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Abstract: Lightweight and flexible electronics have recently emerged at the forefront of optoelectronic
applications. In this regard, graphene electrodes enable opportunities for new photodiode devices. In
this paper, we formulated and tested graphene ink using the standard inkjet printing technique. It
was shown that the maximum conductivity of ink was achieved for 14 print passes of the graphene
layer. Moreover, we deposited Molybdenum Disulfide (MoS2) ink in the same pattern and used it as
an active layer. We put MoS2 ink on an Indium-Tin-Oxide (ITO) glass substrate and then deposited
graphene ink as a top electrode to fabricate an ITO/MoS2/graphene device. The fabricated device
showed good rectification behavior and high ON/OFF switching behavior with a max photocurrent
of 15 µA at +2 V. The technique thus paves the way for low-cost, low-temperature processing of
electronics and one-step fabrication.

Keywords: graphene; diode; photocurrent; inkjet printing; spectroscopy; UV-Vis; percolation theory

1. Introduction

Manufacturing techniques in the consumer electronics industry have made a lot of
progress in the last decade, allowing for the creation of smaller, faster, and more efficient
devices for common use. However, these devices’ flexibility, environmental impact, and
processing cost are all impacted by using standard solid-state technology. Hence, devices in
the consumer electronics industry have undergone a remarkable evolution in recent years,
reducing in size while also becoming more flexible and suitable for wearable applications.
Lightweight and flexible electronics have recently emerged, finding use in emerging mar-
kets such as internet of things (IoTs) and wearable electronics. Due to many factors [1–3],
printing flexible electronics has emerged as a viable replacement for the conventional pro-
duction of inorganic materials. At the same time, printing techniques provide low-cost and
simple methods for device fabrication while showing compatibility with most substrates,
including soft and flexible ones [1].

There is tremendous growth potential for the organic and printed electronics that are
currently available. Printing conductive inks on flexible substrates paves the way for this
shift because it is cheap, easy, and scalable to mass produce devices with high flexibility
and stretchability [4]. Inkjet printers can be used to create a multilayer printed circuit
board (PCBs) and electrodes. Moreover, inkjet printing is an additive, noncontact printing
technique that provides excellent throughput, low waste, and processability [2].

Two-dimensional materials have emerged as one of the most suitable alternatives
in recent years due to their superior characteristics, which include electrical, optical, and
even mechanical properties. Notably, their recent advances in realizing practical uses
have been inspired beyond single-device realization, launching advanced research for
low-cost, large-area, and high-yield rapid manufacturing. In this regard, ubiquitous inkjet
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printing has been used as a viable solution to meet large area requirements, low cost, ease
of processability, and high compatibility. Furthermore, inkjet printing can provide 2D
nanoelectronics with a high degree of design freedom while maintaining high electrical
performance. Graphene and other 2D materials have recently attracted the scientific
community’s attention for various electronic applications. These materials, including boron
nitride (BN), manganese dioxide (MnO2), and molybdenum disulfide (MoS2), have many
valuable properties. Indeed, such materials are likely to be used as active materials in a
wide range of printed device applications.

Furthermore, it is expected that several applications will demand the possibility
of printing combinations of 2D materials, for example, a conducting material such as
graphene as an electrode and a semiconducting material such as MoS2 as the active element.
Graphene, composed of a single layer of sp2-hybridized carbon arranged in a honeycomb
lattice, has attracted much scientific interest because of its unusual chemical and physical
characteristics. Graphene’s remarkable mechanical strength and high in-plane thermal con-
ductivity are due to the three s-bonds formed by the sp2 bonding between its carbon atoms.
Moreover, graphene has enhanced the electrical properties of MoS2 composites [5]. There
has been extensive use of bulk MoS2 or graphene in Schottky devices in the realm of the
metal–semiconductor interface. Due to the high tunability of the Fermi level and the stable
excitonic states of monolayer MoS2 at ambient conditions, the addition of graphene makes
the MoS2/graphene composite into a nearly perfect platform to reveal a 2D semiconductor
and 2D semimetal junction. This makes them practical for optoelectronic and photonic
device applications [6,7].

