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Abstract: As a novel technology, perovskite solar cells (PSCs) have attracted worldwide attention
due to their high photoelectric conversion efficiency (PCE) and low fabricating cost. Moreover, with
the development of this technology, PSCs have achieved a great breakthrough in PCE. However, the
heavy metal element Pb in PSCs does harm to human health and ecological environments, which
restricts the further application of Pb-based PSCs. Under certain circumstances, the leakage of lead
will cause serious pollution to the environment. The purpose of this review is to summary and
discuss the way of lead leakage suppression. Among them, we pay more attention to the method
of packaging technology, chemisorption procession and the limitations of each method. Finally,
strategies of highly PCE and non-toxic perovskite devices are proposed.

Keywords: lead leakage; encapsulation; chemical adsorption; lead-free perovskite; lead contamination

1. Introduction

Perovskite solar cells (PSCs) have attracted wide attention from scientists due to their
excellent photoelectric characteristics, such as long carrier length, high carrier mobility, high
absorption coefficient, and low trap density. In terms of manufacturing costs, perovskite
solar cells have low prices because of the low cost of rich materials (Ti, Pb, I, Cl, Br,
etc.), making them the most competitive technology in the solar cell industry [1–3]. The
power conversion efficiency (PCE) of single-junction perovskite solar cells has exceeded
25%, surpassing the record set by copper indium gallium selenium (CIGS) solar cells and
approaching that of the best crystalline silicon solar cells [4–6]. Furthermore, the PCE
of perovskite/silicon tandem solar cells have exceeded 29% [7–11]. Increasing teams are
devoted to the research of PSCs, which undoubtedly accelerates the further commercial
development of PSCs.

Lead element is often involved in PSCs thanks to their high crystal symmetry, unique
atomic electron fusion, and strong spin orbital coupling capacity. In general, the common
device structure containing Pb is APbX3, where A is an organic or inorganic cation (such as
methylammonium, formamidine, or Cs+) and X is a halide ion (mainly I− or Br−) [12–14].
The results show that the Pb-based perovskite possessed the highest photoelectric conver-
sion efficiency in all the perovskite solar cells [13,15]. Although the photovoltaic properties
of Pb-based perovskite solar modules are excellent, the safety hazard brought by them
cannot be ignored at the same time. It is worth noting that Pb-based perovskite contains
much water-soluble lead salts as degradation products [16]. Even a small amount of Pb
leaking into the environment is toxic to human health and the environment. Lead or its
compounds can be absorbed by the human body through breathing, eating, skin absorp-
tion, and the like. According to the relevant studies, 20% to 80% of the ingested lead can
be absorbed by a human body, and children have a higher absorption capacity of lead.
Excessive lead intake can inhibit the normal synthesis of proteins and cause a number of
healthy problems. For example, the increased levels of lead in the blood have a harmful
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effect on infants’ and children’s behavior, cognitive performance, pubertal development
and hearing ability [17]. As for adults, lead can cause a series of cardiovascular, central
nervous system, kidney and fertility problems. Worse still, lead can also stunt early fetal
growth during pregnancy. In the meantime, lead also does harm to the environment, and
can inhibit the growth of growing plants [17–21]. The main toxic substance released by
perovskite solar cells when they are decomposed is lead iodide. To illustrate this point,
Kwak et al. studied the toxicity of PbI2 to the embryos of two species of fish (zebrafish and
medaka) and focused on the chemical speciation of PbI2 in the culture medium of embryos
to characterize the toxicity of lead iodide to organisms. Research results reveal that the
mortality, deformity, hatching failure, growth inhibition, and other pathological changes are
increased in fish which are exposed to lead iodide [11,22]. Hasan Ul Banna et al. conducted
a test of lead exposure on mice and found that Pb element can induce anxious behavior
and memory learning disorders in mice. The memory learning disability of mice exposed
to Pb could be improved by training, but that of mice exposed to Pb environment from the
embryonic stage was always lower than the initial level of mice who without contact to Pb
(shown in Figure 1). Mice exposed to lead as fetuses suffered more severe neurobehavioral
changes and liver damage [23]. Therefore, in order to realize the commercial application
of perovskite solar cells in a large area, we must first focus on solving the problem of lead
toxicity [24].
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Figure 1. Effects of Pb on learning and spatial memory in mice. Mice in the Control group were
not exposed to lead, mice in the Pb group were exposed to lead, and mice in the P–Pb group were
exposed to lead during pregnancy and after birth. Sec represents the learning and spatial memory
ability of mice, and the lower the Sec value is the stronger learning and spatial memory ability of
mice. Reproduced with permission from [23]. Copyright 2021, Springer Nature.

