditions, as shown
in Figure 11. Specifically, the wear rate of nylon straightening material is relatively high.
When it forms a friction fit pair with 45# steel, the wear rate of polyethylene lined oil pipe
material is relatively high, indicating a lower service life in both cases.
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3.3. Analysis of Wear Mechanism

From the above test results, it can be seen that the polyethylene inner lining pipe and
four types of straightening materials (45# steel, nylon, polytetrafluoroethylene, surface alloy
coating) have lower friction coefficients in different mineralization aqueous solutions and
under different loads. In order to reveal the wear mechanism of this low friction coefficient
pair, SEM analysis, and three-dimensional confocal microscopy analysis were performed on
the polyethylene (disc)–surface alloy coating (pin) under different loads in a 30,000 mg/L
mineralization degree aqueous solution. The results are shown in Figures 12–14.

By analyzing the surface SEM microstructure of the worn disc and pin, it can be seen
that the friction coefficient of the polyethylene inner lining tube (disc)–surface alloy coating
(pin) friction pair is relatively low, which is recommended as a friction pair. It can be seen
that there are a small amount of furrows parallel to the sliding direction, and there are a
small amount of white particles on the surface, which belong to lighter particle wear, and
no obvious furrows are observed. The three-dimensional confocal microscopy analysis
also shows that the friction coefficient of the polyethylene inner lining tube (disc)–surface
alloy coating (pin) friction pair is low, which is a typical low friction coefficient low wear
rate pair. The three-dimensional confocal experiment shows that there are obvious furrows
with small and uniform spacing under various loads [22–24].
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Figure 12. SEM images of the worn surface of polyethylene inner lining pipe (disc)–surface alloy
coating (pin) under different loading conditions in a 30,000 mg/L mineralization degree aqueous
solution:  (a) surface alloy coatings under 50 N,  (b) polyethylene under 50 N,  (c) surface alloy
coatings under 150 N,  (d) polyethylene under 150 N,  € surface alloy coatings under 250 N,  (f)
polyethylene under 250 N, (g) surface alloy coatings under 400 N, and (h) polyethylene under 400
N.

White particles

Figure 12. SEM images of the worn surface of polyethylene inner lining pipe (disc)–surface alloy
coating (pin) under different loading conditions in a 30,000 mg/L mineralization degree aqueous
solution: (a) surface alloy coatings under 50 N, (b) polyethylene under 50 N, (c) surface alloy coatings
under 150 N, (d) polyethylene under 150 N, (e) surface alloy coatings under 250 N, (f) polyethylene
under 250 N, (g) surface alloy coatings under 400 N, and (h) polyethylene under 400 N.

Under the corrosion of highly mineralized water, the wear rate of the material is
lower than that under dry friction conditions, and the wear mechanism is a combination
of corrosive wear and abrasive wear. At low loads, the lubrication of liquid media plays
a major role, and at this time, material loss is determined by corrosion behavior [25–27].
When the load increases, the surface of the material exhibits elastic contact, and the loss
of the metal material is still caused by corrosion. As the load continues to increase, the
surface of the metal will reach a state of plastic contact, and the material loss is caused by
the interaction of corrosion and wear [28].
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Figure 13. Three—Dimensional Confocal Microscopic Images and height contour of polyethylene
inner lining pipe (disc)—surface alloy coating (pin) under different loading conditions in a 30,000
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Figure 13. Three—Dimensional Confocal Microscopic Images and height contour of polyethylene in-
ner lining pipe (disc)—surface alloy coating (pin) under different loading conditions in a 30,000 mg/L
mineralization degree aqueous solution: (a) polyethylene under 50 N, (b) polyethylene under 150 N,
(c) polyethylene under 250 N, and (d) polyethylene under 400 N.

Under the same load conditions, the friction coefficient and wear rate of dry friction
are generally significantly higher than those in solutions with different mineralization
degrees. The wear microstructure under various loads in an aqueous solution is similar
to that under dry friction conditions, but the friction coefficient and wear rate are lower
than those under dry friction conditions. When the wear is severe (such as when the load is
greater than 400 N), the wear mechanism is mainly close to adhesive wear, and the furrow
is generally deep, up to tens of micrometers, and the distribution is uneven. When the
wear is slight (such as when the load is less than 200 N), the furrow is generally shallow,
generally within 10 microns, and evenly distributed [29–31].
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4. Conclusions

In this experiment, friction and wear performance tests were conducted on four types
of straightening materials for polyethylene-lined oil pipes under different mineralization
degrees and load conditions. The friction coefficient, wear rate, and wear mechanism under
different conditions were analyzed. The main conclusions obtained are as follows:

1. Polyethylene-lined oil pipes, compared to metal oil pipe materials, have lower friction
coefficients which are generally below 0.2 with various straightening materials;

2. For polyethylene-lined oil pipes, compared to metal oil pipe materials, the wear rate
of both stabilizing material and tubing material is lower, indicating that it has a longer
service life;

3. From the perspective of testing load, taking into account the factors of friction co-
efficient and wear rate, the recommended sequence of straightening material for
polyethylene lined oil pipes is (1) surface alloy coating, (2) nylon, (3) PTFE, and
(4) 45# steel.
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