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Abstract: Three-dimensional (3D) plasmonic metamaterials have become a trend in the application
of nanophotonic devices. In this paper, a convenient and inexpensive method for the design of 3D
multilayer plasmonic metamaterials is constructed using a one-step self-shielded reactive-ion-etching
process (OSRP) and a thermal evaporation system, which provides an efficient and low-cost method for
the preparation of surface-enhanced Raman spectroscopy (SERS) substrates. The near-field enhancement
of the 3D plasmonic metamaterials provides highly efficient electromagnetic resonance, and highly
sensitive and uniform SERS sensing capabilities. The SERS detection results of rhodamine B (Rh. B) and
rhodamine 6G (R6G) on this substrate show that the detection limit could reach 10−13 mol/L, and the
signal could give expression to excellent uniform stability. The results show that high sensitivity and
high robustness SERS substrates can be prepared with high efficiency and low cost.

Keywords: multilayer plasmonic metamaterials; one-step self-shielded reactive-ion-etching process;
SERS substrates

1. Introduction

Up to now, metal nanostructures have received a lot of attention due to plasmonic
resonance from collective oscillations of electron gases. When plasmonic resonance is
excited, strong local electromagnetic field appears. The absorption and scattering of
light beams are greatly enhanced by the nanostructures [1–5]. Based on these traits, 3D
multilayered plasmonic metamaterials with high areal density and suitable nanogaps have
been widely applied in photonic devices, i.e., photocatalysis [6,7], optical sensors [8–11],
absorbers [12–15], and surface-enhanced Raman spectroscopy (SERS) [16–28].

Today, SERS has emerged as one of the most versatile tools for sensing and imaging
chemical and biological analytes due to its high sensitivity and non-invasive advantages.
The electromagnetic enhancement mechanism (EEM) has been widely recognized as a
main enhancement mechanism of SERS. While some existing nanostructures have the
potential to have extremely high SERS sensitivity, their practical application is often lim-
ited [21–25,27,28] because their electromagnetic enhancement “hot spots” have low density
and poor uniformity. For example, Fang et al. chose Ag film on nanospheres (Ag/FON)
as the SERS substrate [22]. At the “hot test” SERS-active point, the enhanced factor can
reach 108. However, these hot spots accounted for less than 0.1% of the total substrate
and contributed 47% of the overall SERS intensity. However, in recent years, many 3D
nanostructures have been applied to SERS, due to the fact 3D plasmonic metamaterials
can provide a large number of evenly distributed hotspot densities and strong near-field
electromagnetic fields. Garoli et al. prepared plasma metamaterials and proposed a test
method, the gold filling factor f, estimated with a pixel count method. By modulating
the fractal dimension of nanoporous gold, the effective dielectric response is customized
over a wide spectral range of infrared wavelength [29]. Plasma metamaterials are used
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in many ways because they provide powerful magnetic resonance and electromagnetic
fields [30–36]. In the work of Liu et al., suspended 3D Ag nanoparticles/carbon nanotubes
(Ag-NPs/CNT) nanohybrids for a SERS substrate are fabricated in high EEM “hots pots”
by self-aggregating Ag-NPs onto the suspended CNT networks [23]. Zhang et al. proposed
a hierarchical porous plasmonic metamaterial SERS substrate, and, using non-resonant
benzenethiol as a probe molecule, the performance of the substrate is studied in detail [24],
whose minimum detection limit is 10−12 M.

He et al. proposed an active substrate capable of super-sensitive detection of 10 fM
Rhodamine 6G (R6G). In addition, the synthesized substrate can be applied to the marker-
free detection of DNA with a sensitivity limit as low as 5 nM. The substrate is composed of
a two-dimensional macroporous Ag film composed of a silver nanosheet (AgNS) -coated
inverse opal film. However, the 3D plasmonic metamaterials manufacturing process has
clear limits in that it is a complicated process, is suitable to high−throughput fabrication,
and is high in process cost [32,35,36].