Normally, the lead in perovskite crystals is contained in the PV module and does
not leak into the environment. However, in extreme cases, such as hail, earthquakes, and
extreme temperatures, PV modules can be damaged. Perovskite materials are affected
by moisture and oxygen, and lead-based perovskites tend to release toxic lead iodide
as degradation products that can be transmitted from soil to homes and/or drinking
water [25,26]. Scientists have investigated the strategies to prevent lead leakage, holding
that the ideal prevention strategy is to trap lead ions quickly. For example, perovskite
can run for a long time when broken down by rain. In addition to protecting against
outside factors such as rain, dust, or UV rays, there are many other effective ways to
prevent Pb leaks. The encapsulation method can greatly increase the perovskite module’s
ability to withstand the external impact force and protect the device module from damage.
Chemisorption can realize the adsorption of Pb2+ in the process of Pb2+ leakage, and fix
Pb2+ in the component to avoid the release of lead into the atmosphere. Nonetheless,
these methods cannot fundamentally reduce the concentration of lead ions released into
the environment, so the study of lead-free perovskite can approach the environmental
pollution of lead ions from the root. In the following part of this paper, we mainly introduce
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these three methods to solve the lead leakage issue and put forward the prospect of further
commercial application after solving the lead leakage problem.

2. Mechanism of Lead Leakage from Pb-Based Perovskite

Poor stability of the Pb-based perovskite solar cells is the main cause of the lead leakage.
There are two factors affecting the stability of PSCs: internal factors and external factors.
Internal instability factors include perovskite structure, transport layer materials, defects
caused by ion migration, and degradation of perovskite materials. It can be improved
by regulating the crystal structure of perovskite, controlling ion migration, passivation
defects, and adopting relatively stable transport layer materials. External factors such as
moisture and oxygen generally addressed through encapsulation technology. For example,
HI generated by hydrolysis of CH3NH3PbI3 (MAPbI3) would decompose into I2 under
ultraviolet or light irradiation, which further promotes the degradation process [27]. The
decomposed Pb2+ exists in the form of PbI2, which easily leaked into the environment and
caused environmental pollution [28]. Hailegnaw et al. proved that lead loss rate was as
high as 72% after 5 min of rain [29].

CH3NH3PbI3
H2O←−−−→
hv

CH3NH3I + PbI2 (1)

CH3NH3I ↔ CH3NH2 + HI (2)

2HI UV−−−−→ H2 + I2 (3)

4HI + O2 ↔ 2I2 + 2H2O (4)

Compared to MA, FA is a larger molecule with a smaller dipole moment. For stronger
binding between FA and halides, FA-based perovskite has higher stability attributed by
less halide ion migration [30]. However, when the temperature exceeds 230 ◦C, such as at
the scene of a fire, decomposition still occurs, and the decomposition reaction is shown by
the equation below:

FAPbI3 ↔ PbI2 + FAI (5)

It can be seen that PbI2 is the main decomposition product of MAPbI3 and FAPbI3
under hot and humid conditions [31]. Normally, the Pb-based perovskite solar cell is safe
even if the PSCs degrades. However, in extreme conditions such as wind, snow, hail,
fire etc., the PV module may be subjected to strong mechanical shocks, which would
result in leak into the environment. Therefore, it is extremely important to find the ideal
packaging material.

3. Encapsulation

The degradation of perovskite solar cells is mainly caused by oxygen and water [32,33].
Encapsulation is a common protection method that can inhibit moisture from entering
equipment, reduce the oxygen and water penetration to an almost negligible level, and curb
the outflow of decomposed lead elements. As a qualified packaging layer, it should have
a high performance of shielding oxygen and moisture, and can work well under extreme
weather to improve the life of a device [34–36]. At the same time, it should also have
great thermal stability and good light transmittance. A few typical packaging methods to
suppress lead leakage are given below.

