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Abstract: In this paper, mesoporous electrodes consisting of Sb-doped SnO2 deposited onto Ti
plates that had undergone controlled corrosion under acidic medium were synthesized via a spin-
coating method and morpho-structurally characterized via X-ray diffraction (XRD) and scanning
electron microscopy (SEM). The electrodes were electrochemically tested to examine their degrada-
tion/mineralization through electrooxidation (EO) of doxorubicin (DOX) as a single component and
multi-component, together with capecitabine (CCB) from the cytostatic class and humic acid (HA)
from the natural organic matter (NOM) class in the absence/the presence of activated carbon (AC) as
a particulate electrode. The best mineralization efficiency of 67% was achieved for DOX mineraliza-
tion using Sb-doped SnO2 deposited onto a Ti plate that had undergone controlled corrosion with
oxalic acid during the electrooxidation process. The presence of AC within the electrolysis process
generated a synergistic effect of 52.75% for total organic carbon (TOC) parameter removal, which is in
accordance with and significantly better than the results reported in the literature. The aspects related
to the complex mechanism of DOX degradation and mineralization are discussed. The superiority of
AC assisted electrooxidation, as electrochemical filtering (EF), was proved, considering simultaneous
degradation and mineralization of mixture of doxorubicin, capecitabine and humic acid.

Keywords: advanced water treatment; electrochemical filtering; doxorubicin; mesoporous Sb-doped
SnO2 electrode; activated carbon; particulate electrode

1. Introduction

The presence of pharmaceuticals in water is continuously growing and should exhibit
possible negative effects on the ecology status of the surface water in both the short and long
term. One of the main sources is industrial pharmaceuticals wastewaters. Cytostatic drugs
are classified as hazardous waste due to their carcinogenic, teratogenic, and mutagenic
properties, and they have a very negative impact on water quality and human health.

Considering their xenobiotic and refractory character, the researchers investigating their
removal are focused on the application of advanced oxidation processes (AOPs), which
are based on in situ production of hydroxyl radical (OH) for their mineralization [1–4].
Among the AOPs, electrochemical advanced oxidation processes (EAOPs) have been
extensively studied for treating various types of pharmaceutical wastewaters, due to their
high versatility, efficiency, and environmental compatibility [1].

Considering the key role of the electrode in the performance of electrochemical pro-
cesses, various types of electrodes, such as graphite [5], platinum (Pt) [6], carbonaceous
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matrix, boron-doped diamond (BDD) [7] and dimensionally stable anodes (DSA) [8,9], have
been studied.

Dimensionally stable electrodes (DSA) consist of metal oxide films deposited on
titanium or other substrates and have been used to replace the conventional electrodes
in advanced wastewater treatment [8]. DSA electrodes have been widely investigated in
the field of water electrolysis, electro chlorination, cathodic protection, and wastewater
treatment [9] due to their advantages of stable size, long service life, high electrocatalytic
activity, and low cost [10]. They have a large specific surface area and desired mechanical
and chemical properties, e.g., good stability, low resistivity and excellent resistance to
corrosion at high currents [11]. Typically, Ti foil is used as the substrate, and the primary
chemical composition of the coating is transition metal oxide, e.g., RuO2, IrO2, TiO2, SnO2,
PbO2, MnO2, and Ta2O5. DSA exhibit high electroactive surface areas due to their cracked
mud-like morphology, allowing the direct oxidation of organic pollutants on the electrode
surface at low potentials, and are able to promote the formation of active intermediates
(Cl2, ClO−, OH, O3) to perform the indirect oxidation of pollutants [12].

Antimony-doped tin dioxide deposited onto a Ti substrate (Ti/SnO2-Sb) electrode is
considered one of the most promising DSA type anode materials used for the electroox-
idation process in wastewater treatment due to its advantages of relatively high oxygen
evolution potential (OERP), high electrooxidation activity, low cost and low toxicity [13–16].
Several synthesis methods have been reported for its preparation, e.g., dip coating [17],
electrolytic deposition [18], spin coating [19] and pyrolysis spray [20].

A traditional two-dimensional (2D) electrode reactor is commonly used for electro-
chemical processes, including advanced electrooxidation, but there are some disadvan-
tages, e.g., the small electrode surface area, low current efficiency, limited mass transfer,
temperature rise during processing and short lifetime of electrodes [21]. To solve these
disadvantages, recently, the 3D electrochemical process has attracted much attention as a
variant of a 2D electrochemical reactor because of its unique properties and advantages
regarding the high current efficiency and the high space–time yield. It is well known
that the 3D electrochemical process is similar to the 2D electrochemical process, except
for the porous surface of the anode and/or the presence of the third electrode based on
filtering/sorption material and named particulate electrode [22]. Properties including high
specific area for good adsorption capacity, high electrocatalytic activity, and stability for the
coating substrate or good conductivity that can increase the current efficiency are required
for good particulate electrode materials. Granular activated carbon (AC) has been tested as
a composition of the particulate electrode to enhance the efficacy of the electrochemical sys-
tem in various wastewater treatments [23–25]. The pollutant degradation is improved due
to the AC particles under voltage application becoming the micro-electrolysis cells, which
are able to generate hydrogen peroxide and, subsequently, the hydroxyl radicals [23,26–29].
Additionally, AC exhibits the sorption ability for many types of pollutants, enhancing the
mass transfer, and as consequence, the pollutant degradation efficiency is higher [30].