In this letter, a convenient and inexpensive 3D plasmonic metamaterials SERS sub-
strate is proposed. The nano-protrusion-textured surfaces were obtained by OSRP on
a fused-silica surface; after that, the silver layer, the silicon dioxide layer, and the gold
particles cover the substrate in turn, forming 3D multilayered plasmonic metamaterials
with high areal density. This 3D plasmonic nanostructure conforms to the industrial process
and is convenient for mass production. These structures give rise to multiple near-field
interactions between the top Au-NPs and the bottom Ag nanostructures as well as between
the top Au-NPs themselves. The high density of hot spots in 3D space produces an efficient
and widely tunable plasmonic response. This structure can be used as a new class of
industrialized, highly efficient SERS substrates.

2. 3D Multilayered Plasmonic Metamaterials Design

The preparation process of 3D multilayered plasmonic metamaterials is shown in
Figure 1, which is mainly divided into three steps: (1) Nano-protrusion-textured-by-etching-
fused silica substrate is obtained [37]. (2) The substrate is coated with 40 nm Ag and 15 nm
SiO2 layers using a home-built thermal evaporation system. (3) Au-NPs are prepared
and evenly rotated onto the substrate [38]. (4) The detection droplets are coated on the
base and allowed to dry naturally for 30 h. The fused silica nano-protrusion-textured
are obtained by fluorocarbon radical plasma etching on the stainless steel sample table
of the RIE-3 system at an RF plasma frequency of 13.56 MHZ. Firstly, the chamber is
cleaned with argon and oxygen plasma for 20 min and the fused silica substrate is put into
the mixed solution (2:1 concentrated 65% HNO3 and 30% H2O2) for ultrasonic cleaning.
Trifluoromethane (CHF3) and argon (Ar) plasmas are used in etching reactions, and the
ratio of CHF3 to argon is 10:50 SCCM. When the power is kept at 600 W and the pressure in
the cavity is 5 Pa, the fused silica is etched for 25 min. Finally, we use alcohol, acetone, and
a mixed solution (2:1 concentrated 65% HNO3 and 30% H2O2) in turn to remove all of the
impurities produced on the substrate during the etching process. The samples are coated
with 40 nm thick of Ag and 15 nm thick of SiO2 using the Nanguang ZZS900 film coater
(Rankuum Machinery Ltd., Chengdu, China). Before coating, the material is first cleaned
with an ultrasonic wave and then cleaned again with an oxygen ion beam. It is plated
successively with 2 nm chromium, 40 nm Ag, and 15 nm SiO2 film, where chromium film is
an adhesive layer to enhance its structural robustness. The vacuum pressure is 5 × 10−4 Pa,
and the evaporation rate is 5A/s. Finally, the Au NPs stock solution with a diameter of
5 nm is prepared by the hydrothermal method and dripped onto the prepared substrate.
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Figure 1. The preparation process of 3D multilayered plasmonic metamaterials with high areal den-
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The 3D plasmonic metamaterials are clearly displayed using scanning electron mi-
croscopy (SEM) and atomic force microscopy (AFM). As shown in Error! Reference 
source not found.a,b, the nano−protrusion−textured array has preferred vertical growth 
orientation. Nanostructures are randomly distributed and grow relatively uniformly. The 
uniform arrangement of the nano−protrusion−textured structures and the similar shape 
of each structure indicate the advantages of the OSRP in the large−scale preparation of 
microstructure arrays. The nano−protrusion−textured structures in Error! Reference 
source not found.c,d is coated with 5 nm thick TiO2 adhesive layer, 40 nm Ag film and 15 
nm SiO2 spacer layer on the surface, and 1 mL Au−NPs on the top. The structures are 
coated evenly, and the coating does not destroy the original characteristics of high density 
and high depth of the structure. The average period of the structure is 180 nm, and the 
average height is 270 nm. Au−NPs can be easily adsorbed to the coated nanotextured sur-
face by electrostatic. After the addition of Au−NPs, the density and intensity of the 
near−field interaction of the structure are further improved. The narrow gap between 
Au−NPs and the SiO2 spacer, as well as between Au−NPs, is more conducive to coupling 
to stimulate SERS activity. 

 

Figure 1. The preparation process of 3D multilayered plasmonic metamaterials with high areal density.