Ethylene vinyl acetate (EVA), as a copolymer of ethylene and ethylene acetate, is
a common solar cell packaging material (covering layer, pooping agent and substrate).
Moreover, EVA also features desirable light transmittance and elasticity, adhesion strength
with glass, melt fluidity, and other advantages. Accordingly, EVA is widely used as
a packaging material, with nearly 80% of photovoltaic (PV) modules utilizing EVA as
an encapsulation material. Common EVA encapsulation method is shown in Figure 2a.
Crosslinked EVA wafer is characterized by favorable transparency, and its transmittance in
400~1100 nm is about 92.8%, which can help realize the protection of components without
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affecting the device efficiency [37,38]. The degree of crosslinking is an important index
of EVA encapsulation agent, which represents the degree of crosslinking of a polymer
chain. If the crosslinking degree is too high, EVA will become brittle and will not withstand
the external impact force. By contrast, if the crosslinking degree is too low, the aging
resistance will be reduced, and it cannot meet the requirement of creep resistance. Taken
together, the appropriate crosslinking degree is in the range of 75%~90% [39]. Crosslinked
EVA tablets have such advantages as low cost and good transmittance. However, as a
packaging material, an EVA sheet still faces a serious problem: EVA sheet will be aged and
degraded in a long-term ultraviolet and hot atmosphere (shown in Figure 2b) making the
color of the polymer film change from transparent and colorless to yellow or brown [40].
This color change will greatly reduce the light absorption range and the efficiency of solar
cells. Researchers have found that the performance of EVA can be improved by adding
antioxidants, ultraviolet absorbers, and light stabilizers, but this means cost increase,
robbing EVA sheet of the advantage of low cost. Moreover, when the temperature of the
EVA-encapsulated battery over 120 ◦C, the perovskite material turns yellow, indicating
that the perovskite layer is decomposed. This decomposition mechanism is attributed to
acetic acid in EVA [21,41]. To reduce the affection of acetic acid in EVA on the perovskite
layers, M. D. McGehee further replaced EVA with polyolefin (POE) [42]. However, it
was found that both the perovskite absorber and the charge transport layer degraded at
high temperatures, which leads to the photovoltaic characteristics of the cells significantly
reducing at 140–160 ◦C. Therefore, the traditional POE and EVA seem not the idea package
materials for perovskite solar cells. Compared with these two packaging materials, PU
(polyurethane) shows its significant advantages. The PU packaging is carried out at a
relatively mild temperature of 80 ◦C, at which temperature the perovskite absorption layer
would not decompose. Moreover, the perovskite absorption layer packaging with PU
was not destroyed even at 120 ◦C. Zhengyang Fu proved that there is no performance
degradation observed after keeping the PU-encapsulated battery at 85 ◦C for more than
325 h [43]. In summary, PU can be used as a simple and effective way to package perovskite
solar cell module.
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Figure 2. (a) Structure of EVA encapsulated solar cells. (b) Aging degradation mechanism of EVA.
Reproduced with permission from [39]. Copyright 2015, John Wiley and Sons.

In addition, Kim et al. found that there is no PbI2 generated after exposed MAPbI3
based perovskite solar cell to the air for 26 days when the Au electrodes of the device were
attached by Poly(p-chloro-xylylene) [44]. Further study proved that poly(p-chloro-xylylene)
encapsulation can effectively prevent water into the PSCs module, and then inhibit the
decomposition of perovskite. In the same way, Lei Shi et al. encapsulate PSCs device by
polyolefin on the top of the electrode. Then, the device was covered by a piece of glass. The
experiment results indicate that the encapsulated equipment has no Pb precipitation for
more than 1800 h in the humid heat environment. This method not only prevents the entry
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of moisture, but also inhibits the output of decomposing gases such as CH3I or NH3 [45].
Moreover, Jie Yin et al. used UV glue to wrap PSCs. The UV-vis absorption spectrum
results showed that the Pb-based perovskite solar cells packaged by UV glue could remain
their photoelectric properties over 5 years [21,41,46].

Thermosetting epoxy resin has high mechanical strength, excellent dimensional sta-
bility, and good chemical resistance, so it is widely used in the packaging of photovoltaic
devices [47]. For example, Yan Jiang et al. [48] found that the key to reducing lead leakage
was the self-healing ability of certain polymers when heated above their glass transition
temperature and inferred that an increase in the polymer’s self-healing ability would sig-
nificantly reduce lead leakage. Epoxy resin (ER) is another effective encapsulation material.
The team demonstrated that ER’s self-healing properties and improved mechanical strength
could effectively prevent lead leakage, and lead leakage from lead halide perovskite PV
products can be reduced by a factor of 375 if properly packaged. The ER film can be
formed by a mixture of diglycidyl ether bisphenol A (DGEBA), n-octylamine (OA), and
diphenyl phenylenediamine (MXDA) diglyceride ether. Jiang Yan et al. studied self-healing
ER (DGEBA: OA: MXDA = 4:2:1) membranes by physical cross-linking of DGEBA and
OA and chemical cross-linking of MXDA and DGEBA. In a contrast test, the test subjects
were divided into four groups: A, B, C, and D. The encapsulation method of the test
was as followed: (A) No package, (B) top package with perovskite solar modules/UV
resin/glass, (C) top and bottom package with glass/Surlyn resin/perovskite solar mod-
ules/UV resin/glass, and (D) top and bottom package with glass/epoxy resin/perovskite
solar modules/UV resin/glass. By simulating the amount of lead leakage under extreme
weather conditions, such as acid rain and hail, it proved that an ER film had a self-healing
characteristic and could realize self-healing using the heat provided by the sun. Therefore,
self-healing could be achieved during the operation of solar cells, thereby greatly reducing
the amount of lead leakage. By simulating the extreme weather test data, it proved that the
lead leakage rate of the perovskite solar cell (method D) was greatly reduced by ER thin film
encapsulation. Compared with the encapsulation method using glass cover at the module
edge (method B), the lead leakage rate of Pb could be decreased from 30 to 0.08 mg h−1m−2,
and the lead leakage rate of the ER encapsulation method was reduced by 375 times (shown
in Figure 3) [48]. Through comparison tests under four different weather conditions, the
team noted that the lead leakage in group D was much smaller than that in other groups,
which could effectively control the total leakage of self-healing polymer packaging under
extreme weather conditions in slow response time. The high mechanical strength and
self-healing mechanism of ER films can effectively reduce the leakage of lead in perovskite
solar cells, which provides a new insight for the packaging method of perovskite solar cells.
By applying self-healing and lead-adsorbed ion gel sealers to the front glass surface and
between the electrodes and the packaging adhesive glass, the perovskite module can be
physically prevented from seeping water into the perovskite module if the packaging glass
is damaged, when chemically trapping lead that may leak [49].