Considering our previously reported results achieved for the degradation and miner-
alization of doxorubicin (DOX), a common cytostatic used for cancer therapy, which can be
found in water, using a Ti-based SnO2 anode in electrooxidation process characterized by
low electrochemical mineralization efficiency of 0.147 mg C/C·cm2 [31], this work aims to
enhance the electrochemical performance for DOX degradation and mineralization. Two
approaches are considered: one is to improve the anode properties through its composition
and morphology and the other is to introduce granular activated carbon in suspension as
particulate electrode. The synthesis via spin-coating method of the mesoporous Sb-doped
SnO2 films onto controlled corroded Ti plates, their characterization and electrochemical
testing are studied in relation to the degradation/mineralization of DOX as a single compo-
nent and as a multi-component in the presence of capecitabine (CCB) from the cytostatic
class and humic acid (HA) from the natural organic matter (NOM) class in both 2D and AC
particulate electrode-based 3D electrochemical processes.
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2. Materials and Methods
2.1. DSA Electrode Synthesis

A three-stage procedure consisting of the titanium substrate pretreatment via con-
trolled corrosion, sol–gel preparation from precursors and sol–gel spin coating subsequent
calcination process was used to obtain Ti/SnO2-Sb electrodes (Figure 1).
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Figure 1. Schematic diagram of preparation of Ti/SnO2-Sb electrodes.

Two corrosion processes based on oxalic or fluorhidric acids were applied to Ti sub-
strates (2.5 × 2.5 cm) that were previously polished and degreased. The etching process in
oxalic acid (10%) was described in detail in our previous work [31]. The etching of the Ti
plate in fluorhydric acid consisted of a Ti plate maintained in 0.5 M HF for 2 h, followed by
the process of thermal oxidation carried out in a tubular furnace in a controlled atmosphere
of a mixed gas flow of Ar and O2 at a temperature of 500 ◦C for 4 h.

Ti/SnO2-Sb electrodes were prepared via a spin-coating method using corroded Ti
plate and uncorroded Ti plate. Thus, Sb doped SnO2 was deposited onto Ti plate corroded
with HF (Ti/SnSb-S1) and, respectively, with oxalic acid (Ti/SnSb-S2). For comparison,
Sb-doped SnO2 was deposited onto an uncorroded Ti plate (Ti/SnSb-S0).

The preparation process consisted of mixing 5 mLSnCl4, 250 µL SbCl3 in 10 mL
distilled water. Additionally, 1.5 g Pluronic P-123 was added to 15 mL ethanol, which
was mixed with aqueous solution for 4 h to obtain sol–gel. This transparent gel was left
standing to age at least 24 h at 60 ◦C before coating. Ti/SnO2-Sb electrodes were achieved
via the spin-coating method (WS-400-6NPPB Spin Coater-Laurell Technology Corporation,
Lansdale, PA, USA) through the deposition of 6 layers of SnO2-Sb thin films on Ti plates,
according to the protocol described in our previous work [31].
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2.2. Physicochemical Characterization

The crystalline structure of the Ti/SnO2-Sb electrodes was characterized by X-ray
diffraction (XRD, PANalytical X’Pert PRO MPD Diffractometer, Almelo, The Netherlands)
with Cu-Kα radiation (λ = 1.5418 Å) in the range 2θ = 10–80◦. The morphology of the layers
was examined using scanning electron microscopy (SEM, FEI Inspect S model, Eindhoven,
The Netherlands).

2.3. Electrochemical Characterization and Degradation

The electrochemical characterizations and testing of the Ti/SnO2-Sb electrodes were
performed via cyclic voltammetry (CV) and chronoamperometry (CA) using the clas-
sical three-electrode cell system and GPES 4.9 software controlled Autolab potentio-
stat/galvanostat PGSTAT 302 (Eco Chemie, Utrecht, The Netherlands). The three-electrode
cell system consisted of saturated calomel reference electrode (SCE), a platinum plate
counter electrode, and a Ti/SnO2-Sb working electrode, considering all types of above-
presented antimony-doped tin oxides coated onto un-corroded/corroded Ti substrates
(Ti/SnSb-S0-S2 electrodes). The electrochemical testing of all three electrodes was carried
out in 0.1 M Na2SO4 and a mixture of 0.05 M Na2SO4 + 0.05 M NaCl supporting electrolytes
for the degradation and mineralization of doxorubicin (DOX), a cytostatic considered as
an emerging pollutant in water. Additionally, for optimal conditions, the degradation and
mineralization of mixture of doxorubicin (DOX), capecitabine (CCB) as another commonly
used cytostatic and humic acid (HA) as a main component of natural organic matter (NOM)
was assessed.

