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Abstract: In this study, anodizing treatment was utilized to etch titanium (Ti) substrates’ surface to
prefabricate nano-cavities. Resin pre-coating (RPC) and three silane coupling agents’ coating (CAC)
techniques were further applied to porous Ti substrates surface to compare the reinforcement effect
of adhesive bonding strength. SEM images show that nano-cavities have been prepared to create a
greater contact area and vertical volume on Ti substrate surface, fully covered by resin coatings via
RPC. A higher surface roughness and better surface wetting are also obtained by the testing results of
atomic force microscope and contact angles. Single lap shear tests results indicate that specimens with
“anodizing + RPC” treatment yield the best average shear strength of 20.73 MPa, increased by 31.7%
compared to anodizing base strength and at least 63.0% higher than silane KH-550/560/792-coated
specimens. A dominant cohesive failure and fiber-tearing on CFRP’s shallow surface, instead of
adhesive debonding failure, are shown in the appearances of damaged specimens, proving that
the RPC technique has a more effective bonding strength reinforcement in titanium and carbon
fiber-reinforced polymer (Ti-CFRP) composites’ toughening. Thus, the simple RPC technique can be
regarded as a new-type alternative to adhesive joint toughening to manufacture high-performance
composites for aerospace applications.

Keywords: resin pre-coating (RPC); coupling agents’ coating (CAC); anodizing; adhesive bonding
strength improvement

1. Introduction

Carbon fiber-reinforced polymer (CFRP) has been gradually used as a dominant alter-
native to lightweight design in important equipment fields (aerospace, ships, transportation
equipment, etc.) because of its high strength-to-weight ratio, good corrosion resistance
and excellent designability [1–4]. However, CFRP is very vulnerable to out-of-plane loads
resulting from impacts during maintenance and service operations [5]. In actual industry,
metal frames are often joined with CFRP to manufacture hybrid structures [6,7]. Titanium
(Ti) and its alloys are used as important bonding substrates [8]. They show high strength,
low density, sufficient ductility, and are completely resistant to galvanic corrosion when
bonding with carbon fiber composites [9,10]. Although adhesive bonding can appropriately
avoid issues including substrate structure damage, local stress concentration and potential
galvanic corrosion at the Ti-CFRP connection surface caused by mechanical fasteners (bolts,
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rivets and screws), it may lead to debonding failure due to its poor wetting and compati-
bility, and weak mechanical occlusion on the bonding interface between epoxy resin and
substrates [11,12].

It is well-known that etching substrate surfaces to create vertical channels can
promote adhesive bonding based on the mechanical interlocking theory. Mechanical
treatments [13–15] such as sanding, grinding and abrasive blasting, and chemical and elec-
trochemical treatments [16–20] such as alkaline etching, anodizing and micro-arc oxidation,
are very effective methods to prefabricate micro- or nano- channels, and anodizing surface
treatment has been proven to form a better channel structure and distribution for interfacial
adhesion than other treatments on a variety of metal substrate surfaces. Cheng [21] used
a mixing solution of H2SO4 and H2C2O4 to etch aluminum alloys; hard pores with a uni-
form aperture and depth ranging from 3 to 5 µm were prepared; the CNTs/resin/acetone
mixture was further applied to treat the adhesive surface so that an improvement in shear
strength of 130% was obtained. Hu [18] adopted the H2SO4 solution and NaOH solution
to treat the substrate; a porous oxide film with a thickness of several microns was formed
on the both substrate surfaces and significant increases in adhesive bonding strength were
also realized.

It should be noted that the anodized substrate cannot directly bond with adhesive for
the better development of bonding strength, since epoxy resin must have high viscosity
to avoid easily flowing into the root of those micro- or nano- channels [21]. Coupling
agents (e.g., silane coupling agents) are commonly used to modify the substrate surface
before adhesive bonding [22–24], containing chemical functional groups that could form
a covalent bond with a silanol group or molecules on the surface of substrates to achieve
bonding strength reinforcements. A simple and novel technique named resin pre-coating
(RPC) was pertinently developed to efficiently solve interface defects [25]. This is carried
out using evaporable organic dispersants to dilute pure high-viscosity epoxy resin without
reacting chemically with resin; in this way, more liquid RPC solution can guide diluted
resin (or add reinforcing fiber) into pre-fabricated porous channels. Resin coatings at the
root of micro-cavities can be obtained with the full volatilization of organic dispersant [26].
The RPC technique has been used multiple times in the ordered or disordered porous
structures of metal [27], wood [28], bamboo [29], sandstone and granite [30], and even resin-
based composites [31], which are demonstrated to significantly improve bonding interface
properties. The main advantages of RPC are as follows: (i) The substrate surface remains
wet because no hardener is mixed into the RPC solution; thus, better wettability can be
acquired so that air entrapments are not easy to generate at the root of micro-cavities. A
normal epoxy mixture (epoxy resin + hardener) enables a better wetting and compatibility
with pre-coated resin in the micro-cavities, which may eliminate potential void defects,
as shown in Figure 1b. (ii) Reinforcing additives (or fibers) can be dispersed into RPC
solution, and dragged into pre-fabricated channels, together with diluted resin, which is
volatilized during acetone, and this thin layer of epoxy + reinforcing additives (or fibers)
in the micro-cavities can promote the formation of quasi-Z directional fiber bridging at
the adhesive stage [32]. Compared with the common pre-coated coupling agents, RPC
treatment may remain as a single resin system, allowing for adhesive bonding without
introducing other impurity components.