The 3D plasmonic metamaterials are clearly displayed using scanning electron mi-
croscopy (SEM) and atomic force microscopy (AFM). As shown in Figure 2a,b, the nano-
protrusion-textured array has preferred vertical growth orientation. Nanostructures are
randomly distributed and grow relatively uniformly. The uniform arrangement of the
nano-protrusion-textured structures and the similar shape of each structure indicate the
advantages of the OSRP in the large−scale preparation of microstructure arrays. The
nano-protrusion-textured structures in Figure 2c,d is coated with 5 nm thick TiO2 adhesive
layer, 40 nm Ag film and 15 nm SiO2 spacer layer on the surface, and 1 mL Au-NPs on
the top. The structures are coated evenly, and the coating does not destroy the original
characteristics of high density and high depth of the structure. The average period of the
structure is 180 nm, and the average height is 270 nm. Au-NPs can be easily adsorbed to
the coated nanotextured surface by electrostatic. After the addition of Au-NPs, the density
and intensity of the near-field interaction of the structure are further improved. The narrow
gap between Au-NPs and the SiO2 spacer, as well as between Au-NPs, is more conducive
to coupling to stimulate SERS activity.
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Figure 2. SEM of nano-protrusion-textured structure of fused quartz substrate without mask
etch−ing: different magnifications (a) ×1000 nm, (b) ×500 nm. The nano-protrusion-textured
is coated with a 5 nm thick TiO2 adhesive layer, a 40 nm thick Ag film, and a 15 nm thick SiO2 spacer
layer, topped with 1 mL Au-NPs with a particle size of 5 nm different magnifications (c) ×1000 nm,
(d) ×200 nm. (e) AFM of this structure and measurement of structural height and period.
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3. SERS Performance

In order to reflect the excellent performance of 3D multilayered plasmonic metamateri-
als with multiple near-field interaction, we conducted SERS detection with it. Additionally,
it is compared with the 2D plasmonic nanostructures. The electric distribution across
plasmonic nanostructures is calculated using the finite-difference time-domain (FDTD)
method. The incident electromagnetic field is set as a uniform plane wave at 522 nm,
which propagates along the z-axis, and the polarization direction is the x-axis. Periodic
boundary conditions were set around the nanostructure (x-axis and y-axis) with a period
of P = 600 nm, and the upper and lower boundaries of the nanostructure were perfectly
matched layers. The high strength and density electric field distribution on the 3D plas-
monic nanostructure is realized by generating three near-field coupling effects: (1) between
the top Au-NPs and the bottom SiO2 nanostructure, (2) between Au-NPs on a single bottom
nanostructure, and (3) between Au-NPs decorated on the sidewalls of two different adja-
cent structures. 3D multilayered plasmonic metamaterials compared with 2D structures
are more conducive to arousing a strong local field in SiO2 layer because in the direction
parallel to the polarization direction of incident light and structure, it is not able to inspire
the near-field coupling. However, the orientation effect for 3D nanostructures is very weak
because the 3D nanostructures of the whole space there are always orientations perpen-
dicular to the incident light polarization direction. The refractive index setting of the SiO2
nanostructure, Ag layers, and Au-NPs is obtained from the literature [39,40]. The SEM and
AFM of the structure as shown in Figure 2 show a uniform structure and strong robust-
ness. However, there are tolerances for the radius and period of the structure. Moreover,
the final structure shows a smooth columnar, and the selection of the columnar periodic
structure in the simulation of the electromagnetic field. Three kinds of superstructures
with different radii are simulated. The thicknesses of the Ag layer and the SiO2 layer are
constant, which are 40 nm and 15 nm, respectively; the columns of different radii affect
the electromagnetic response of the overall structure, in Figure 3. Moreover, it is also
reflected in the actual Raman detection. For example, the peak position and intensity of
Raman measurement at different points of the substrate are biased. However, in terms of
the overall effect, the non-uniformity of nanocrystals is limited, and the influence on the
detection results is relatively small. Although the simulated structure is not completely
similar to the actual structure, the comparison between the electromagnetic field intensity
between one-dimensional, two-dimensional, and three-dimensional structure is still very
valuable, which fully demonstrates that the three-dimensional structure can provide the
powerful physical characteristics of the spatial electromagnetic field.
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The Raman scattering process can be described as two processes. 1. Local field k local
enhancement of the surface plasma effect excited Raman dipole 2. Radiation enhancement
in Raman dipole radiation. The Raman enhancement factor can be expressed as

EF = EFLoc(ωL) EFRad(ωR) (1)

where ωL and ωR are the frequencies of the excitation light and radiation scattered light,
respectively.