DOX, CCB and HA concentrations were determined based on UV-VIS spectra recorded
with Agilent Cary 100 UV/VIS spectrophotometer (Santa Clara, CA, USA) at specific
wavelengths. Spectrophotometrically, DOX concentrations were assessed at wavelengths of
486 nm, 290 nm, 253 nm and 232 nm, while the CCB concentration was determined at the
wavelengths of 302 nm, 240 nm and 213 nm and HA concentration at 254 nm (Figure S1).

The organics degradation degree (η) and electrochemical degradation degree (Eorg)
were determined based on Equations (1) and (2):

ηorg =

(
Corg,i −Corg,f

)
Corg,i

· 100 (%) (1)

Eorg =

(
Corg,i −Corg,f

)
C · S · Vs

(
mg/C · cm2

)
(2)

where: Corg,i − Corg,f represents the change in the organics (DOX, CCB and HA) con-
centration, determined via spectrophotometry at each absorbance during electrochemical
experiments; C is the charge consumption corresponding to various electrolysis times, Vs is
the sample volume (20 cm3) and S is the area of the anode surface (3 cm2).

Additionally, the organics mineralization degree (ηTOC) and electrochemical miner-
alization degree (ETOC) were determined considering the change in TOC concentration
instead of organics concentration, based on Equations (3) and (4):

ηTOC =
(TOCi − TOCf)

TOCi
· 100 (%) (3)

ETOC =
(TOCi − TOCf)

C · S ·Vs

(
mg TOC/C · cm2

)
(4)

The total organic carbon (TOC) parameter was analyzed using Shimadzu TOC analyzer
(Columbia, MD, USA).
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For a more accurate assessment of the mineralization process efficacy taking into
account the energy consumption, the mineralization current efficiency (MCE) is determined
in according with Equation (5) [32]:

MCE =
n F VS (TOCi − TOCf)

4.32× 107mIt
· 100(%) (5)

where n is the number of electrons consumed in the mineralization process of DOX, F
is the Faraday constant (=96,487 C · mol−1), VS is the solution volume (dm3), ∆(TOC)exp

is the experimental TOC decay (mg · dm−3), 4.32 × 107 is a conversion factor for units
homogenization (=3600 s h−1 · 12,000 mg of carbon mol−1), m is the number of carbon
atoms in organic, I is the applied current (A) and t is time (h). The number of electrons
consumed is determined based on the overall mineralization reaction of organics to CO2.

The mineralization reactions of organics are considered based on Equations (6) for
DOX, (7) for HA and (8) for CCB:

DOX : C27H29NO11 + 46H2O→ 27CO2 + 121H+ + NO3
− + 120e− (6)

HA : C9H9NO6 + 15H2O→ 9CO2 + NO−3 + 39H+ + 38e− (7)

CCB : C15H22FN3O6 + 33H2O → 15CO2 + 88H+ + F− + 3NO−3 + 84e− (8)

The energy consumption was assessed per gram of TOC removed (SEC) and per litre
of the water treated (Wsp) using Equations (9) and (10), respectively:

SEC =
U·I·t

(TOCi − TOCf)Vs

(
Wh·g−1 TOC

)
(9)

Wsp =
U·I·t

Vs

(
Wh·dm−3

)
(10)

where: U is the cell voltage (V), I indicates the applied current (A), t is the electrochemical
oxidation time (h), Vs is the volume of the cell (dm3) and TOCi and TOCf are the initial and
final TOC concentration (mg C·dm−3) at time t, respectively.

3. Results and Discussion

In the first stage, all electrodes of Sb-doped SnO2 deposited onto uncorroded/corroded
Ti plates were characterized morpho-structurally by XRD and SEM.

3.1. Morphostructural Characterization

The crystal structures of the electrodes were studied using X-ray diffraction (XRD).
Figure 2 shows that the diffraction peaks of the electrodes were observed at 2θ = 26.6◦, 33.9◦

and 51.8◦, which were assigned to the (110), (101) and (211) planes of SnO2. It is noticed
that no peaks corresponding to antimony oxides were detected, mostly because of trace
amount of antimony added in sol–gel or because the element Sb might have entered into
the lattice of SnO2 crystal through substitution [33]. The presence of a few small Ti peaks at
2θ = 38.41◦, 40.19◦, 53.11◦ and 70.62◦, which were assigned to the (002), (101), (102) and
(103) planes, indicates the existence of some cracks on the electrodes surface.
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through these cracks could mitigate the binding force between the film coating and the 
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After the corroded Ti plate was coated with Sb-SnO2 sol–gel precursor, the electrodes 
showed a more compact surface, proving that Ti corrosion in an acidic medium allowed 
mesoporous surface characteristics to be obtained on the 3D electrode surface. 

