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Abstract: In the scope of drug delivery, the transdermal route is desirable because it provides attain-
able therapeutic concentrations and has minimal systemic side effects. To make the skin a feasible
route for the delivery of therapeutic agents, the biggest challenge is overcoming its natural coating.
In this paper, we investigate the effect of the architectures (homopolymer vs. block copolymer vs.
hybrid block–graft copolymer) of several amphiphilic polymeric derivatives of poly(2-oxazoline) on
skin permeability. The block copolymers are composed of a hydrophobic poly(2-oxazoline) block and
a hydrophilic PEG block. The hybrid block–graft copolymers are obtained by grafting hydrophobic
side chains of polycaprolactone to a poly(2-oxazoline) backbone. We used the commercially available
EpiDerm™ by MatTek, composed of human epidermal cells, as a model of human skin. Two param-
eters of skin permeation are reported: penetration rate and lag time. We hypothesize that the skin
permeation characteristics correlate with the critical micelle concentration and particle size of the
studied polymers, while both parameters are a function of the complex architectures of the presented
macromolecular constructs. While homopolymer poly(2-oxazolines) show the least permeation, the
block copolymers demonstrate partial permeation. The hybrid block–graft copolymers exhibited full
penetration through the model skin samples.

Keywords: hybrid block–graft copolymer; block copolymer; critical micelle concentration;
poly(2-oxazolines)

1. Introduction

The stratum corneum (SC), the outermost layer of the skin, comprises about twenty
micrometers of dead corneocytes and squamous cells embedded in a lipid matrix. This
layer controls absorption and acts as an effective barrier against infection and penetration
of large therapeutics [1–3]. Methods such as microneedles and chemical enhancers are used
to overcome the SC barrier. However, there are preservation issues and the potential for
skin irritation when using such approaches [4–6]. Thus, a need for dynamic biocompatible
vehicles capable of permeating the SC is of great importance.

The use of amphiphilic polymers for skin penetration has come to the forefront of drug
delivery [7–10]. Micelle-forming nanocarriers have been shown to surpass the SC without
damaging the tissue while efficiently delivering therapeutics [11,12]. We previously re-
ported on the synthesis of a family of bio-benign amphiphilic poly(2-oxazoline)-based block
copolymers (BCPs) and hybrid block–graft copolymers (HCPs) [13]. Poly(2-oxazolines) are
a family of emerging innovative biomaterials that demonstrate notable results compared
to other polymeric therapeutics [14–16]. Some of these polymers are readily modifiable,
permitting amphiphilicity and solubility to be adjusted based on their functionality [17,18].

In this study, we hypothesize that poly(2-oxazoline)-based BCPs and HCPs will demon-
strate amphiphilic properties and permeate the epidermis of human skin (Figure 1). HCPs

Coatings 2023, 13, 1007. https://doi.org/10.3390/coatings13061007 https://www.mdpi.com/journal/coatings

https://doi.org/10.3390/coatings13061007
https://doi.org/10.3390/coatings13061007
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/coatings
https://www.mdpi.com
https://orcid.org/0000-0002-1604-6519
https://orcid.org/0000-0002-3109-7605
https://doi.org/10.3390/coatings13061007
https://www.mdpi.com/journal/coatings
https://www.mdpi.com/article/10.3390/coatings13061007?type=check_update&version=1


Coatings 2023, 13, 1007 2 of 12

are macromolecular constructs constituted from a block copolymer (BCP) backbone with
side chains grafted from one of the blocks. Poly(2-oxazoline)-based HCPs composed
from both hydrophilic (polyethylene glycol, PEG) and hydrophobic (substituted poly(2-
oxazoline)) components are of significant interest for skin permeability, as they are expected
to be biodegradable and amphiphilic [19,20]. These qualities allow for low surface tension
at the oil/water interface; thus, micelle formation may occur [21]. Self-assembly into mi-
celles makes these amphiphilic hybrids useful in the delivery of medication, where the
drug can be enclosed in the hydrophobic portion of the polymer matrix [22–24]. Interested
readers are referred to a recent review on biodegradable polymeric micelles that summa-
rizes findings on targeted and controlled drug delivery using PEG; polylactic, polyglycolic,
and polyglutamic acids; poly(allyl glycidyl ether); poly(amido amine), etc. [25].
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Figure 1. A generic structure for (A) aminothiophenol- and (B) cysteamine-functionalized homopoly-
mer, block copolymer (BCP), and hybrid block–graft copolymer (HCP).

The most widely used biodegradable polymer for drug delivery is PEG. However,
recent studies have highlighted the possibility of polymer buildup in tissues and an influx
of anti-PEG antibodies in the immune system [26–28]. Previous work has shown that
short sidechain poly(2-oxazolines) may be an improved PEG alternative due to better
biocompatibility [29,30]. Thus, the family of bio-benign amphiphilic poly(2-oxazoline)-
based BCPs and HCPs provide a promising substitution for PEG in drug delivery and
transdermal applications.