An essential step toward increasing the application of graphene-based technologies is
the industrial production of graphene thin films on a large scale. The unique electronic,
optical, and mechanical properties of graphene make inkjet printing of graphene [2] a
vital research path in these areas. This is because it adds the attractive features of inkjet
printing (low cost, direct writing, additive patterning, and scalability to large-area pro-
duction) [8,9]. Many different nanomaterials have been successfully deposited using this
method [10–12]. Printing on graphene improves device performance and conductivity, but
it requires high-temperature chemical treatment. These techniques not only harm the print
surfaces but also minimize the material’s flexibility (plastic film, paper). The results of the
experiments showed that graphene could be used to make wearable electronics that are
both flexible and inexpensive. The inkjet printing method of deposition is cheap and can
be used to create either transparent or opaque conductive films. Printed graphene, also
known as reduced graphene oxide (rGO), has many potential uses. These include sensors,
antennas, transparent conductors, thin film transistors, supercapacitors, optoelectronic
devices, photodiodes, photodetectors, solar cells, and many more [13–17].

Graphene electrodes enable opportunities for new optoelectronic devices. Large-area,
residue-free graphene film can be used as a transparent conducting electrode in flexible
devices such as organic photovoltaic cells (OPVs), organic light-emitting diodes (OLEDs),
and photodetectors (PDs). Ideal optoelectronic electrodes have high optical transparency,
low sheet resistance, and the necessary work function. Fabrication costs must be considered
for a profitable commercial release. Moreover, ITO has several drawbacks that prevent it
from being used in flexible devices. Flexible optoelectronics need transparent conducting
electrodes. Graphene’s electrical and mechanical properties make it a promising candidate
in comparison to ITO electrodes. Many researchers have attempted to use graphene
electrodes in OPVs and OLEDs [18,19]. In [18], monolayer graphene is used as a transparent
electrode to fabricate a semitransparent and flexible organic solar cell (OSC). The graphene
electrode showed good transmittance at 700 nm wavelength, and the device achieved
14.2% power conversion efficiency (PCE). The authors of [19] created a chemical vapor
deposition (CVD)-grown, graphene-based, transparent, multilayered graphene electrode
for fabricating efficient OSC. The tested OSC exceeded 92% optical transmittance with
16% PCE. Moreover, OLEDs rely heavily on transparent conducting electrodes (TCEs).
Constructing a stable, low-cost, flexible TCE for next-generation OLED-based displays
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is a major step forward in this field. Since graphene maintains its electrical properties
even when bent at a radius on the millimeter scale, it is a promising candidate for use
as a flexible TCE. Organic light-emitting diodes with TCEs made of graphene have been
the subject of a lot of research. Chen et al. [20] realized an efficient nanorod array-based
LED by utilizing a transparent graphene electrode. The authors of [21] also utilized CVD-
synthesized, multilayered graphene as a diode. The pristine graphene worked as a p-type
material, while the n-type material was tuned by nitrogen plasma treatment. Adetayo
et al. [22] presented a detailed review of the effectiveness of graphene as a potential
electrode for OLEDs. Printing graphene is also useful for making photodetectors with a
Graphene/Quantum Dot (Graphene/QD) heterostructure [23]. The low cost, variety, and
simple processing of printed graphene make it ideal for this application. Printable graphene
may be shaped into complex geometries, making it ideal for the large-scale integration of
electronic components.

However, the existing fabrication techniques require high processing temperatures
and costly mechanisms. Furthermore, the available electrodes are costly and rigid, limiting
their application in flexible electronics. This paper focuses on addressing these issues
by incorporating an inkjet printing technique for graphene electrode fabrication. Inkjet
printing can overcome challenges in traditional fabrication processes, producing new
functionalities and improving existing processes. However, some challenges exist in
producing high-quality ink using inkjet printing techniques. The nanoparticles in ink
should be adequately dispersed with the required viscosity to ensure uniform printing of
patterns. Moreover, the surface tension of the ink should be controlled to avoid nonuniform
film deposition. In this work, we have focused on achieving low surface tension (31
mN/m) and the desired viscosity (7.5 cP) of the ink by exfoliating graphene nanoparticles.
Hence, the graphene ink showed good precision and resolution. Then we optimized the
conductivity of the graphene electrode. This helped us in tuning the work function of the
electrode and its utilization as a p-type material for making a p–n junction photodiode.
Then the inkjet printing technique was utilized to deposit the active material MoS2 on an
ITO electrode to fabricate an ITO/MoS2/graphene device. These techniques can overcome
challenges in conventional device fabrication, such as water-based electron lithography, and
improve optoelectronic device performance. The developed electrode based on graphene
ink is low-cost and scalable for printed electronics and photonics applications. We have
fabricated a novel p–n junction device and achieved good rectification with a high ON/OFF
ratio.