Atomic layer deposition (ALD) technology looks like an ideal packaging method
for the perovskite solar cells, which can prepare thin film encapsulation layer (TFE) with
multilayer under the condition of adjusting appropriate parameters. The most common
approach is depositing encapsulation layer with inorganic (Al2O3)/organic (pV3D3) alter-
nately structure via ALD onto the top of the PSCs (Figure 4a) [50]. While the inorganic layer
blocks the external environment, the organic layer enhances the flexibility of the film and
increases the smoothness of the PSC surface (shown in Figure 4c). This special structure
can effectively delay the penetration of water and oxygen, greatly improving the barrier
performance of the packaging layer, minimizing equipment damage, and consequently
improving the long-term stability of the device. However, an ignored problem is that long
worktime of ALD at 90 ◦C will bring irreversible damage to PSCs, because this temperature
is too high for depositing perovskite films (Figure 4b,d). Therefore, the research on the
deposition of low-temperature ALD or even room temperature ALD is an urgent problem
to be solved [51–54].
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Figure 3. The concentration of Pb leaking into the water. Three parallel experiments were carried
out for each package method to reduce the error. (a) Perform a drip test on the damaged PV module.
(b) The damaged perovskite solar module was dripped and then kept in simulated sunlight for 4 h
(45 ◦C) before being injected again. (c) The damaged perovskite solar modules are heated at 45 ◦C for
4 h and then dripping with water. No matter what the conditions, group D always has the lowest
lead leakage. Reproduced with permission from [48]. Copyright 2019, Springer Nature.
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Figure 4. Perovskite solar modules packaged by the TFE method. (a) SEM image of cross section of
TFE layer and schematic diagram of perovskite solar module packaged by TFE. (b) Changes of PCE
in HTM layer after 60 ◦C and 90 ◦C ALD process. (c) Cross sectional SEM image of PSC encapsulated
by CVD. The surface smoothness is improved. (d) PCE distribution of samples before and after
encapsulation. Reproduced with permission from [50]. Copyright 2017, John Wiley and Sons.

Flexible perovskites usually need to be encapsulated in organic materials because
organic packaging materials can be synthesized through organic molecules with specific
properties by changing the energy level, molecular weight and solubility of their own
molecules [55]. For instance, Monojit Bag et al. demonstrated that a cross-linked self-
healing polymer network of Polyisobutene (PIB) could be used as a raw material for a fully
printable flexible solar cell as a self-healing sealant to protect perovskite cell components.
These sealants could be applied to flexible perovskite solar modules by drip casting, rotary
coating, or blade coating. The team indicated that PIB based devices with cross-linked
sealants enjoyed good self-healing property and stability [56]. It can be seen that self-
healing polymers can be directly used as packaging materials to achieve good self-healing
ability, thus improving the durability of PSCs and preventing lead leakage [57].
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4. Chemical Adsorption

While packaging methods can greatly reduce lead leakage from devices into the
environment, there still be some lead leakage during extreme weather when solar panels
can be severely damaged. The use of packaging technology often entails increased costs.
Therefore, finding other methods for curbing lead leakage is of urgent necessity. In this case,
chemisorption is an economical and effective method, given its high binding energy with
lead ions in a mesoporous structure. Cation exchange resin (CER) with a high adsorption
capacity and adsorption rate for lead has aroused wide interest from researchers. For
illustration, Shangshang Chen et al. further investigated CER by adding sulfonic acid
groups to CER materials to make Pb2+ adsorbents. Because the sulfonic acid group had a
strong bond for Pb2+, Pb2+ could be firmly adsorbed on the surface of CER to prevent the
outflow of Pb2+ (shown in Figure 5a). The mesoporous CER layer consists of a number of
nanoparticles with an average size of 50 nm that form a dense layer of CER on top of the
copper electrode (as shown in Figure 5c–e). This mesoporous structure can significantly
increase the surface area to adsorb more lead. The team tested the lead adsorption rate of
CER films rinsed with lead-contaminated running water by preparing the CER films on a
glass sheet based on ultrasonic-assisted suspension of CER powder in isopropyl alcohol,
and then the CER precursor solution was coated on a glass substrate with a thickness
ranging from 300 to 1300 nm, it was found that the 300 nm thick CER layer coated on
the glass immediately reduced the lead content of the running water by 30% and was
independent of the initial lead concentration in the solution. The concentration of Pb2+