The skin permeation experiments were performed on the EpiDerm™ Skin Model
by MatTek. The EpiDerm™ tissues are cultured, normal, human-derived epidermal ker-
atinocytes [31] that are commonly used for skin permeability studies [32,33]. Polymers
functionalized with aminothiophenol (A) and cysteamine (B) were studied. The composi-
tions of the polymers were established using 1H NMR, Size-Exclusion Chromatography
and fluorescence of FITC-labelled amino groups [13]; they are summarized in Table 1.
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Table 1. Characteristics of the polymers tested in this study: weight-averaged molecular weight (Mw),
kDa, polydispersity index (PDI), and fractions of hydrophilic (PEG) and hydrophobic (PCL) blocks.

Mw, kDa PDI Fraction

PEG PCL

Homopolymer A 3.9 1.18 - -
BCP A 10.1 1.15 0.20 -
HCP A 17.1 1.21 0.12 0.41

Homopolymer B 10.2 1.11 - -
BCP B 19.2 1.12 0.10 -
HCP B 24.4 1.11 0.08 0.21

1.1. Experimental Section
1.1.1. Materials

Fluorescein isothiocyanate isomer I (FITC, ≥90% (HPLC)), dimethyl sulfoxide (DMSO)
(anhydrous, ≥99.9%), ethanol (anhydrous, 99%), diethyl ether (anhydrous, ACS reagent,
≥99%, contains BHT as inhibitor), and Pur-A-Lyzer™ Mega 6000 Da Dialysis Kit were
purchased from Sigma-Aldrich and used without purification. EpiDerm™ EPI-200-X
samples for skin permeability studies, EPI-100-LLMM-PRF (phenol red-free) media, and
skin permeation devices were purchased from MatTek (Ashland, MA, USA) and used
without purification.

1.1.2. Synthesis of the Hybrid Block–Graft Copolymer

This process is extensively described in our previous manuscript published else-
where [13], shown in Scheme 1. The HCPs probed for skin permeation were synthesized
using a three-step process. The first step was the functionalization of commercially available
2-isopropenyl-2-oxazoline with 4-aminothiophenol or 2-(Boc-amino) ethanethiol (common
structure HS-R) via a thiol-ene click chemistry reaction. The second step consisted of
ring-opening polymerization of the functionalized oxazoline monomers initiated by either
methyl p-toluenesulfonate (leading to homopolymers A or B) or 2.0 kDa PEG methyl ether
tosylate (macroinitiator). The latter resulted in BCP A and BCP B. (Note: homopolymer B
and BCP B were Boc-deprotected by heating in a vacuum.) The last step was grafting poly-
caprolactone (PCL) side chains via ring-opening polymerization initiated by amino groups
of (2-oxazoline) monomer units, yielding the amphiphilic biodegradable polyoxazoline-
containing HCP A and HCP B.
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Scheme 1. The three-step synthetic scheme used for the synthesis of the HCPs. (A) aminothiophenol
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1.1.3. NMR Spectroscopy
1H NMR spectra were measured on a Bruker Avance III with a 400 MHz frequency

using deuterated chloroform CDCl3. All spectra were analyzed using TopSpin software.

1.1.4. Fluorescently Labeled Polymers

A solution of fluorescein isothiocyanate (FITC) was added dropwise to the homopoly-
mers, BCPs, and HCPs in DMSO (1:10) overnight at room temperature, Scheme 2. The
products were purified by precipitation in a 1:3 ethanol: diethyl ether solution and placed
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in dialysis for three days. The polymers were dried under vacuum and analyzed us-
ing fluorescence.
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(A) aminothiophenol and (B) cysteamine.

1.1.5. Fluorescence Spectroscopy

A Cary Eclipse Fluorescence Spectrometer was used to collect the fluorescence spectra.
The experiment was performed in emission mode. The PMT detector voltage of 750 V was
used. The excitation wavelength used for the negative control, homopolymers, BCPs, and
HCP was 490 nm, while the positive control wavelength was set to 260 nm.

1.2. Experimental Methods
1.2.1. Dynamic Light Scattering

Dispersions of HCP A and HCP B (0.1%) were prepared in water and prepared in
a pH 6.86 buffer (0.01%). Each sample was filtered using a 0.45 µm filter then particle
size was measured using a Malvern Zetasizer Nano ZS instrument at 30 ◦C; light source:
He-Ne laser with 633 nm wavelength, cuvette cell type: glass cuvette PCS8501 made with
quartz glass; the volume of the cuvette: 3.5 mL; light pathlength: 10 mm. Solvent: DI water,
n = 1.330; viscosity, 0.7920 cP; polymers, n = 1.47; material absorption, 0.01.