Figure 2. XRD spectra of the Ti/SnO2-Sb electrode surfaces.

SEM photographs and energy dispersion spectra of the surface coating of the obtained
electrodes are revealed in Figure 3, which illustrates the surface morphologies of the
Ti/SnSb-S0, Ti/SnSb-S1 and Ti/SnSb-S2 electrodes.
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Figure 3. SEM images (a–c) and ED spectra (a’–c’) of Ti/SnSb-S0 (a,a’); Ti/SnSb-S1 (b,b’) and Ti/SnSb-
S2 (c,c’) electrodes.

When the gel was deposited onto a non-corroded Ti plate, the compact morphology
containing “mud-like cracks” which corresponds to a classical 2D smooth surface was
observed. The phenomenon of “cracked-mud” production was assumed to be related to
the expansion properties between the Sn-Sb active layer and titanium substrate during
calcinations process and the solvent evaporation [34]. It is well known that during their
application in the electrochemical processes, the penetration of electrolyte into the substrate
through these cracks could mitigate the binding force between the film coating and the
substrate, which would seriously affect the electrochemical activity and stability [35–37].
After the corroded Ti plate was coated with Sb-SnO2 sol–gel precursor, the electrodes
showed a more compact surface, proving that Ti corrosion in an acidic medium allowed
mesoporous surface characteristics to be obtained on the 3D electrode surface.
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3.2. Electrochemical Characterization

Oxygen evolution reaction potential (OERP) and capacitive component as the back-
ground current give information about oxygen evolution activity and the electroactive
surface area of the electrode. It is well known that oxygen evolution reaction is a major side
reaction during advanced electrooxidation, at the potential corresponding to the hydroxyl
radicals generation in accordance with Equations (11) and (12):

2H2O → O2 + 4H+ + 4e− (11)

H2O→ OH + H+ + e− (12)

In addition, within the anodic process, ozone, chlorine and persulphate are generated,
in addition to hydroxyl radicals based on the aqueous supporting electrolyte composition,
in accordance with Equations (13)–(16). These can act as a supplementary oxidizing agent
during electrolysis.

3H2O→ O3 + 6H+ + 6e− (13)

2Cl− → Cl2 + 2e− (14)

Cl2 + H2O→ HClO + Cl− + H+ (15)

2SO4
2− → S2O8

2− + 2e− (16)

On the other hand, a higher rate of oxygen evolution mitigates the current efficiency
and increases the energy consumption. Additionally, the background current is directly
proportional to the electroactive surface area, which is enhanced by the surface porosity
increasing. The larger the electroactive surface area, the better the electrochemical activity
of the electrode surface.

Cyclic voltammograms (CVs) were recorded in 0.1 M Na2SO4 solution and a mixture
of 0.05 M Na2SO4 and 0.05 M NaCl solution to evaluate the oxygen evolution activity for all
synthesized Ti/SnO2-Sb electrodes in comparison with Ti plate (Figure 4). Additionally, the
comparative electrochemical behavior of doxorubicin (DOX) on all electrodes was studied
via CV (Figure 5).
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Figure 5. Comparative cyclic voltammograms recorded in 0.1 M Na2SO4 (solid line) and 5 mg·L−1

DOX (dot line) supporting electrolyte at the electrodes: Ti plate (curves 1, 1′); Ti/SnSb-S0 (curves
2, 2′); Ti/SnSb-S1 (curves 3, 3′); Ti/SnSb-S2 (curves 4, 4′).

The presence of Cl2212 ion in the solution has a polarization effect for all Ti/SnO2-Sb
electrodes in contrast with the Ti plate, for which a depolarization effect with a significant
increase in the current corresponding to chlorine generation is noticed (Figure 4). The
presence of DOX exhibited a depolarization effect with increasing current density due to
the DOX direct oxidation process occurring (Figure 5).

In addition to OERP, the oxygen evolution activity can be evaluated based on the
current density value that represents the oxygen evolution reaction rate, which is directly
proportional to the amount of electric charge [38]. As shown in Figure 4, the Ti plate
exhibited the lowest OERP that is characteristic of the “active” electrodes [39] but with
very low current density in both the capacitive component and the Faradaic response for
the oxygen evolution as reaction rate. Ti/SnSb-S2 electrode exhibited the highest current
density and, as a consequence, a higher reaction rate, and an OERP value lower than the
other Ti/SnSb electrodes but higher than the Ti plate. This type of electrode is included
in the “non-active” category of the electrode, but all dimensionally stable anode types
electrode can have mixed behavior during the electrooxidation process, in accordance with
Equations (17)–(20) [40]:
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MOx + H2O → MOx(HO·) + H+ + e− (17)

MOx(HO·)→ MOx+1 + H+ + e− (18)

MOx+1 + R → MOx + RO (19)

MOx(HO) + R → MOx + CO2 + H2O + H+ + e− (20)

where R represents the organic pollutants.