2. Materials and Methods
2.1. Material Preparation

In this work, the ink formulation technique was chosen because it yields the most
desirable results for the exfoliation of graphene and other 2D materials. Initially, graphite
powder (purchased from Sigma Aldrich, St. Louis, MO, USA) in dimethylformamide
(DMF) was sonicated for 24 h at room temperature, as shown in Figure 1. Once the solution
was obtained, it was centrifuged to separate the thick flakes in the sediment from the
supernatant. Then a stable graphene dispersion was obtained by adding ethylcellulose
to the mixture. Then the DMF was removed from the solution (terpineol 2 mL + 0.2 mL
ethelo polymer) through a rotary evaporator equipped with vacuum distillation. At 80 ◦C,
DMF began to evaporate from the dispersion. Once the DMF was removed via boiling, the
residual graphene/terpineol dispersion was collected. The concentration of graphene in
the final terpineol dispersion was higher than in the first DMF dispersion. Then a sample
of the ink solution was diluted and analyzed for its optical absorbance to determine the
graphene content. Finally, the graphene ink was heated to 400 ◦C inside a nitrogen-filled
oven for one hour to achieve the standard viscosity for inkjet printing.
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Figure 1. Schematic diagram of graphene ink formulation and equipment.

2.2. Device Printing

To thoroughly clean glass substrates, ultrasonication was performed in acetone, 2-
propanol, and finally, deionized water. After being dried with a stream of nitrogen, the
substrates were treated for 30 s with oxygen plasma. A piezo inkjet cartridge was used by
employing a commercial piezoelectric Fujifilm Dimatix Material Printer (DMP-2800, Way
College Station, TX, USA), to print the interdigitated electrodes on a glass substrate. We
employed graphene inks, both developed in-house and black inks available in the market.
The annealing procedure entails nothing more complicated than placing the components
on a baking sheet and placing it in a preheated oven at 400 ◦C for 1 hr. As seen in the
Advanced Design System Software (version 2022), the interdigitated contact electrodes
were printed in a square array with varying spacing (150, 200, and 250 µm), as shown in
Figure 2. The length (L) and width (W) of the printed electrode was 3.72 mm and 0.57 mm,
respectively.
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For the photodiode fabrication, an ITO glass slide was used as purchased and fixed
on the printing platform. The ITO was used as a bottom electrode for the IT0/n-type
MoS2/graphene device, as shown in Figure 3. Then n-type MoS2 ink was purchased from
Graphene Laboratories Inc. (Graphene Supermarket, Ronkonkoma, NY, USA), and utilized
without any further modifications. The ink was injected onto the ITO substrate using the
same printer. The n-type MoS2 ink was used as an active layer for the detection of the
input light. Thermal annealing of inkjet-printed MoS2 was performed at 300 ◦C to prevent
oxidation of the printed material. Then graphene ink was deposited as a top electrode
using the same printing steps.
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Figure 3. Structure of photoconductive diode.

2.3. Characterization

SEM (FEI Nova Nano SEM 230, Hillsboro, OR, USA) and TEM were used to examine
the sample’s surface and morphology to draw conclusions about the electrodes’ structure
and interface. The Titan transmission TEM (FEI Titan 80–300 kV, Hillsboro, OR, USA)
operating at 300 keV was utilized to capture the TEM image. The X-ray diffraction spectra
were acquired using a Philips/ PANalytical X-Pert PRO diffractometer (Fountain Valley, CA,
USA), and the photoluminescent spectra were taken at a wavelength of 550 nm (PANalytical,
Fountain Valley, CA, USA). A semiconductor characterization system (Keithley, Model
SCS-4200, Cleveland, OH, USA) aided by a probe station was used to analyze the electrode
electrical parameters.