1.2.2. Equilibration of EpiDerm™ Tissues

Under sterile conditions, the tissues were removed from the agarose packaging and
placed in a 6-well plate with 0.9 mL of EPI-100-LLMM-X-PRF media. The samples were
incubated overnight before use.

1.2.3. Skin Penetration Studies

The EpiDerm™ samples were removed from the incubator and placed inside the
skin permeation devices provided by MatTek. Next, 0.4 mL of the fluorescently labeled
polymer solutions (0.01%) was added to the receiver chamber of the devices (Figure 2). The
media in the receiving chamber (5 mL) was collected after desired incubation time and
substituted by new media. Fluorescence of the receiver solution was measured immediately
after collection. The samples were taken and measured every 1–2 h for up to 24 h. Upon
completion of the penetration experiments (24 h), the fluorescence of the donor solution
was measured. The difference in fluorescence intensity of the donor solution before and
after experimentation corresponded to the cumulative penetration of the polymers through
the tissue film. The calculations for cumulative concentration and lag time were made in
accordance with the recommendations given by MatTek [30].
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Figure 2. Skin penetration studies were performed in MatTek devices (cross-section is shown on the
(right)) placed in 6-well plates (left). Donor solution was placed in the donor chamber on top of the
EpiDerm tissue film. The receiver solution was collected for fluorescence measurement after desired
incubation time.

1.2.4. Determination of Critical Micelle Concentration

The procedure was adapted from our previous work [13]. Aqueous stock solutions of
HCPs (0.1%) were prepared. Aliquots of stock HCPs were made using serial dilutions by a
factor of two. The absorbance of the HCP as a function of concentration was measured by
UV/Vis (600 nm).

2. Results and Discussion

The structure of the polymers and HCPs was analyzed using 1H NMR spectroscopy [13].
Homopolymer A is shown in green, and homopolymer B is shown in red (Figure 3). The
long-chain polymer peaks are shown at ‘e’ and ‘d’. The aromatic group of homopolymer A
is shown at 6.6 ppm and 7.2 ppm. The Boc-protecting group of homopolymer B is shown at
1.4 ppm.
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Figure 3. 1H NMR spectra of the homopolymers probed for skin permeation: homopolymer A (green)
and homopolymer B (red).

HCP A is shown in green, and HCP B is shown in red (Figure 4). The aromatic group
on HCP A (green) remains unchanged and is visible at 6.6 ppm and 7.2 ppm. The PEG
block is shown in both spectra at 3.6 ppm. The α-carbon on the PCL side chain is visible at
2.33 ppm. The long-chain carbons are shown at 1.67 ppm, 1.40 ppm, and 4.07 ppm.
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To study the size of the micelles formed by our HCPs, we performed DLS studies
(Figures S1–S4) [34,35]. We studied two sets of solutions in DI water and a pH (6.86) buffer.
The solutions in the buffer mimic the HCPs in the media when applied to the skin. The
summary of our data is reported in Table 2.

Table 2. Summary of Micelle Size Collected from Dynamic Light Scattering.

Micelle Size, nm

0.1% in DI Water 0.01% in pH 6.86 Buffer

HCP A 167.2.2 ± 71.6 275.5 ± 81.4
HCP B 227.9 ± 93.2 647.7 ± 119.2

Three parameters are considered to evaluate permeation efficiency: cumulative con-
centration, penetration rate, and lag time [36,37]. Cumulative concentration is the total
amount of the polymer that penetrates through the sample. The penetration rate is the rate
at which the polymer moves through the sample. The lag time is time required to polymer
to appear in receiver solution.

The positive control was salicylic acid and the negative control was sodium fluorescein.
Both controls were consistent throughout the experiment. Each experiment was performed
in triplicate. The neat media solutions showed background fluorescence (intensity of
132 a.u. measured at 490 nm). The fluorescence intensity of the neat media was subtracted
from the fluorescence intensity of the receiver media.

After two hours, the positive control fully penetrated the sample skin, and the negative
control did not penetrate it, as expected. The fluorescence intensity of the donor solution,
the donor solution after 24 h, and the analysis of the cumulative concentration are shown
in the supplementary information (Figures S5 and S6).

Permeation of Aminothiophenol-Functionalized Polymers (A):

The stock solutions were diluted with media before applying them to the skin sample.
The fluorescence intensity of the receiver media was taken every 1–2 h for 24 h. Each
experiment was performed in triplicate. The fluorescence intensity of the neat media was
subtracted from the fluorescence intensity of the receiver media. The fluorescence intensity
of the donor solution, the donor solution after 24 h, and the cumulative concentration are
shown in Figures 5 and 6.
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The cumulative concentration plots show a change in the trend between 5 h and 10 h.
We propose that this trend is due to the more rigid non-amphiphilic polymers becoming
stuck in the skin sample.