3.3. Electrochemical Oxidation of DOX

Electrooxidation was carried out at constant potential through chronoamperometry
(CA) running for one hour using all synthesized Ti/SnO2-Sb electrodes. Chronoampero-
grams were recorded in both 0.1 M Na2SO4 solution and a mixture of 0.05 M Na2SO4 and
0.05 M NaCl solution supporting electrolyte at the potential value of +3.0 V/SCE for the
electrooxidation of 5 mg·L−1 DOX (Figure 6a). The highest current densities were recorded
for the Ti/SnSb-S2 electrode in both supporting electrolytes and the chloride ions, with a
slight decrease in the current densities, which is in accordance with the CVs results.
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Figure 6. (a) Time evolution of chronoamperograms recorded at the potential value of +3.00 V vs. SCE
for electrooxidation of 5 mg·L−1 DOX in 0.1 M Na2SO4 (solid lines) and mixture of 0.05 M Na2SO4

with 0.05 M NaCl (dots lines) supporting electrolytes recorded with Ti/SnSb-S0 (curves 1, 1′); Ti/SnSb-
S1 (curves 2, 2′); Ti/SnSb-S2 (curves 3, 3′); (b) Time evolution of chronoamperograms recorded in
0.1 M Na2SO4 supporting electrolyte and 5 mg·L−1 DOX with Ti/SnSb-S2 electrode at the different
potential values: +2.00 V vs. SCE (curve 1), +3.00 V vs. SCE (curve 2) and +4.00 V vs. SCE (curve 3).

Additionally, the chronoamperometry was running at the potential value of +2.00,
+3.00 and +4.00 V/SCE to determine the effect of the potential value on the DOX degra-
dation and mineralization efficiency (Figure 6b). As was expected, the current densities
increased at a higher potential value. Better degradation and mineralization degrees were
reached for the potential value of +3.00 V/SCE, which was considered the optimal one (the
results are not shown here).

The DOX degradation and mineralization degrees reached at the potrential value
of +3.00 V/SCE are gathered in Table 1, which also presents the OERP and the current
densities for all tested electrodes. Ti/SnSb-S2 obtained after controlled corrosion with
oxalic acid exhibited the lowest OERP and the highest current density as the reaction rate.



Coatings 2023, 13, 1127 10 of 18

Table 1. OERP and DOX degradation/mineralization degrees achieved for all tested electrodes after one hour electrolysis time (CDOX = 5 mg·L−1) at the potential
value of +3.00 V/SCE (including current densities).

Electrode Supporting Electrolyte EO2/V vs. SCE Current Densities,
mA·cm−2

Mineralization Degree
(ηTOC), %

DOX Degradation Degree (ηDOX), %
λ = 486 nm λ = 290 nm λ = 253 nm λ = 232 nm

Ti/SnSb-S0
0.1 M Na2SO4 1.75 2.2 5 70 23 12 9.5

0.05 M Na2SO4 + 0.05 M NaCl 1.72 1.4 4 80 - * 9.4 7.07

Ti/SnSb-S1
0.1 M Na2SO4 1.80 2.9 16 90 44 64 67

0.05M Na2SO4 + 0.05 M NaCl 1.77 3.1 28 93 - * 74 47

Ti/SnSb-S2
0.1 M Na2SO4 1.65 7.7 42 99 88 95 96

0.05M Na2SO4 + 0.05 M NaCl 1.58 6.1 67 98 - * 98 87

* Could not be read due to chlorine discharge (see Figure 7c).
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Additionally, the best degradation and mineralization degrees were achieved using
the Ti/SnSb-S2 electrode, which allowed a complete decolorization (λ = 486 nm) and high
degradation of the methoxy group (λ = 232 nm), the aromatic ring and the quinonoid
structure (λ = 253; 290 nm) [31]. This is also supported by Figure 7a, which displays the
comparative UV-VIS spectra recorded after one hour of electrolysis using all three electrodes.
Additionally, the Ti/SnSb-S2 electrode accomplishes a 42% mineralization degree, while
the Ti/SnSb-S0 electrode was not able to mineralize DOX under tested conditions. The
presence of chloride enhanced the overall performance of the electrode, but the UV-VIS
spectrum shape was modified through increasing absorbance at a wavelength of about
290 nm due to the increased concentration of hypochlorite during electrolysis (Figure 7b).