3. Results and Discussion
3.1. Graphene Ink Formalization

The mechanical and electrical characteristics of the conductive patterns are greatly
influenced by the ink solution’s composition. Graphene inks that are the result of this
process should be resistant to precipitation so that their performance remains consistent,
and their conductive patterns remain homogenous. Fillers, surfactants, and additives
should be selected for optimal processing compatibility while formulating graphene inks.
For current printing technology to function optimally, printable ink needs to have certain
fluidic qualities, such as optimal viscosity and surface tension. DMF was used to exfoliate
graphene from graphite flakes, and then terpineol was distilled in place of DMF due to the
considerable gap in their boiling points. Since terpineol has a much smaller volume than
DMF, graphene can be concentrated quite a bit if the two solvents are mixed.

Polymer stabilization has been the primary focus of our work to improve the ink’s for-
mulation. As a precaution against the graphene flakes sticking together during distillation,
a little amount of polymer (ethyl cellulose) was added to the recovered graphene/DMF
dispersion. A quick anneal (baking on a hot plate at 300–400 ◦C in the air for roughly
1 h) after printing efficiently removed the stabilizing polymers. We have developed
graphene/terpineol dispersions with a dilution of about 1 mg mL−1 that are polymer-
stabilized for a considerable duration. Ethanol was added to the dispersions just before
printing to adjust the viscosity and surface tension so that they work with inkjet printers.
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3.2. Graphene Ink Characterization

The surface tension of the developed ink was measured using a KRÜSS drop-shape
analyzer (DSA-1000) (KRÜSS, Hamburg, Germany). Surface tensions around 25 and
50 mN/m are indicated for use in printing processes, as they facilitate strong material
adhesion [24]. By using ethyl cellulose as stabilizing polymer, we were able to generate
a new graphene ink based on ethanol, a solvent that is safe for the environment, through
the process of solution-phase exfoliation of graphite. The produced graphene ink bonds
well to glass substrates and is very compatible with inkjet printing thanks to its low surface
tension (31 mN/m) at room temperature (Figure 4). The viscosity at room temperature was
measured by RheoSense m-VROC viscometer (San Ramon, CA, USA), and was found 7.5 cP
at different shear rates. Since the inkjet printer we utilized during the entire fabrication
process can only jet out ink or solution with a viscosity between 2 and 12 cP, the measured
viscosity is suitable for usage with the printer.
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3.3. Inkjet-Printed Electrodes

The fabricated interdigitated electrode is shown in Figure 2. Inkjet printing techniques
to create thin film printing are crucial to determining the best substrate for flexible device
development. The low optical reflectance of glass makes it a common material choice for
optoelectronic devices. Ethanol and deionized water are used to remove any contaminants
from the specified substrate. The clean glass is then placed on the printing platform of
the inkjet printer. One of the most crucial steps in making stable and uniform MLG ink
is finding the perfect balance for the ink’s viscosity. These viscosities and concentrations
have been tested and found to be suitable for use with an aerosol jet printer’s ultrasonic
atomizer. If the viscosity is too high (10 cP or higher), the printer will jam, and if it is too
low (5 cP or lower), no droplet will form. The concentration and dispersing agents also
have a significant impact on the ink’s viscosity. Therefore, it is crucial to strictly regulate
the ink production procedure since it has a major impact on the printability and quality of
the printed patterns. In this work, the graphene ink viscosity was set to 7.2 cp and then
injected on the substrate and annealed at 400 ◦C to fabricate multilayer graphene (MLG)
electrodes.

Figure 5 shows the XRD pattern of a 20-layer graphene sheet. The pattern exhibits a
characteristic peak at 2θ = 23.5◦. The broadness of this peak may be due to the varying
sizes of the graphene flakes and representing the disordered or highly amorphous nature
of the graphene sheets. Moreover, this peak matches with the (002) peak of the graphene
crystal structure that typically appears at 2θ = 26.5◦ and is available in the JCPDS Card No.
41-1487 [25]. Furthermore, the sharp peak at 2θ = 27.5◦ corresponds to the (100) peak and
indicates the presence of larger graphene flakes or well-ordered regions of the film. For Cu
Kα radiation XRD setup with a wavelength of 1.544 Å, the interplanar spacing d for the
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peaks at 2θ = 23.5◦ and 2θ = 27.5◦ are calculated by Braggs Law and found to be 0.336 nm
and 0.327 nm, respectively.
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Figure 5. XRD spectrum of graphene powder.