Permeation of Cysteamine-Functionalized Polymers (B):

The stock solutions were diluted with media before applying them to the skin sample.
The fluorescence intensity of the receiver media was taken every 1–2 h for 24 h. Each
experiment was performed in triplicate. The fluorescence intensity of the neat media was
subtracted from the fluorescence intensity of the receiver media. The fluorescence intensity
and concentration of the donor solution, the donor solution after 24 h, and the cumulative
concentration are shown in Figures 7 and 8.
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The average penetration rate and lag time for all samples are shown in Figure 9.
Homopolymer A slightly penetrated through the sample skin with a penetration percentage
of 8.8%. The lag time of homopolymer A was the shortest of the aminothiophenol polymers.
The penetration of homopolymer B was insignificant and could not be measured. BCP
A partially penetrated through the sample, with a penetration percentage of 26.8%. The
lag time of BCP A was between homopolymer A and HCP A. There was a significant
discrepancy in the triplicate data collected for BCP B. We associate this discrepancy with
the behavior of the BCP in the cells. Both HCPs fully penetrated through the sample of skin.
We observed that the architecture of the HCP is more suitable for skin permeation than
the architecture of the homopolymer and BCP. The lag time of HCP B (≤30 min) is much
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shorter than HCP A (9.38 h). This is in parallel with the DLS data, as well as previous data
collected for their critical micelle concentration (CMC) values [13]. The CMC of HCP A is
equal to 1.12 × 10−6 M ± 6.61 × 10−4 and HCP B is equal to 2.48 × 10−7 M ± 6.28 × 10−9

(Figure 10). The recorded micelle size of HCP A is smaller than the micelle size of HCP
B (Table 2). We hypothesize that the penetration rate and lag time are not only related to
micelle size but also may be related to CMC. The penetration characteristics, micelle size,
and CMC depend on the hydrophilic/hydrophobic balance in the HCP.
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3. Conclusions

The reported study shows that the hybrid block–graft copolymers based on a poly(2-
oxazoline) backbone successfully penetrate the stratum corneum matrix, citing architecture
and amphiphilicity as crucial characteristics for penetration efficiency. These hybrid poly-
mers are good alternatives to PEG and can provide a simple and biocompatible vehicle
for transdermal drug delivery. The skin permeation of the amino-containing oxazoline
homopolymers, block copolymers, and hybrid block–graft copolymers was studied using
the EpiDerm™ Skin Model. The homopolymers showed the lowest level of penetration.
The block copolymer PEG-block-poly(4-aminothiophenol-2-oxazoline) partially penetrated
the skin and had a lag time between that of the corresponding homopolymer and the
hybrid polymer. The data collected for PEG-block-poly(cystamine-2-oxazoline) showed
a significant discrepancy attributed to the micellar interaction with the cells. The hybrid
copolymers showed the most efficient permeation, wherein cysteamine-modified hybrid
B penetrated the tissue samples quicker than aminophenol-modified hybrid A. These ob-
servations correlate with the critical micelle concentration of the corresponding polymers.
Interestingly, the size of the micelles is a less relevant characteristic for skin permeation.
We hypothesize that a correct balance of hydrophobicity/hydrophilicity plays a primary
role in permeability along with the architecture of the polymer (homopolymer vs. block vs.
block–graft copolymer). More data are required to understand the mechanism of polymer
permeation, and this is currently under investigation. In particular, more data on the corre-
lation between hybrid polymer composition (fractions of hydrophobic polycaprolactone
and hydrophilic PEG) and the length of each block may be of great importance, as well as
toxicity studies of poly(2-oxazoline)-based constructs.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/coatings13061007/s1, Figures S1–S4: DLS data for 0.01% HCP A
in buffer pH 6.86, 0.1% HCP A in water, 0.01% HCP B in buffer pH 6.86, 0.1% HCP B in water.
Figure S5: Emission spectra of (a) donor solution of positive control before experiment (black) and
donor solution after the experiment (red) (b) donor solution of negative control before experiment
(black) and donor solution after experiment (red). Figure S6: Cumulative concentration vs. time of
(a) positive control (b) negative control. Figure S7. Calibration curve of (a) positive control salicylic
acid (b) negative control fluorescein sodium. Figure S8. Calibration curve of FITC-aminothiophenol-
functionalized (a) homopolymers (b) BCPs (c) HCPs. Figure S9. Calibration curve of FITC-cysteamine-
functionalized (a) homopolymers (b) BCPs (c) HCPs.
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