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Abstract: The results of study of charge transfer processes in thin amorphous and crystalline Sb2Te3

films in a wide range of frequencies and temperatures are presented. The frequency spectra of
conductivity were obtained by the dielectric spectroscopy method. The authors analyzed the fre-
quency dependences of the conductivity in the electric field and the temperature dependences of the
exponent s. A transition from the classical correlated barrier hopping (CBH) to quantum mechanical
tunneling (QMT) was observed at a certain temperature Tt. The CBH model allowed the authors to
calculate the conductivity parameters of two phases. Two areas with different types of conductivity
were revealed on the conduction spectra, and the activation energies of charge transfer processes
for amorphous and crystalline films were determined. The following features were discovered: the
difference in the temperatures of the change of the charge transfer mechanism and the transition from
the semiconductor region to the metal region on the temperature dependence of conductivity. They
can help to identify the amorphous phase in the quasi-binary chalcogenide Sb2Te3-GeTe system.

Keywords: functional chalcogenides; Sb2Te3; phase transition; crystalline and amorphous films

1. Introduction

Chalcogenide glassy semiconductors (CGS) attract the attention of researchers due to
their use in numerous components and sensors in micro- and optoelectronics. For example,
in modern times, CGS are used in the manufacture of thermal imaging systems [1], fibers
and planar waveguides that are transparent in the IR range [2], in optical sensors [3] and
nonlinear optics [4]. They are considered to be promising for creating solar cell elements [5].

Binary compounds, such as A2
VB3

VI, were already well studied by various methods,
and antimony telluride is a typical representative of them [6,7]. Nowadays, they are of
great practical interest [8–13]. Sb2Te3 is a narrow-gap semiconductor with a rhombohedral
structure. The features of this structure and the presence of alternating layers lead to
the anisotropy of many properties. The authors [14,15] studied the dielectric properties
of amorphous and polycrystalline Sb2Te3 of various thicknesses (d = 20 . . . 600 nm) ob-
tained by thermal evaporation in vacuum. The observed temperature dependences of
the conductivity and the exponent of its frequency dependence s were interpreted within
the framework of the classical correlated barrier hopping model (CBH model) [16]. The
authors [16] found a trend towards an increase in the amorphous fraction in films with
an increase in their thickness. However, in all the above-mentioned works, there was no
interpretation of the experimental results, leading to any connection between the detected
conductive properties and the structure of the material.

The purpose of this work was to reveal the features of charge transfer processes in
amorphous and crystalline layers of the Sb2Te3 chalcogenide system obtained by high-
frequency magnetron sputtering, and to calculate the conductivity parameters of the
systems under study. The study aimed to determine how a change in the dimensionality of
the structure (passing from three-dimensional amorphous to two-dimensional crystalline)
affects the process of high-frequency conduction.
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2. Theory

The total conductivity σtot(ω) measured in a given experiment at particular tempera-
ture can be written as:

σtot(ω) = σ(ω) + σdc (1)

where σdc; and σ(ω) are the direct current (dc) and frequency-dependent (ac) conductivities,
respectively.

In many amorphous semiconductors and insulators, the ac conductivity invariably
has the form:

σ(ω) = A(T)·ωs, (2)

where A is a constant dependent on temperature and the exponent s is generally less than
or equal to unity (0.5 < s < 1.0).

Many different theories were proposed for ac conduction in amorphous and crystalline
semiconductors. It is usually assumed that the pair approximation is preserved, i.e., the
fact that the occurrence of dielectric losses is due to the movement of a charge carrier
between two equilibrium positions is accepted [16,17]. Two conduction mechanisms are
the most useful: quantum mechanical tunneling and the classical jump over the barrier, but
some combination of these two options is also possible. According to the CBH model [16],
electrons jump between energy states, overcoming the potential barrier. In this case, the
expression for ac conductivity for a specific fixed temperature has the form [18]:

σ(ω) =
π3N2εε0ωR6

ω

24
, (3)

where N is the density of states between which charge carriers jump. The relationship
between the jump length Rω and the height of the potential barrier is expressed by the
relationship:

Rω =
e2

πεε0

[
WM − kT ln

(
1

ωτ0

)]−1
(4)

where WM is the barrier height, τ0 is the characteristic relaxation time, the reciprocal of the
phonon frequency νph. On the other hand, the exponent s is related to the barrier height
WM via the expression:

s = 1− 6kT
WM

. (5)

Austin and Mott proposed a model according to which charge transfer occurs via
thermally activated quantum mechanical tunneling of charge carriers (QMT model) [19].
The frequency dependence of conductivity obeys the law (3), and the expression for ac
conductivity (2) has the form:

σ(ω) = Ce2kBTα−1[N(EF)]
2ωR4

ω, (6)

where C—constant, which is usually taken to be π4/24 [20], N(EF)—density of localized
states at the Fermi level, Rω—jump length at a specific frequency ω.