in water did not decrease significantly with the increase of thickness, indicating that the
diffusion rate of Pb2+ to the CER surface was limited (Figure 5b). The water contact
angle of ~13◦ was so small that water could easily penetrate into the porous structure of
CER, thus promoting the adsorption of Pb2+. The PSCs with a CER layer maintained the
lead absorption capacity after 600 h of irradiation in the experiment of strong ultraviolet
radiation simulation, showing good photostability. In the drip test, lead leakage was
reduced by 98% to only 14.3 ppb (Figure 5f,g) [58]. This low lead leakage indicated that
CER adsorbed a large amount of Pb2+.

Various defects in perovskite films can form deep energy wells that affect carrier
transport and device performance. The defect surface has large surface energy and de-
composition energy, which can lead to spontaneous relaxation of perovskite surface and
leakage of lead ions [59]. As the recombination center, unsaturated Pb can cooperate with a
mercaptan group to reduce recombination. Qingrui Wang et al. used 1,2-ethanol instead
of mercaptan (1,2-EDT) for surface treatment of perovskite films to form Pb-S bonds. The
modification could strengthen the Pb-I bond and passivate the Pb-suspended bond, and
the perovskite film delayed the dissolution of lead iodide into the water, thus inhibiting the
leakage of Pb. Compared with the conventional film (49.19), the treated perovskite film
had a larger water contact angle (71.83), indicating better hydrophobicity and moisture
resistance, which could prevent the decomposition of perovskite caused by water entering
the devices. The treated perovskite film postponed the dissolution of lead iodide into the
water, ultimately reducing lead leakage [60].

The chelating resin features good selectivity, pre-concentration factor, binding energy,
and mechanical stability for the removal of heavy ions. It can smoothly carry out the
regeneration of multiple adsorption-desorption cycles and enjoys good reproducibility in
terms of adsorption characteristics [61]. XAD resins have good physical properties, such
as porosity, uniform high surface area, pore size distribution, and chemically uniform
non-ionic structure. They are used as a carrier for fixed chelating agents to remove metals.
V Tharanitharan et al. prepared a new modified Amber lead XAD-7HP resin using harmless
sodium dioctyl succinate (DOSSS) and EDTA-disodium salt (chelating agent). After 7%
sodium chloride treatment, the modified XAD-7HP resin could successfully recover lead
(II) ions, and the removal rate of Pb (II) could reach 99% at the adsorbent dosage of
0.9 g/100 mL [62].
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Figure 5. (a) Schematic diagram of lead leakage prevention mechanism. (b) Different concentration
of Pb2+ aqueous solution at different initial concentrations on glass with CER layers of different
thicknesses of 15 cm long. (c–e) SEM image of top view and cross section of MAPbI3 device with CER-
coated and the top of the copper electrode with CER. (f,g) Results of immersion tests on damaged
micromodules with or without CER coating. Reproduced with permission from [58]. Copyright 2020,
Springer Nature.

Xun Li et al. deposited a transparent Pb-absorbing P, P′-di(2-ethylhexyl) methanediphos-
phonic acid (DMDP) film on the glass. DMDP coatings with a thickness ranging from 0.7
to 6.89 µm were highly transparent and had good light transmit ability, which would not
have adverse effects on the efficiency of the device [63]. The two phosphate groups in each
DMDP molecule could be strongly bound to a Pb2+ ion, and when soaked in water, the
suction plates on either side expanded to absorb lead rather than dissolve it, thus main-
taining structural integrity for easy collection of lead after damage. Li Xun et al. proposed
a new method for suppressing lead leakage using a standard solar vinyl acetate (EVA)
film and pre-laminated P, P′-di(2-ethylhexyl) methanediphosphonic acid (DMDP) to form
a thin layer similar to tape. This layer could be attached to the sides of perovskite solar
cells. Whether the solar cell was an n-i-p structure or a p-i-n structure, it could be tightly
bonded with the glass surface and became transparent, so it did not affect the transmittance
and exerted no adverse effect on the normal photovoltaic performance. The tape could be
integrated into the packaging material of the unit at a later stage, so there was no strong
dependence on the PSC manufacturing process. The process of making DMDP absorption
layer is shown in Figure 6. Our research group’s experiments displayed that the presence of
lead absorption bands did not reduce the efficiency and stability of the PV module. When
PV module was damaged due to extreme weather, the tape absorbed large amounts of
leaked lead and maintained SQE above 99.9% for 7 days, demonstrating excellent lead leak
suppression properties [64].
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Figure 6. A schematic of DMDP applied to EVA film and a photo of PSC made with EVA tape.
Reproduced with permission from [64]. Copyright 2021, Springer Nature.