In this study, coupling agents and resin are designed to treat anodized Ti alloys via
RPC-like and RPC methods to form a coating on the substrate surface with same surface
condition. Microstructure, roughness and contact angle are characterized to investigate
surface performance, and single lap shear tests are conducted to compare bonding strength
following treatments of CAC and RPC. This is the first the comparison of resin pre-coating
and coupling agents’ pre-coating techniques on the substrate surface under the same
conditions; it will provide a great reference and alternative for the adhesive manufacturing
processes of Ti-CFRP composites and even other metal–CFRP hybrid composites.



Coatings 2023, 13, 903 3 of 10Coatings 2023, 13, x FOR PEER REVIEW 3 of 10 
 

 

 
Figure 1. Schematic image of Ti substrate surface treatments and Ti-CFRP composites’ manufactur-
ing: (a) anodizing treatment of Ti substrate; (b) patterns of common adhesive bonding and opti-
mized adhesive bonding via RPC technique; (c) designed dimensions of single lap shear specimens 
based on ASTM D5868 [33]. 
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tion at 30 °C with a constant voltage of 10 V; the anodizing process lasted for 15 min to 
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plates (101.6 mm × 25.4 mm × 3.0 mm, purchased by Carbonwiz Technology Ltd., Shen-
zhen, China) were grinded by DL6391 electric handheld grinder. Then, grinded CFRP 
were ultrasonically cleaned in acetone for 10 min to remove the produced dust particles. 
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Figure 1. Schematic image of Ti substrate surface treatments and Ti-CFRP composites’ manufacturing:
(a) anodizing treatment of Ti substrate; (b) patterns of common adhesive bonding and optimized
adhesive bonding via RPC technique; (c) designed dimensions of single lap shear specimens based
on ASTM D5868 [33].

2. Composites Preparation and Characterization
2.1. Composites Design and Preparation

Ti-6Al-4V Titanium alloy plates (composed of 5.5–6.75 wt.% Al, 3.5–4.5 wt.% V,
≤0.3 wt.% Fe, ≤0.2 wt.% O, ≤0.08 wt.% C, ≤0.05 wt.% N, ≤0.015 wt.% H and Ti bal-
ance, supplied from Wuxi Shengtai Technology Ltd., Wuxi, China), were first cleaned by
3 wt.% HF solution for 3 min and 30 wt.% H2SO4 solution for 1 h at ambient temperature
to remove passive oxide films. They were further electrochemically etched by 10 wt.%
NaOH solution at 30 ◦C with a constant voltage of 10 V; the anodizing process lasted for
15 min to obtain the required surface microstructure for adhesion. The cross-ply [0/90]10s
CFRP plates (101.6 mm × 25.4 mm × 3.0 mm, purchased by Carbonwiz Technology Ltd.,
Shenzhen, China) were grinded by DL6391 electric handheld grinder. Then, grinded CFRP
were ultrasonically cleaned in acetone for 10 min to remove the produced dust particles.

Anodized Ti and grinded CFRP substrates were further immersed into RPC solutions
consisting of 90 wt.% acetone and 10 wt.% epoxy resin (without hardener), brought out after
10 s to form resin coatings when acetone fully volatilized. Other anodized Ti substrates
were coated by three coupling agent solutions composed of 8 wt.% silane KH-550/560/792
(bought from Kangjin New Material Technology Co., Ltd., Dongguan, China) and 92 wt.%
ethylalcohol for 10 s, and their coatings were formed by the volatilization of ethylalcohol.

The adhesion process was carried out using normal epoxy resin + hardener mixture
(obtained from Huntsman Advanced Chemical Materials Co., Ltd., Guangzhou, China)
with a ratio of 50 vol.%: 50 vol.%; relative specimen dimensions, bonding line thickness
and area based on ASTM D5868 [33] are exhibited in Figure 1c. After adhesive bonding,
all the specimens stayed in their original location for 12 h, and then were placed in the
drying oven at 60 ◦C to cure for 72 h. A total of 6 group specimens with different treatment
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conditions on Ti substrate surfaces, namely acid pickling, anodizing, anodizing + coating
KH-550/560/792 and anodizing + RPC, were manufactured and detailed designations are
summarized in Table 1.