Within the framework of the pairwise approximation, it is assumed that the carriers
form non-overlapping small polarons [18], i.e., the total charge carrier energy is reduced
by the polaron energy Wp resulting from the lattice distortion. The transfer of an electron
between degenerate regions will be associated with the activation energy, that is, the
polaron jump energy equal to WH ∼= Wp/2. The expression for the exponent s, which
implies an increase in its value with increasing temperature, will look like:

s = 1− 4
ln(1/ωτ0)−WH/kBT

. (7)
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The tunneling distance at the frequency ω in the model of a small-radius polaron
becomes equal to:

Rω =
1

2α
[ln(1/ωτ0)−WH/kBT]. (8)

3. Materials and Methods

Amorphous and crystalline Sb2Te3 thin films were obtained by RF magnetron sputter-
ing. Amorphous layers of 80 nm thick were obtained by sputtering onto a silicon substrate
at room temperature. Sb2Te3 crystalline films were obtained in a two-stage way: they were
first grown and were then heated to 230 ◦C in a sputtering chamber. The amorphism and
crystallinity of the obtained films were confirmed by X-ray diffraction [21].

The frequency dependences of the conductivity of the layers under study at different
temperatures were obtained with Novocontrol Technologies “Concept-81” spectrometer
(Novocontrol Technologies GmbH & Co. KG, Montabaur, Germany; “Modern physical
and chemical methods of formation and study of materials for the needs of industry,
science and education”, Herzen University). This spectrometer was designed to study the
electrophysical properties of a wide class of materials [22–24]. The measurements were
carried out in the frequency range f = 10−2 . . . 105 Hz and temperatures T = 243 . . . 353 K.
The amplitude of the voltage applied to the samples was U = 0.1 V. The values of the
imaginary and real parts of the impedance of the cell with the measured sample were used
as experimental data:

Z∗(ω) = R +
1

iωC
= Z′ + iZ′′ =

U0

I∗(ω)
. (9)

The complex conductivity spectra were calculated from the impedance spectra using
the formula:

σ∗ = σ′ − iσ′′ =
−iS

ωZ∗(ω)d
. (10)

The relative error of the experiment did not exceed 5%.

4. Results and Discussion

Figures 1 and 2 show the specific conductivity spectra of the layers under study
obtained in the dark measurement mode for various temperatures. As follows from
the figures, the dispersion σ′ obeyed the power law (2), which is characteristic of many
chalcogenide glassy and amorphous semiconductors [20]. The temperature dependence of
s can be used to reveal the features of charge transfer processes in alternating current.
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The temperature dependence of the parameter s indicated the predominant transport
mechanism (classical or quantum) and allowed calculating the conductivity parameters of
the material within the framework of specific models. As can be seen from Figures 3 and 4,
both for amorphous samples and for crystalline, s equals 0.40 . . . 0.90. Two temperature sec-
tions were observed: 1—decrease in the value of the exponent with increasing temperature
and 2—increase in the value of s with increasing temperature.
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According to modern theoretical concepts, the decrease in s with temperature increase
corresponds to the classical jump transition through the barrier described by the CBH
model and, accordingly, by Equations (3)–(5) [16]. It was assumed that the charge transfer
was carried out by means of electron jumps through the potential barrier W between two
localized states (equilibrium centers). In this case, the barrier height was determined by the
Coulomb interaction between neighboring defect states. In the case of the systems under
study, charged structural defects forming a dipole can act as defect states.

As was shown in our previous study [25], based on the obtained experimental data,
it was possible to calculate the values of the conductivity parameters N, Rω and WM at
different temperatures using Equations (3)–(5). The results of the calculations are presented
in Table 1. To determine the value of Rω, the frequency equal to 3.5 × 104 Hz was used.
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Table 1. The value of charge transfer parameters in amorphous and crystalline samples of Sb2Te3.

T (K) s N (m−3) Rω (Å) WM (eV)

amorphous material

263 0.79 2.73 × 1026 3.26 0.68
273 0.72 1.31 × 1025 9.44 0.51
283 0.64 3.45 × 1023 33.35 0.40
293 0.58 1.19 × 1025 10.57 0.36
303 0.56 2.85 × 1025 7.95 0.35

crystalline material

263 0.83 1.71 × 1026 3.22 0.81
273 0.79 6.17 × 1025 4.69 0.69
283 0.75 1.16 × 1025 8.52 0.58
293 0.69 2.56 × 1023 31.90 0.49
303 0.61 9.28 × 1023 21.97 0.40

An increase in the value of the exponent s with increasing temperature can be explained
by thermally activated quantum mechanical tunneling of charge carriers (QMT model) [19].
In this case, the expression for the frequency dependence of the conductivity had the
form (6). The change in the charge transfer mechanism from the classical jump transition
through the barrier to mechanical tunneling was theoretically predicted by Elliot [26]
and was explained by the transition from carrier hopping near the Fermi level to their
implementation mainly near the band edges.

Figures 3 and 4 show that the transition from the classical transport mechanism to
quantum mechanical tunneling proceeded at a certain temperature Tt. For an amorphous
sample, Tt = 303 K, while for a crystalline sample, Tt = 333 K.