In practical calculations, it is often considered that EFLoc(ωL) ≈ EFRad(ωR) and
ωL ≈ ωR. The average intensity of the SERS signal is approximately proportional to the
fourth power of local electric field enhancement

EF = |ELoc|4/|E0|4 (2)

where |E| and |E0| are the incident and local electric field intensity, respectively. In the
simulation, all of the electric fields are normalized to the maximum electric field value of
the incident TE fundamental mode. Thus, the Raman enhancement factor can be expressed
as EF = |E|4.

The electromagnetic simulation average EF of 3D multilayered plasmonic metamateri-
als is 5.6 times greater than that of 2D plasmonic nanostructures and 20.3 times greater than
that of Au-NPs on smooth SiO2 substrate, in the Figure 4a–c. As shown in Figure 4d, the
SERS detection of 10−6 mol/L Rh. B is carried out by using three substrates under 522 nm
excitation light. Interestingly, the Raman peak intensity is 1606.6 cm−1, of 3D multilayered
plasmonic metamaterials is about 52,799, of 2D plasmonic nanostructures is 9814, and of
Au-NPs on smooth SiO2 substrate is 3418. The Raman peak intensity is 1606.6 cm−1, of 3D
multilayered plasmonic metamaterials is about 5.38 times than that of 2D plasmonic nanos-
tructures, and is about 15.5 times that of Au-NPs on smooth SiO2 substrate. Intriguingly,
the theoretical value is consistent with the measured SERS signal intensity. The results show
that the 3D multilayered plasmonic metamaterials provide a superior structural design for
generating strong near-field enhancement and high−sensitivity SERS substrates. Although
the simulated structure is not completely similar to the actual structure, the comparison
between the electromagnetic field intensity between the one-dimensional, two-dimensional,
and three-dimensional structure is still very valuable, which fully demonstrates that the
three-dimensional structure can provide powerful physical characteristics of the spatial
electromagnetic field.

We compare our system performances with those of smooth glass substrate. This is
the one way to prove that our approach is superior. As shown in the Figure 5, the R6G
Raman peak on the smooth glass substrate does not have distinct characteristics, which
may be the reason for the lack of enhancement effect. Another important reason may be the
effect of fluorescence. Compared with the gold particle substrate on the glass substrate, the
metamaterial substrate shows more distinct and strong Raman characteristic peaks. This is
because 3D structures have a more uniform and robust spatial electromagnetic field (clearly
shown in the electric field.), which can effectively enhance the Raman radiation.

The 3D multilayered plasmonic metamaterials induce multiple near-field interac-
tions between the top Au-NPs and the underlying Ag layer; however, uniform interlayer
thicknesses as well as uniformly distributed particle densities achieve uniform average
near-field intensities. SERS detection is conducted on Rh. B with different concentrations
(see Figure 6a. We selected five Raman peak sites, which are 1606.6 cm−1, 1395 cm−1,
1130 cm−1, 856 cm−1, and 376.4 cm−1 respectively. Moreover, for trace detection at a low
concentration of 10−13 mol/L, the characteristic peak position can still be displayed, reflect-
ing the high sensitivity of 3D plasmonic nanostructures, which not only has high detection
sensitivity but also has good uniformity and stability. This is a very low detection limit
compared to other reports [33,41,42]. For example, the g−C3N4/Ag SERS substrate can
be used to detect Rh. B with a linear relationship from 1.0 × 10−9 to 1.0 × 10 −6 mol/L
and a detection limit as low as 0.39 nmol/L [33]. The sodium salt of phytic acid (IP6)