Table 1. Detailed designations of adhesive bonding composites according to different treatments on
Ti alloy and CFRP panel surfaces.

Specimen Groups Surface Treatments
of Ti Alloys

Surface Treatments
of CFRP Panels

Specimen
Number

Acid pickling Acid pickling Acetone ultrasonic cleaning 6
Anodizing Anodizing Grinding + RPC 6

Coating KH-550 Coating KH-550 Grinding + RPC 6
Coating KH-560 Coating KH-560 Grinding + RPC 6
Coating KH-792 Coating KH-560 Grinding + RPC 6

Anodizing + RPC Anodizing + RPC Grinding + RPC 6

2.2. Composites Test and Characterization

The morphologies of anodized Ti substrates and resin-coated ones were examined by
a scanning electron microscope (SEM, Thermo Fisher Scientific Inc., Waltham, MA, USA)
with an Everhart-Thornley detector (ETD). The compositions of net-shaped nano-cavities
on anodized Ti substrates were analyzed using an energy-dispersive X-ray spectroscopy
(EDX) detector equipped for the SEM. Surface height profiles and roughness parameters
of anodized Ti surfaces were obtained using the Bruker Dimension Icon atomic force
microscope (AFM, Bruker Corp., Belica, MA, USA) operated in contact mode. The contact
angles between anodized Ti surfaces and ultrapure water were measured by the Krüss
DSA30 drop shape analyser (Krüss GmbH, Hamburg, Germany). Six measurements were
conducted for each surface condition. A single lap shear of specimens was measured
using a WANCE ETM105D universal mechanical testing machine with a 150 KN load
cell. The tensile tests were conducted, and the loading displacement speed was controlled
at 2 mm/min; the tests were immediately ended following a precipitous decline in load.
The detailed parameters of detected specimens, including the dimensions, bonding line
thickness and bonding area shown in Figure 1c, were assigned to ASTM D5868 [33].

3. Results and Discussions

Figure 2 shows the surface morphologies of Ti substrates after anodizing and RPC
treatment, and the EDX spectrum of nano-cavities on the Ti substrate surface. The an-
odized Ti substrates exhibit ant-nest-like nanostructured surfaces resembling the surface
appearances of alkaline-anodizing titanium in previous research [34,35]. Disorderly stacked
rock-like oxide particles can be observed clearly, which may be attributed to the insufficient
etching. Porous net-structures of a few hundred nanos are below protuberant particles at
channel roots in Figure 2b, capable of creating greater volumes for RPC and CAC treat-
ments. The compositions of net-shaped nano-cavities are examined by EDX, and the related
spectrum is shown in Figure 2d. As the oxide film mainly comprises TiO2 [16] forms on the
Ti substrate surface, the element wt% of O (17.52 wt.%) is higher than that of original Ti
substrate (≤0.2 wt.%). As displayed in Figure 2e,f, protuberant oxide particles can hardly
be identified because the porous surface is completely covered by coated resin after RPC.

Figure 3 presents the representative AFM images of anodized Ti substrates and acid-
pickled specimens, revealing the arithmetical mean roughness (Ra) and root mean square
roughness (Rq). The anodized substrate evidently has a greater average Ra and Rq values
than the acid-pickled one, exhibiting an improved surface roughness. It also possesses a
contact angle (36.35 ± 3.71◦) that is twice as small as that of the latter (75.16 ± 3.81◦), as
displayed in Figure 4a,b, indicating the anodizing treatment contributes to a greater surface
roughness and better substrate wetting. Rougher surfaces may be beneficial to increase
the contact area between water and substrates for a better wettability. As RPC and silane
KH-550/560/792 coatings are further applied to the surface, their contact angles increase,
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except for silane KH-560, since coated resin (without hardener) and silane coupling agents
are hydrophobic and inhibit substrate wetting to aqueous solutions [36]. This illustrates that
the ultra-thin coatings remain on the substrate surface; however, it cannot be confirmed that
resin and silane KH-550/560/792 pre-coated substrate surfaces are not good for adhesive
bonding. Since the normal epoxy resin + hardener mixtures are used as the bonding
adhesive, resin-coated substrate can even promote the wetting of adhesive, owing to the
better compatibility of homogenous material.
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The representative load-displacement curves and the average adhesive bonding
strength of each specimen group after the shear tests are shown in Figure 5; the detailed
testing and calculated results are listed in Table 1. Noticeable linearly increasing regions
and nonlinear regions can be recognized from the load-displacement curves in Figure 5a,
and can be attributed to the elastic deformation of composites, plastic deformation of
adhesive and even localized interface de-bonding [37].
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dard deviations).