The SEM image in Figure 6 shows uniformly distributed protruding graphene flakes
with lateral dimensions. Low (Figure 6A) and intermediate (Figure 6B) magnification
observations reveal the lateral contact between the graphene layers and the glass substrate.
We can estimate the thickness of the graphene coating at ~500 nm. The SEM images
display the edge of the glass substrate on top of which the graphene flakes have been
deposited. Big particles are evident either on the graphene surface or on the lateral side.
Figure 6C shows the SEM image of pristine MoS2, and Figure 6D shows the SEM image
of the ITO/MoS2/graphene device. The TEM analysis shown in Figure 7 reveals the
presence of graphene flakes of different sizes. The structure also contains voids and particle
agglomeration in some areas.

3.4. Electrical Characterization of Electrodes

The electrical properties were measured by the standard four-probe method and are
shown in Figure 8. The MLG ink has low sheet resistance in comparison to dark ink
(available in the market). Figure 8b reveals that the sheet resistance decreases with the
increasing number of deposited MLG layers as shown by Equation (1), where ρ is the
resistivity of deposited ink, and t is the thickness of graphene layers. The maximum
conductivity was achieved by printing 14-layer passes of ink. Beyond that, the sheet
resistance increases and results in lower conductivities.

R =
ρL
A

and A = wt (1)
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It has been reported that graphene conductivity and flake quality both significantly de-
grade with prolonged sonication [27]. Although thin graphene flakes stack well, their high
contact count reduces their electrical conductivity and may even increase their resistance.
It is possible to reduce the number of interfaces between graphene flakes by using thicker
flakes; however, this does not guarantee good stacking, and the printed material will have
many voids. Flake thickness selection is a key factor in maximizing conductivity, which is
important since ink applications degrade when connection breakdown is high [28].

Moreover, this phenomenon can be explained with the help of percolation theory [29].
According to this theory, the conductivity (σ) of the composite depends on the concentration
of charges in random geometries, i.e., σ ∝ (ρ − ρc)

n, where n is the percolation exponent.
As seen in Figure 8b, the conductivity is very low for the initial five passes of graphene
layers and does not form a conducting network. However, after achieving the percolation
threshold (ρc) by increasing the layers of printed ink, conductivity is observed. In many
cases, this conductivity behavior is attributed to network thickness “t”, rather than the
concentration of charges available at site, and is represented as σ ∝ (t − tc)

n, where tC is
the critical thickness and depends upon the number of print passes [30]. The percolation
threshold is the loading at which an electrically conducting network forms for a uniformly
dispersed network. There is an abrupt increase in the composite’s conductivity when the
graphene particle loading exceeds ρc, i.e., five passes of printed graphene layers. It can
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be also seen that the conductivity deceases after 25 passes of graphene layers. This is
due to the disconnections and voids in the printed pattern after repeated annealing with
temperature, which resulted in low conductivity.

The printed graphene pattern’s conductivity is extremely important for optoelectronic
applications. It has been studied that graphene electrodes performed well in the realization
of photodiodes. Based on the above results, the MLG electrode efficiently harvests incident
light and exhibits charge recombination and separation characteristics, thereby resulting in
a cost-effective and improved electrode for photodiode applications. The device character-
istics can be further improved to cover entire range of visible spectrum by carefully adding
more graphene layers with a low-temperature inkjet printer technique.