Chen Junjun modified tin dioxide (tin oxide) layer with sodium phosphate (Na3PO4),
which provided a new way to solve the problem of lead leakage (Figure 7a). PO4

3+

groups can chelate with dissolved Pb ions to form water-insoluble compounds of Pb2PO4I,
thus reducing Pb leakage. From the XRD patterns in Figure 7b, we found that SnO2-
based perovskite film was decomposed into pure PbI2 after soaking in water, but no lead
iodide diffraction peak was detected in the XRD patterns of SnO2: Na3PO4 sample, which
revealing that PO4

3+ groups could chelate with dissolved Pb2+. In addition, when dipped
the samples into water, the Pb2+concentration of Na3PO4 containing film slightly increased
to 0.2 ppm in 30 min, while that of the control gradually approached the maximum of
1 ppm in 30 min (Figure 7c). Furthermore, Na3PO4 containing layer not only improved
the performance of the device, but also captured most of the dissolved lead in the water.
The inclusion of phosphate facilitated charge transfer and passivated the buried perovskite
interface, resulting in a substantial increase in device efficiency of up to 23% with negligible
hysteresis. More importantly, the phosphorylated tin oxide layer had a high lead adsorption
capacity. Due to the numerous anchor points of oxygen solitary pairs, the isolation efficiency
reached 79.6%, which could convert dissolved lead into insoluble compounds in water, the
concentration of Pb2+ decreased to 2 ppm after 20 min (Figure 7d) [65].
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It is worth noting that both encapsulation and chemisorption have advantages and
disadvantages (shown in Table 1). The encapsulation layer can effectively inhibit the water
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vapor and oxygen into the battery, prevent the leakage of lead, and thus significantly en-
hance the stability of the device. Compared to the encapsulated technology, chemisorption
has a more obvious result. As the perovskite layer decomposes, the chemisorption layer can
absorb lead and/or form chelates in the first place to avoid lead leakage. However, when
the chemisorption layer absorbs lead in large quantities or forms chelates, the perovskite
lattice may collapse due to the reduction of lead, eventually result in the PCE dropped [66].
Therefore, more efforts should be made to design a new chemisorption layer which can
suppress the lead leakage and protect the perovskite lattice as well. In addition, the encap-
sulation layer and the chemisorption layer can be used together, which would realize a
dual lock system.

Table 1. Advantages and disadvantages of encapsulation and chemisorption.

Encapsulation Chemical Adsorption

Cost High Low
Whether mechanical strength can be improved

√
×

Whether the amount of lead leaking into the
environment can be reduced ×

√

5. Lead-Free Perovskite Solar Cells

Although the above methods can effectively reduce lead leakage, there exists a small
risk of lead leakage. In order to completely avoid the risk of lead leakage contaminating
the environment, the most effective method is to find ions that can retain the unique
photoelectric properties of lead halide perovskite and have low or even non-toxic materials
to replace lead. In recent years, researchers have become interested in lead-free perovskite
solar cells, which, although not as efficient as lead-based perovskite solar cells at this stage,
show promising prospects.