Additionally, from the kinetics point of view, a comparative evaluation of the effect
of both supporting electrolytes (0.1 M Na2SO4 and a mixture of 0.05 M Na2SO4 and
0.05 M NaCl) on the mineralization current efficiencies determined based on Equation (5)
was followed and the results are gathered in Table 2. Additionally, the limiting current
density (jlim) and the mass transfer coefficient for mineralization (kd) were determined
based on Equations (21) and, respectively, (22) [41]:

jlim = z · F · kd · CR (21)

where: jlim is the limiting current density for organics mineralization (mA·cm−2), z is the
number of electrons involved in organics mineralization reaction, F is the Faraday constant
(96.487 C·mol−1), kd is the mass transfer coefficient (m·s−1) and CR is the concentration of
organics in the bulk solution (mol·m−3)

TOCf
TOCi

= exp
(
− S

Vs
· kd · t

)
(22)

where: TOCi and TOCf is the initial concentration of total organic carbon of compounds
and at time t, respectively, S is the anodic active surface area (in m2), Vs is the volume of
the treated solution (in dm3), and t is the electrolysis time (seconds).
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Table 2. Kinetics parameters and energy consumption-based efficacy for electrochemical oxidation
of 5 mg·L−1 DOX at Ti/SnSb-S2 electrode in 0.1 M Na2SO4 and mixture of 0.05 M Na2SO4 and
0.05 M NaCl.

Supporting Electrolyte Time, (sec) kd, (m·s−1)·106 jlim, mA·cm−2 MCE, % ETOC, mg
TOC/C·cm2 Wsp, kWh·dm−3 SEC, kWh·g−1

TOC Removed

0.05 M Na2SO4 + 0.05 M NaCl

600

34.2 0.364

6.9 0.960 0.525 0.434
1200 5.1 0.840 1.10 0.582
1800 3.4 0.501 1.80 0.887
3600 1.5 0.233 4.35 1.98

0.1 M Na2SO4

600

10.5 0.112

1.7 0.159 0.35 1.75
1200 1.9 0.178 0.62 1.56
1800 1.3 0.123 1.12 2.25
3600 1.3 0.116 2.61 2.37

Considering the current densities corresponding to the applied potential value of
+3.00 V/SCE (Table 1), it is obvious that the electrooxidation process occurred under the
mass transfer control for all tested operation conditions of water discharge generating
O2 evolution involving hydroxyl radicals and other oxidants linked to the supporting
electrolyte composition (e.g., chlorine, in accordance with Equations (14) and (15)).

In comparison with our previously reported paper related to Ti/SnO2 that allowed elec-
trochemical DOX conversion without mineralization at the potential of +3.00 V/ESC [31],
Ti/SnSb-S2 exhibited a significant enhanced performance for DOX degradation and min-
eralization. Additionally, higher mineralization current efficiency was achieved in the
presence of chloride due to its supplementary action as an oxidant of chlorine and other
chlorine-based species. The electrochemical efficiency related to the DOX mineralization
determined based on Equation (4) showed better results in the presence of a mixture of
0.05 M Na2SO4 and 0.05 M NaCl. The energy consumption reported per liter of the water
treated is better in the absence of chloride, probably due to a part of the energy being
consumed to generate chlorine, from which a main part is wasted.

3.4. Activated Carbon-Based Sorption-Assisted Electrochemical Oxidation of DOX
Using Ti/SnSb-S2

Considering the principles of the electrochemical filtration, 1 g·L−1 activated carbon,
which is well known as mature technology in water treatment technology, was added with
the role of the particulate electrode in the electrochemical system using 0.1 M Na2SO4
supporting electrolyte and Ti/SnSb-S2 electrode. The results are presented in Table 3.

Table 3. Kinetics parameters and energy consumption-based efficacy for electrochemical oxidation of
5 mg·L−1 DOX using EF process in 0.1 M Na2SO4 supporting electrolyte.

Supporting Electrolyte Time, (sec) kd, (m·s−1)·106 jlim, mA·cm−2 MCE, % ETOC, mg
TOC/C·cm2 Wsp, Wh·dm−3 SEC, Wh·g−1

TOC Removed

0.1 M Na2SO4

600

19.1 0.203

7.1 0.980 0.515 0.420
1200 5.5 0.870 1.05 0.610
1800 6.5 0.518 1.32 0.840
3600 5.6 0.590 3.25 1.16

It is obvious that the AC improved the process performance through mass transfer
enhancement and the sorption of DOX in the electrochemical system. Additionally, under
the electric field application, AC particles can be converted into charged microelectrodes
exhibiting the electro-sorption of DOX and the ability to degrade and mineralize adsorbed
DOX [26–29].

Thus, the mechanism for DOX removal of pollutants in activated carbon-based
sorption–assisted electrooxidation of DOX is very complex. The presence of activated
carbon particulate electrode should influence the DOX degradation/mineralization mech-
anism through a potential sorbent role. The electrochemical reactions on the non-active
anode should be similar to electrochemical oxidation [42]. The question that arises is related
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to the global effect of both processes regarding DOX degradation and mineralization. To
elucidate these aspects, each process was applied individually for DOX removal through
sorption on AC (S), degradation and mineralization through both electrooxidation (EO) and
activated carbon-based sorption-assisted electrooxidation (EF). The presence of activated
carbon increased the diffusion constant related to mineralization, which is expected due to
its presence in the solution bulk. Additionally, the limiting current density increased in the
presence of the activated carbon. A great enhancement is noticed for the mineralization
current efficiency (MCE). Moreover, the synergic effect of the hybrid process of activated
carbon—assisted electrooxidation (EF) is proved based on the kinetics constants expressed
as ln(C0/Ct) = k(t), considering the pseudo-first-order model that fit well (correlation
coefficient > 0.9) for each individual and each hybrid process (Table 4) using Equation (23):

Synergy (%) =
kEF − kEO − kS

kEF
· 100 (23)

where kEF, kEO and kS are the kinetic coefficient of pollutant removal in EF, the electro-
chemical degradation system without AC and the sorption AC system.