As revealed in Figure 5b, anodized specimens have an average shear strength of
15.74 MPa, 75% higher than the acid pickling base, and silane KH-550/560-coated specimens
also have a greater shear strength. However, all three silane-coated specimens evidently
exhibit a decreasing bonding performance, the maximum values of 12.72 MPa yielded by
the KH-560 coated specimen are around 19.2 % lower than the only anodized specimen.
However, RPC treatment causes the shear strength to increase to 20.73 MPa, a remarkable
93.4% and 31.7% improvement compared to the acid-pickled and only anodized specimens,
respectively. This indicates that RPC treatment has a better reinforcing effect in terms of
bonding strength compared to silane-coated coupling agents.

Figure 6a–d shows specimens coated by KH-792, KH-550, KH-560 and resin after single
lap shear tests, and detailed parameters including average Pmax and shear strength were
exhibited in Table 2. The residual quantities of the cured resin remaining on Ti substrate
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surface show a continuous increasing trend from KH-792 to resin-coated specimens. KH-
792- and KH-550-coated specimens exhibit a complete and dominant adhesive failure on the
Ti substrate surface, respectively. The resin-coated specimen has maximum resin residues
that are slightly attached by some torn carbon fibers, indicating a cohesive failure and
carbon fiber tearing on the CFRP shallow surface. A weaker Ti/epoxy adhesive interface
causes a typical adhesive failure [18] compared to the CFRP/epoxy interface because
CFRP uses the epoxy component to achieve better wetting and compatibility, which can be
improved by anodizing and RPC treatment. This explains why the resin-coated specimen
has the best shear strength.

Even if silane KH-550/560/792 can be dragged into the nano-cavities or submicron-
cavities via coating treatment, their various functional groups (especially the –CH(O)CH–
group of KH-560) can form a covalent bond and also bond with the polymer molecule to
obtain a good interface combination, acting as a connecting bridge between the adhesive
and inorganic porous surface of the Ti substrate. However, guiding the epoxy resin via
RPC causes a single homogenous resin system to remain in the nano-cavities [38], which
is more prone to be wetted, compatible with the normal epoxy + hardener adhesive, and
forms a stronger integrated Ti/epoxy bonding interface.
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fiber-tearing on the CFRP shallow surface compared to the adhesive failure of KH-
550/560/792-coated specimens. In summary, the simple RPC technique has a more effec-
tive reinforcement than coating silane KH-550/560/792 in the Ti-CFRP composites’ tough-
ening system, and can be regarded as a new alternative for adhesive joint-toughening ap-
plications. 
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Figure 6. Adhesive bonding region appearance images of CFRPs and Ti substrates with different
surface conditions after failure: (a) coating KH-792, (b) coating KH-550, (c) coating KH-560 and
(d) RPC.

Table 2. Detailed parameters including average Pmax and shear strength of Ti-CFRP composites after
single lap shear testing.

Specimens Average Pmax/N Standard
Deviation/N

Shear
Strength/MPa

Standard
Deviation/MPa

Acid pickling 6871.14 498.14 10.72 0.73
Anodizing 10,157.04 668.82 15.74 1.96

Coating KH-550 8164.72 259.41 12.66 0.52
Coating KH-560 8208.32 636.43 12.72 0.40
Coating KH-792 6176.75 503.22 9.57 0.78

Anodizing + RPC 13,375.86 639.41 20.73 0.99

4. Conclusions

This study compares a simple RPC technique and three silane CAC treatments on a
porous Ti substrate surface for adhesive bonding strength reinforcement. An anodizing
treatment was adopted to prefabricate nano-cavities to create enough volume, resin and
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coupling agent coatings, which will be further formed on an anodized Ti substrate surface.
The AFM and contact angle results showed the increased surface roughness and improved
wettability of an anodized Ti substrate compared with the untreated specimens. Single lap
shear tests results demonstrated that the shear strengths of silane KH-550/560/792 coated
specimens are at least 19.2% lower than those of only anodized ones. Specimens with an-
odizing + RPC have an average strength of 20.73 MPa, 10.5% higher than the anodizing base
and much higher than silane KH-550/560/792-coated specimens. Post-failure appearances
indicated that resin-coated specimens show a cohesive failure and carbon fiber-tearing on
the CFRP shallow surface compared to the adhesive failure of KH-550/560/792-coated
specimens. In summary, the simple RPC technique has a more effective reinforcement than
coating silane KH-550/560/792 in the Ti-CFRP composites’ toughening system, and can be
regarded as a new alternative for adhesive joint-toughening applications.
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