Because lead halide perovskite material has excellent photoelectric performance, it
is not only difficult to find substitutes for lead with low toxicity and easy processing
properties, but also it requires direct band gap absorption of strong light and photon
cycling to show excellent photovoltaic properties [67]. In fact, the promising alternatives to
Pb are Sn/Ge halides, some double perovskites, and some Bi/Sb halides with perovskite-
like structures (Figure 8). Specifically speaking, tin is the most promising element to
replace lead. Tin halide perovskite has similar crystal structure to lead perovskite with
ABX3 lattice [68,69]. Sn-based perovskite has a narrower optical band gap and a higher
carrier mobility, so it should theoretically have better optical properties [69,70]. Tin-based
perovskites are represented by methylammonium tin oxide (MASnI3), formamidine tin
iodide (FASnI3) and cesium tin iodide (CsSnI3), which have direct band gaps of about 1.20,
1.41, and 1.3 eV, and are narrower than that of lead-based perovskites [71]. Sn has outer
lone pair electrons. Theoretically, all Pb in MAPbI3 can be replaced by Sn to form MASnI3,
which has a smaller band gap and a larger absorption coefficient than MAPbI3. In theory, it
should have better photovoltaic performance. All-halide MASnX3 perovskite films, which
can be processed from solution and exhibit good crystal quality, are expected to compete
with existing photovoltaic technologies [72,73]. Unfortunately, compared with the heavier
Pb elements in the 14th group of the periodic table, Sn elements with an electronic structure
of ns2np2 have weaker interactions and are easily oxidized from Sn2+ to Sn4+ [68,74].
Therefore, tin-based perovskite solar cells are usually treated in glove boxes to prevent rapid
degradation in the air. The researchers found that this effect could be suppressed by adding
a reducing agent. For example, Hoshi et al. introduced HOOC(CH2) 4NH3I (5-AVAI) into
MASnI3 to alleviate the oxidation of Sn2+, which significantly improved the stability of the
device [75]. FASnI3 is another tin-based perovskite with excellent properties. The cationic
radius of FA is slightly larger than that of MA. Replacing MA with FA can effectively reduce
the oxidation degree from Sn2+ to Sn4+, making FASnI3 more stable than MASnI3 at room
temperature [76]. The crystallization rate of FASnI3 is much faster, resulting in abundant
trap states and lower open circuit voltage (VOC). To resolve this problem, Meng Xiang
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Yue et al. introduced hydrogen bonds into FASnI3 by adding polyvinyl alcohol (PVA) [77].
These hydrogen bonds introduced nucleation sites, which could slow the growth of crystals,
guide crystal orientation, and reduce trap states. The inhibition of iodide migration greatly
improved the stability of FASnI3, with the conversion efficiency reaching 8.9%. CsSnX3 is
an all-inorganic Sn-based perovskite, where X can be I or Br. The black phase of CsSnX3
is a direct bandgap semiconductor, with a hole mobility of µh ≈ 585 cm2 V−1 s−1 and a
carrier concentration of≈1017 cm−3, showing good photoelectric performance [78]. Maning
Liu et al. found that Ge2+ could not only stabilize Sn2+ cations, but also enhance their
optical and physical properties. They effectively filled the high-density ground Sn vacancy,
reduced surface defects and increased photoluminescence quantum yield by partially
replacing Sn atoms in nanostructures with Ge atoms [79]. As an all-inorganic perovskite,
CsSnX3 has better thermal stability than traditional organic-inorganic perovskite. As a
less toxic element, Sn2+ degrades to environmentally sound tin oxide when exposed to air,
which is more beneficial to the environment than lead-based perovskite solar cells [80].
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Germanium, which belongs to the same main group as lead, is another element of
interest to scientists. However, considering the small ionic radius of Germanium, poor
solubility in polar solvents, and relatively wide band gap (1.6 eV), the PSC development
rate of Germanium is much lower than that of tin PSC, Germanium PCE accounts for less
than 5% [80–82].

Lead-free double perovskite has attracted much attention as a promising environmen-
tally friendly photovoltaic material due to its inherent thermodynamic stability, appropriate
band gap, small carrier effective mass, and low exciton binding energy [83]. An innova-
tive strategy is to replace two Pb2+ ions with a univalent cation and a trivalent cation
to form a chartable double perovskite in the shape of A2BIBIIIX6 [84]. Cuncun Wu et al.
successfully produced high-quality, highly stable double perovskite Cs2AgBiBr6 thin films
using the low-pressure assisted (LPA) method (Figure 9a,b), and employed the films to
produce planar heterojunction solar cells with an efficiency of 1.44% [85]. Scanning electron
microscopy (SEM) images and film photographs (Figure 9c,d) showed that the LPA film
presented a dense and smooth state. It was exciting that Cs2AgBiBr6 films exhibited good
moisture, photostability, and thermal stability. The crystals lasted 240 days in the ambient
atmosphere, showing no signs of decomposition, and even the chemical bonds remained
the same. Besides, double perovskites composed of Cs2AgInCl6 are usually doped with
various elements and have attracted attention for their superior optical properties, namely
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self-trapping exciton (STE) emission and dopant induced photoluminescence. By alloying
or doping in Cs2AgInCl6, it is possible to break the dual forbidden transition, change
the band gap, and ultimately enhance the optical emission characteristics. Zhiguo Xia
et al. studied Cs2AgInCl6 and proved that Cs2AgInCl6 had a direct band gap and a long
carrier life and could be easily handled. The team demonstrated that Cs2AgInCl6 per-
ovskite was thermodynamically stable and had several advantages over organic-inorganic
perovskite [83].

Coatings 2023, 13, x FOR PEER REVIEW 13 of 17 
 

 

 

Figure 9. Preparation and SEM image of Cs2AgBiBr6 thin films. (a) Image of Cs2AgBiBr6 powder 

(left) and DMSO solution (right). (b) Film production process diagram. (c,d) SEM images of thin 

films obtained by (c) TA and (d) LPA. Reproduced with permission from [85]. Copyright 2018, 

Advanced science. 