Table 4. Kinetics coefficients are determined for each process using pseudo-first order model.

Process Parameter k, min−1 R2 k’E, C−1 R2

S

λDOX = 486 nm 0.004 0.937 - -
λDOX = 290 nm 0.0011 0.911 - -
λDOX = 253 nm 0.0018 0.969 - -
λDOX = 232 nm 0.0015 0.966 - -
TOC, mg·L−1 0.0011 0.95 - -

EO

λDOX = 486 nm 0.07 0.998 4.724 0.99
λDOX = 290 nm 0.02 0.999 1.524 0.999
λDOX = 253 nm 0.034 0.999 2.535 0.999
λDOX = 232 nm 0.032 0.999 2.545 0.999
TOC, mg·L−1 0.0084 0.96 0.555 0.999

EF

λDOX = 486 nm 0.04 0.976 3.01 0.993
λDOX = 290 nm 0.02 0.952 0.55 0.944
λDOX = 253 nm 0.021 0.967 1.461 0.998
λDOX = 232 nm 0.023 0.966 1.624 0.991
TOC, mg·L−1 0.02 0.900 2.721 0.986

The synergy in the EF process of 52.75% was calculated for TOC parameter removal.
This is in accordance with the literature [43–45] reported for various configurations of
GAC sorption-assisted electrooxidation using different DSA-type anodes and higher than
the one reported for graywater treatment by Garcia et al., 2018 [46]. The presence of
activated carbon under the electric field between anode and cathode within undivided cell
ensure the creation of a double electric layer that is able to adsorb organic pollutant via an
electro sorption mechanism [47]. Additionally, AC particles are polarized as anode and
as a cathode depending on their position, generating a large number of micro-electrolysis
cells, which should generate oxidant species (e.g., hydroxyl radicals) able to oxidize and
mineralize the organic pollutant adsorbed onto its surface [30,48].

For the EO and EF processes, the apparent rate was determined using relation
ln(C0/Ct) = k′E(C), in which C represents the electrical charge passed during EO and
EF processes applied for DOX degradation and mineralization [49]. The results gathered in
Table 4 show the superiority of EF in comparison with EO (2.72 vs. 0.555 C−1), regarding
the mineralization process.

The effective mineralization rate assessed as the ratio between the apparent mineral-
ization rate constant calculated for the TOC analysis and the apparent degradation rate
constant calculated based on UV analysis (k’E,TOC/k’E,UV) [49] showed the superiority of
EF (k’E,TOC/k’E,UV = 0.90) in comparison with EO (k’E,TOC/k’E,UV = 0.12).
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The synergic effect of the combination of electrooxidation and sorption processes
operating at high voltage may be attributed to both indirect and direct electrochemical
oxidation of DOX improving the transfer stage through DOX sorption onto AC and its
further oxidation via the direct transfer of electrons and via hydroxyl radicals generated at
the Ti/SnSb-S2 electrode surface and AC microanodes.

Considering the results related to the rate constants for DOX degradation and min-
eralization by EO using Ti/SnSb-S2 electrode, the tendency is similar to that reported by
our group for DOX degradation using 3-D Ti/SnO2 [31]. However, better mineralization
current efficiency was achieved using the Ti/SnSb-S2 electrode due to its better electro-
chemical activity for radicals generation. The degradation and mineralization process
imply the electron transfer at the solution–electrode surface interface that assured the DOX
decolorization as direct electrolysis followed by the attack of the hydroxyl radicals and/or
other oxidants (e.g., Cl2) generated and adsorbed on the electrode surface through their
diffusion into the bulk solution in according with the Equations (24) and (25):

H2O + Ti/SnSb− S2 → Ti/SnSb− S2(·OH) + H+ + e− (24)

Ti/SnSb− S2(·OH) + C27H29NO11 + 46H2O → Ti/SnSb− S2 + 27CO2 + 121H+ + NO−3 + 120e− (25)

The presence of AC in the EF process further complicates the mechanism considering the
reduction in the O2 as H2O2 that generates the hydroxyl radicals acting in the mineralization
process of DOX adsorbed onto AC surface in according with Equations (26) and (27):

O2 + 2H+ + 2e− → AC(H2O2)→ AC(·OH) (26)

AC(·OH) + C27H29NO11 + 46H2O → AC + 27CO2 + 121H+ + NO−3 + 120e− (27)

This mechanism is proved by the above-discussed kinetics aspects presented in
Table 4, especially considering the low rate constants for DOX removal when AC acted as
simple sorbent material in comparison with the AC under voltage field application, which
improved DOX mineralization kinetics but not degradation ones. This behavior explains
the synergic effect of the combination of EO with the S process into the EF one for the
mineralization process.