3.5. Electrical Characterization of IT0/n-Type MoS2/Graphene Device

The I–V characterization of IT0/n-type MoS2/graphene device is evaluated at 500 W/cm2

under bias voltages of +3 V and −3 V. As reported in the literature, carbon-based materials
(graphene, in this case) usually act as p-type materials or create Schottky junctions with
semiconductor materials [31,32]. Moreover, the work function of graphene is also tunable
and reported to vary between 5.2 and 4.5 eV by the CVD approach, whereas the work
function of ITO is between 4.0 and 4.5 eV [33]. The result depicted in Figure 9a also reveals a
p–n junction formation at the intersection of the p-type graphene electrode and n-type MoS2
active layers. In contrast, the ITO electrode formed an ohmic contact. The device showed
the rectification characteristics of a standard p–n junction diode when +ve voltage was
applied to the p-type contact. This indicated good Van der Waals interaction between p-type
graphene and n-type MoS2 heterojunctions with good current-rectifying behavior. When
the energy of the excitation photon is greater than the bandgap of MoS2 or the graphene
layers, the electrons will be excited from the VB to the CB, resulting in the photocurrent. An
illustration of band energy levels of ITO/MoS2/graphene structure is shown in Figure 10.
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The ITO/MoS2/graphene structure is a heterojunction between semiconductors (ITO
and MoS2) and a semimetal (graphene). Eg1, Eg2, and Ef represent the band energy gap of
ITO, graphene, and Fermi energy levels, respectively. ITO generally has a relatively high
work function with a bandgap of around 3.6 eV, MoS2 has a bandgap of 1.8 eV, and graphene
is a zero-gap semiconductor with a Dirac point at the Fermi level. In the dark mode, the
Fermi energy of graphene is located at Ef, while the Fermi energy of MoS2 and ITO lies
within the valence band. When light is incident on the heterostructure, it may excite trap
electrons from the valence band to the conduction band of MoS2, creating an electron flow.
These electrons can then pass through the potential barrier at the MoS2/graphene interface
and enter the semimetal (graphene) layer. As a result, the Fermi energy of graphene shifts
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upward toward the conduction band. The probability of electron–hole pair formation in
graphene increases as the density of states (DOS) of the semimetal at the Fermi energy
increases. This results in an increase in the photocurrent.
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It should be noted that for negative bias, the device shows higher resistance with
very low conductivity, thus confirming the behavior of the diode. Figure 9b depicts a high
ON–OFF ratio for incident light. The photocurrent under illumination rises quickly to 15
µA for +2 V and becomes negligible or zero for dark conditions. Moreover, the current at
−2 V under lighting is equal to the dark current, which depicts the reverse bias condition of
the standard P–N junction diode. Furthermore, a decay in the magnitude of photocurrent
has also been observed and attributed to traps. This is believed to be due to traps caused
by the interaction of the MoS2 flakes with the graphene electrode or the ITO substrate.
The slow decay in the photocurrent is due to trap refill and thermal detrapping of charge
carriers [34].

Figure 11 depicts the photocurrent behavior under different wavelengths and applied
bias voltages. There is no significant change in photocurrent response for negative bias
voltages. A decaying photocurrent response is observed for positive bias voltage apart
from two wavelengths, i.e., λ = 450 nm and λ = 575 nm. The dip or low photocurrent equal
to dark current can be seen at λ = 450 nm. Since MoS2 material is a strong light absorber at
this wavelength, the device’s response is attributed to this behavior.
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Moreover, the recombination of photoelectron–hole pairs is a severe problem associ-
ated with MoS2 semiconducting material [35]. The fast recombination of charge carriers
at this peak may result in exciton states and leave no free charge carriers for conduction.
Moreover, the rise in photocurrent at λ = 575 nm may be due to the release of charge carriers
from excitons after some time and possible traps in the device.

4. Conclusions

In summary, we developed a multilayered graphene electrode using a low-cost inkjet
printing technique. The sheet resistance and conductivity of electrode were measured for
various print passes of layers. It was found that the conductivity initially increased and
then decreased after 14 print passes of graphene layers. This effect was explained through
the percolation theory arising from possible graphene ink agglomeration, cracks, and voids
in the structure of the material. Then we fabricated an ITO/MoS2/graphene photodiode
that showed good rectifying action under visible light region. The photodiode also showed
a high ON/OFF ratio, and we expect that it can be used in high-speed optoelectronic
applications. The inkjets exhibit outstanding jetting performance and consistently produce
patterns at high resolutions of a few micrometers. Hence, the efficiency and quality of
production will be greatly enhanced by our inkjet printing technology for 2D materials
using a low-cost, scalable device. Therefore, it holds great potential for the development of
organic and printed electronics.
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