The temperature dependence of conductivity in the coordinates σ’(ω) = ζ (103/T) for
two samples is shown on Figures 5 and 6. They demonstrated that charge transfer was a
thermally activated process. The existence of two sections was found: (1) an increase in con-
ductivity with increasing temperature (semiconductor section); (2) decrease in conductivity
with increasing temperature (section of metallic conductivity). The observed dependence
of the semiconductor–metal transition temperature Tp on the frequency of the applied
field is shown in Figure 7 for an amorphous sample. It is interesting that the transition
temperature Tp for the lowest frequency f = 3.5 × 104 Hz coincided for two materials with
temperature Tt.
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For the area of semiconductor conductivity, the activation energy was calculated with
the Arrhenius equation:

σ = σ0 exp
(
−∆Eσ

kT

)
, (11)

where σ0—constant, equal to conductivity at direct current.
The frequency dependence of the activation energy ∆Eσ is shown in Figure 8. It was

clear that ∆Eσ decreased exponentially with frequency. A similar situation was observed
for a wide class of systems, including amorphous structures [27]. Increasing the frequency
of the electric field enhanced the effect of electronic transitions between localized states;
therefore, the activation energy ∆Eσ decreased with increasing frequency. For the lowest
frequency f = 3.5× 104 Hz, the following activation energies were calculated for amorphous
and crystalline films, respectively: ∆Eσ = (0.15 ± 0.01) eV and ∆Eσ = (0.19 ± 0.01) eV.
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There is practically no information in the scientific literature about the change in the
charge transfer mechanism in thin layers of the Sb2Te3 chalcogenide system. Based on the
results of [15], it can be concluded that the change in the activation energy with change in
frequency is nonmonotonic, the decrease in the activation energy ∆Eσ at a certain frequency
stops and its sharp increase begins. In addition, the existence of two areas was found on the
temperature dependence of the density of localized states N(E) for amorphous Sb2Te3 films.

Thus, during the transition from an amorphous structure to a crystalline one, the fol-
lowing changes occurred: a change in the transition temperature from the correlated barrier
hopping (CBH) to quantum mechanical tunneling (QMT), a change in the semiconductor–
metal transition temperature and an increase in the activation energy.

It is important to consider that, in terms of their nature, the processes in the amorphous
and crystalline phases proceed in the same way, despite significant differences in the
structure. While the amorphous phase was three-dimensional (3D), the crystal was a
layered 2D structure in which covalently bonded blocks were held together by weak Van
der Waals bonds. The obtained results suggested that the processes of high-frequency
conduction were determined not by the long-range order of the structure, but by its short-
range order. In this regard, it is interesting to note that both amorphous and crystalline
Sb2Te3 were characterized by the existence of extended . . . Te-Sb-Te-Sb . . . fragments,
with multicenter asymmetric hyperbonds having a dipole moment (Figure 9) [28]. It is
noteworthy here that the shorter and longer bonds in such fragments were very similar in
the amorphous and crystalline phases. Hence, one should expect general regularities in
the behavior of both phases in the presence of an external action (a change in the transfer
mechanism, the presence of sections of both semiconductor and metallic conductivity).
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The scholars hold the view that, despite the fact that the stable structure of the crys-
talline phase of Sb2Te3 is 2D layered, the existence of a metastable cubic phase with a high
concentration of vacancies is also found [30]. It can be assumed that the 3D cubic phase is
closer to the 3D amorphous phase. It was noted that the local environments in the 2D-layer
phase and in the three-dimensional cubic phase differed from each other, namely in the
two-dimensional phase, octahedral fragments with central Sb atoms were surrounded by
six Te atoms, while in the three-dimensional phase, there were defective octahedral regions
with a smaller number of Te neighbors [30]. A larger number of surrounding Te atoms
can be a source of heavier structural units and, accordingly, higher temperatures for the
development of polarization processes in the crystalline phase.

5. Conclusions

This paper presented the results of a study of charge transfer processes in thin amor-
phous and crystalline Sb2Te3 films in a wide range of frequencies and temperatures. A
power-law nature of the conductivity dependence on frequency and a decrease in the
exponent s with increasing temperature were found; these factors indicated the existence
of a hopping mechanism of conduction. A transition from the classical correlated barrier-
hopping mechanism (CBH) to quantum mechanical tunneling (QMT) at a certain tempera-
ture Tt was found, while for amorphous materials, Tt = 303 K and for crystalline layers,
Tt = 333 K. Within the framework of the CBH model, the conductivity parameters of two
phases were calculated.

Charge transfer in Sb2Te3 films is a thermally activated process; the existence of two
regions on the temperature dependence of conductivity was found: the region of increase
in conductivity with increasing temperature (semiconductor region) and the region of
decrease in conductivity with increasing temperature (metallic conductivity region). For
the lowest frequency, the values of activation energy were obtained: ∆Eσ = (0.15 ± 0.01) eV
and ∆Eσ = (0.19 ± 0.01) eV for amorphous and crystalline films, respectively.
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