6. Conclusions and Outlook 

It remains a problem as to how to prevent the leakage of lead and effectively reduce 

the harm to the environment in order to achieve the wide commercial application of 

PSCs. Although the content of lead in PSCs is highly small, it is far from negligible in the 

current context. In general, the main methods to solve lead leakage at this stage are 

packaging, chemical adsorption, and lead-free PSCs. Firstly, packaging is the most 

common method to protect devices, which can greatly improve the strength of devices, 

powerfully resist the impact of the external environment, and effectively prevent lead 

leakage and improve the stability of devices. However, an important issue faced by 

packaging method is the aging of devices. Antioxidants need to be added to improve the 

anti-aging and stability of packaging materials. At the same time, if the PV module is 

damaged and cannot be recovered for a long time, some lead will leak into the environ-

ment. Secondly, compared with the encapsulation method, chemical adsorption has such 

characteristics as low cost and high absorption efficiency. Chemisorption reduces the 

amount of lead leakage by 99.9% in certain cases through a series of chemical reactions 

during the lead leakage process to adsorb the lead in the device, or to adsorb the lead in 

the water. In the meantime, chemisorption can also be combined with physical packaging 

to achieve the lowest amount of lead leakage and reduce the pollution to the water source 

and the environment. Though chemisorption method has a good application prospect, 

further research is in need to achieve its commercial application. Thirdly, lead-free PSCs 

has developed rapidly in the past few years. At present, tin-based perovskite solar cells 

are the most competitive products to replace lead-based perovskite. Meanwhile, Germa-

nium-based perovskite and double perovskite are developing stably. The biggest chal-

lenges confronting these lead-free perovskite products are the issues of product stability, 

conversion efficiency, and cost, which should be further explored by researchers. If these 

problems are solved, lead-free perovskite solar cells will be commercialized as 

low-toxicity or even non-toxic perovskite solar cells. We believe that PSCs can be made 

safer and more reliable through a combination of physical packaging and chemisorption, 

Figure 9. Preparation and SEM image of Cs2AgBiBr6 thin films. (a) Image of Cs2AgBiBr6 powder
(left) and DMSO solution (right). (b) Film production process diagram. (c,d) SEM images of thin
films obtained by (c) TA and (d) LPA. Reproduced with permission from [85]. Copyright 2018,
Advanced science.

Lead-free inorganic copper-silver-bismuth halide materials may become a new de-
velopment direction in the field of lead-free perovskite because of their environmental
friendliness, high element abundance and low cost. Recently, Erchuang Fan et al. prepared
inorganic lead-free CuaAgm1Bim2In absorption layers with a direct band gap of 1.78 eV by
using low temperature gas-solid phase dispersion induced direct metal Surface element
reaction (DMSER). At the same time, CuaAgm1Bim2In/CuI bilayer films were prepared by
one step low temperature gas-solid phase dispersion induced elemental reaction. The team
through the FTO/TiO2/CuaAgm1Bim2In/CuI/carbon structure solar cells, and obtained
the PCE of 2.76%, for high efficiency, environmental protection provides a possible way to
photovoltaic field [86].

6. Conclusions and Outlook

It remains a problem as to how to prevent the leakage of lead and effectively reduce
the harm to the environment in order to achieve the wide commercial application of PSCs.
Although the content of lead in PSCs is highly small, it is far from negligible in the current
context. In general, the main methods to solve lead leakage at this stage are packaging,
chemical adsorption, and lead-free PSCs. Firstly, packaging is the most common method
to protect devices, which can greatly improve the strength of devices, powerfully resist
the impact of the external environment, and effectively prevent lead leakage and improve
the stability of devices. However, an important issue faced by packaging method is the
aging of devices. Antioxidants need to be added to improve the anti-aging and stability
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of packaging materials. At the same time, if the PV module is damaged and cannot be
recovered for a long time, some lead will leak into the environment. Secondly, compared
with the encapsulation method, chemical adsorption has such characteristics as low cost
and high absorption efficiency. Chemisorption reduces the amount of lead leakage by
99.9% in certain cases through a series of chemical reactions during the lead leakage process
to adsorb the lead in the device, or to adsorb the lead in the water. In the meantime,
chemisorption can also be combined with physical packaging to achieve the lowest amount
of lead leakage and reduce the pollution to the water source and the environment. Though
chemisorption method has a good application prospect, further research is in need to
achieve its commercial application. Thirdly, lead-free PSCs has developed rapidly in
the past few years. At present, tin-based perovskite solar cells are the most competitive
products to replace lead-based perovskite. Meanwhile, Germanium-based perovskite and
double perovskite are developing stably. The biggest challenges confronting these lead-free
perovskite products are the issues of product stability, conversion efficiency, and cost,
which should be further explored by researchers. If these problems are solved, lead-free
perovskite solar cells will be commercialized as low-toxicity or even non-toxic perovskite
solar cells. We believe that PSCs can be made safer and more reliable through a combination
of physical packaging and chemisorption, and by finding a strategy to recover lead from
the environment. The search should continue for new lead-free, non-toxic materials to
address concerns about the safety of lead.
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