3.5. Comparative Simultaneous Mineralization of DOX, Capecitabine (CCB) and Humic Acid
(HA) by EO and EF

Considering the common presence of humic acid (HA) as a main component of
natural organic matter in surface water and the potential presence of other cytostatic such
as capecitabine (CCB), Ti/SnSb-S2-based EO was tested for each individual pollutant
(5 mg·L−1 DOX, 5 mg·L−1 CCB and 10 mg·L−1 HA) and for their mixture (5 mg·L−1 DOX
+ 5 mg·L−1 CCB + 10 mg·L−1 HA) mineralization. The activated carbon-based sorption-
assisted electrochemical oxidation using Ti/SnSb-S2 (EF) process was tested for the same
mixture composition. The UV-VIS spectra recorded for initial solutions and after treatment
by EO are shown in Supplementary Materials, Figure S2.

The degradation of each pollutant occurred through EO. Additionally, the degradation
of the mixture is proved by UV-VIS spectra using both EO and EF. Mineralization degrees,
electrochemical efficiencies and mineralization current efficiencies for each pollutant and
for their mixture are presented in Figure 8.
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Figure 8. The comparative mineralization degrees and electrochemical mineralization efficiency of
Ti/SnSb-S2 electrode after one hour of chronoamperometry running at +3.00 V/SCE in 0.1 M Na2SO4

supporting electrolyte for different individual pollutants (DOX, CCB, HA) and their mixture in the
absence and the presence of 1 g·L−1 AC. Inset: Mineralization current efficiency determined for
similar operating conditions.

There is obviously enhanced efficiency for EF in comparison with EO. Additionally,
better efficacy in terms of the energy consumed per g of TOC is provided by EF in com-
parison with EO. SEC of 0.653 kWh·g−1 TOC was determined for EF in comparison with
1.128 kWh·g−1 TOC for EO. These results clarify the superiority of EF for enhanced removal
of the mixture of the pollutants.

4. Conclusions

The controlled corrosion of the Ti plate under acidic medium using hydrofluoric acid
and oxalic acid allowed us to obtain mesoporous Sb-doped SnO2 deposited onto Ti via
a spin-coating method. A more uniform deposition of Sb-doped SnO2 which mitigated
the “mud-like cracks” was achieved through controlled corrosion of the Ti substrate in
comparison with the uncorroded Ti plate.

Sb-doped SnO2 deposited onto the Ti plate corroded with oxalic acid, named the
Ti/SnSb-S2 electrode, exhibited the lowest potential value and the highest rate of oxygen
evolution reaction. The best mineralization efficiency was achieved for doxorubicin (DOX)
mineralization using the Ti/SnSb-S2 electrode at the potential value of +3.00 V/SCE. The
presence of Cl− in the supporting electrolyte enhanced the mineralization efficiency in the
presence of Cl−, 67% vs. 42% in the absence of Cl−. The energy consumption reported per
liter of the water treated is mitigated in the absence of chloride, probably due to a part of
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the energy being consumed to generate chlorine, from which a main part is wasted, while
the reduced energy consumption reported for the removed TOC was achieved in chloride
containing solution.

The presence of activated carbon within the electrolysis process increased the mass
transport, enhancing the global mineralization process. Additionally, the mineralization
current efficiency was improved substantially, and the effective mineralization was proved
considering the apparent mineralization rate constant reported to the apparent degradation
mineralization constant. Moreover, a synergic effect was proved considering the kinetics
aspects of all electrooxidation, sorption and activated carbon-assisted electrooxidation
named electrochemical filtering processes. A synergy of 52.75% was determined for TOC
removal, which is in accordance with the result reported by [46–48].

The mechanism of DOX degradation and mineralization is very complex, involv-
ing both direct and indirect electrolysis-generating hydroxyl radicals and other oxidants
(e.g., Cl2 in the presence of Cl−) at mesoporous Sb-doped SnO2 deposited onto Ti plate
that had undergone controlled corrosion with oxalic acid. In addition, activated carbon
micro-electrolysis cells configured under applied voltage enhanced the hydroxyl radicals
concentration, with the consequence of improved general process performance.

The superiority of EF was proved considering simultaneous degradation and mineral-
ization of a mixture of doxorubicin, capecitabine and humic acid, which shows the great
potential of the hybrid process to be used in advanced treatment of water either solely or
integrated in the finishing step of the water treatment technology.
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supporting electrolyte, in the presence of an initial mixture of 5 mg·L−1 DOX, 5 mg·L−1 CCB and
10 mg·L−1 HA (curve 1) and after treatment by EO (curve 2), and after treatment by EF (curve 3) at
an applied potential of +3.00 V vs. SCE.
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