Coatings 2023, 13, 844 6 of 10

stabilized Au@Ag core–shell bimetallic nanoparticles is used as SERS substrate. The limit
of detection for RB in water is 5 nM (2 ppb) [41]. Kumar et al. prepared a SERS−active
substrate composed of Au nanoparticles (NPs) on Cu2O microspheres. The corresponding
limits of detection (LOD) are 2.36 × 10−13 M for Rh. B and 3.40 × 10−12 M for methylene
blue (MB) [42]. In addition, the intensity of the spectral peaks at 1606.6 cm−1 and 856 cm−1

were chosen as the vertical coordinates, and the connection between the intensity and
different concentrations was plotted in Figure 6b. To further reflect the substrate qualitative
identification detection capability, another scheme (R6G) is chosen for SERS detection. As
shown in Figure 6c, seven points in different parts are selected on 3D plasmonic metamate-
rial substrate (2 × 2 cm) to conduct SERS detection on a 10−10 mol/L R6G solution. Each
measurement was separated by a week, and the SERS spectrum still showed a clear char-
acteristic peak of R6G. However, the Raman strength decreases with the passage of time.
Figure 6d displays the intensity variation with different times and places at 1593 cm−1 and
613 cm−1. It can be found that the intensity drops slightly at 613 cm−1 and 1593 cm−1; then
the change is not significant. There are probably two main reasons. Firstly, it is known that
SERS substrates usually lose their properties rather quickly due to uncontrolled deposition
of carbon from the atmosphere. Therefore, maintaining the long−lasting activity of the
sample is the key to the reuse of the base. In this paper, all sample storage is sealed with
plastic wrap and placed in a drying oven. Secondly, the local strong electromagnetic field
produced by different points on the substrate is different, and the long time may lead to
the loss of detection molecules. There is no doubt that the 3D plasmonic metamaterials
SERS substrate can be considered to have good reproducibility, which is mainly due to
the fact that the nano−micro−pyramid array obtained through the OSRP and thermal
evaporation system is quite uniform. However, the interlayer film thickness of the mul-
tilayer metamaterials and the Au-NPs on the surface cannot be absolutely uniform and
homogeneous, which is an important factor preventing further reduction in the Raman
intensity loss values. In addition, comparing the positions of the Raman characteristic
peaks in Figure 6a,c, Rh. B and R6G, two substances with very similar chemical structures
can be easily distinguished. The high robustness of using detection of this substrate is
proved. In conclusion, because the SERS signal is averaged over the molecules adsorbed
onto the plasmonic nanostructures, increasing the areal density of hot stops is the main
contributor to enhancing signal uniformity. On the other hand, the SiO2 spacing layer
should also contribute to Raman signal uniformity in the 3D plasmonic metamaterials.
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and highly sensitive and uniform SERS sensing capabilities. The average 𝐸𝐹 of 3D mul-
tilayered plasmonic metamaterials is 5.6 times that of 2D plasmonic nanostructures and 
20.3 times than that of Au−NPs on smooth SiO2 substrate. Using Rh. B and R6G as probe 
molecules, the performance of the 3D plasmonic metamaterials SERS substrate is studied 
in detail, whose minimum detection limit is 10−13 mol/L, and the signal gives expression 
to excellent uniform stability, indicating its high sensitivity. The manufacture of the struc-
ture not only meets the demand of convenient industrial mass production but also has 
excellent SERS capabilities. 
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Figure 6. (a) SERS spectroscopy of Rh. B with different concentrations. (b) Intensity of Rh. B at
1606.6 cm−1 and 856 cm−1 as a function of different concentrations. (c) The characteristic spectra
of 10−10 mol/L R6G solution are detected at the seven different points with seven measurements
on 2 × 2 cm substrate (each measurement is separated by a week). (d) Intensity trend of R6G
(10−10 mol/L) at 1593 cm−1 and 613 cm−1.
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4. Discussions

In summary, a highly sensitive and reproducible SERS substrate based on 3D plas-
monic metamaterials substrate is constructed using the OSRP and thermal evaporation
system, which provides an efficient and low−cost preparation process for a reproducible
SERS substrate. The high strength and density near-field enhancement of the 3D plas-
monic metamaterials provide highly efficient localized electromagnetic resonance fields,
and highly sensitive and uniform SERS sensing capabilities. The average EF of 3D
multilayered plasmonic metamaterials is 5.6 times that of 2D plasmonic nanostructures
and 20.3 times than that of Au-NPs on smooth SiO2 substrate. Using Rh. B and R6G as
probe molecules, the performance of the 3D plasmonic metamaterials SERS substrate is
studied in detail, whose minimum detection limit is 10−13 mol/L, and the signal gives
expression to excellent uniform stability, indicating its high sensitivity. The manufacture
of the structure not only meets the demand of convenient industrial mass production
but also has excellent SERS capabilities.
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