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Abstract: This study examines the tribological and corrosion properties of Stellite 20 alloy coatings
on F310H heat-resistant stainless steel that were prepared using HVOF and HVAF supersonic flame
spraying techniques. To investigate the coatings’ microstructure, phase, microhardness, wear, and
corrosion resistance, a range of characterization techniques, including SEM, EDS, XRD, microhardness,
and friction wear-testers, weas employed. The results indicate that both HVOF and HVAF-prepared
coatings exhibit a dense structure with porosity of 0.41% and 0.32%, respectively. The coatings
are composed of γ-Co solid solution, ε-Co solid solution, Cr-rich solid solution, Cr7C3, WC, and
CoCr2O4 phases. The microhardness of the Stellite 20 coatings prepared by HVOF and HVAF
methods was 610 HV0.3 and 690 HV0.3, respectively, which is three times higher than that of the
F310H stainless steel substrate. The wear mechanism of the HVAF coating is abrasive wear, while the
wear mechanism of the HVOF coating is mainly fatigue wear with slight abrasive wear. The HVAF
coating demonstrates superior wear resistance due to its higher flame velocity, denser coating, and
higher average microhardness. In contrast, the HVOF coating shows a higher friction coefficient
stability due to its lower hardness dispersion. The corrosion potentials of the HVOF and HVAF
coatings are −0.532 V and −0.376 V, respectively, with corresponding corrosion current densities of
1.692 × 10−7 A·cm−2 and 6.268 × 10−7 A·cm−2, respectively. Compared to the HVOF coating, the
Stellite 20 coating prepared using HVAF technology exhibits better wear and corrosion resistance.

Keywords: supersonic flame spraying; HVAF; HVOF; wear mechanism; corrosion resistance
mechanism

1. Introduction

With the increasing demands for environmental protection, waste incineration power
generation has become the mainstream waste treatment technology. The incineration of
garbage produces harmful and toxic gases at temperatures ranging from 800 to 1000 ◦C.
However, by using dust removal equipment to purify the gases, the resulting heat can
be recovered through a waste heat boiler to produce high-temperature and high-pressure
steam. This steam can then be used to generate electricity, achieving the reutilization of
waste resources [1]. The flue gas from the waste incineration furnace contains numerous
corrosive substances, such as sulfur dioxide, chlorides, and sulfates [2–4], as well as metal
dust and solid particles. Valves, as important gas flow control devices on the pipeline
of this equipment, are often subjected to erosion by high-temperature and high-pressure
gases. In order to improve the service life of the valves, surface hardening technology
has become a critical research topic in addressing the wear and corrosion resistance of
valve cores and valve seats under high-temperature and high-pressure conditions. These
components must resist the corrosive effects of substances such as sulfur dioxide, chlorides,
and sulfates in flue gas purification equipment. Additionally, the presence of metal dust
and solid particles can cause significant wear, leading to the failure of key components
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and, ultimately, the entire system. Therefore, studying heat-resistant coating materials and
thermal spraying technology is crucial for ensuring the long-term reliability and efficiency
of flue gas purification equipment in waste incineration power plants.

Stellite alloy is a commonly used cobalt-based superalloy, which is composed of a
brittle, hard phase and a tough bonding matrix phase [5]. Stellite cobalt-based alloys contain
20–30 wt.% Cr element, 4–18 wt.% W or Mo element, and 0.25–3 wt.% C element. The
carbide is deposited in the bonding phase as a hard phase, ensuring that Stellite alloys have
excellent wear resistance, hardness, and corrosion resistance at high temperatures. In addi-
tion, the martensitic phase transformation (γ→ ε) occurs during the coating preparation
process [6,7], which makes the lower stacking fault energy of the cobalt-based alloy. At
the same time, the residual γ phase hinders dislocation movement [6], further improving
the wear resistance of the coating. Therefore, Stellite alloy is widely used in metallurgy,
petroleum, chemical, aerospace, and other fields [8].

Common Stellite alloy hardening processes include plasma welding [9,10], laser
cladding [11,12], and thermal spraying technology [13–15]. Stellite alloy coatings pre-
pared by different hardening processes have different microstructures and wear resistance
properties [8,16]. Compared with the original alloy, the composition of Stellite alloy coat-
ings prepared by plasma welding or laser cladding process will change due to dilution
and dissolution of the matrix material, resulting in a decrease in the phase transformation
ability and wear resistance of the coating [17].

High-Velocity Oxygen Fuel Spraying (HVOF) technology is widely used for surface
hardening. Compared with other surface hardening processes, HVOF has the advantages
of extremely low heat input, high flame velocity, and relatively low temperature, making
it an important technology for preparing high-performance wear-resistant and corrosion-
resistant coatings [17,18]. Therefore, under a variety of complex industrial operating con-
ditions, such as surface processing of wear-resistant and corrosion-resistant conditions,
including pumps, valves, impellers, and bearings, HVOF technology is extensively used
and highly valued by the academic community.

However, the HVOF technology uses oxygen as the combustion-assisting gas, and
the metal powder particles are in a rich oxygen atmosphere during the spraying process,
which is prone to thermal decomposition of powder oxidation or carbides. High-Velocity
Air–Fuel Spraying (HVAF) technology is a new technology developed in recent years.
HVAF uses compressed air instead of expensive oxygen as the combustion-assisting gas
and adopts a gas cooling method. This not only greatly reduces costs but also controls the
spraying temperature within a lower range. It has been reported that the spraying flame
velocity and flame temperature of HVAF technology are 700–1200 m/s and 1800 ◦C, respec-
tively [19], while the spraying flame velocity and flame temperature of HVOF technology
are 500–800 m/s and 3000 ◦C, respectively [20]. Therefore, HVAF has a higher spraying
flame velocity and lower flame temperature than HVOF technology, which helps to form
metal coatings with high density, low oxide content, and high bonding strength [21,22].

At present, research on the performance of Stellite coatings, usually prepared by
plasma welding and laser cladding technology, encompasses a range of alloys, including
Stellite 6, Stellite 12, and Stellite 21 [13]. Stellite 20 alloy combines high hardness and
excellent corrosion resistance due to its high carbide content (usually exceeding 1% [23])
and W content exceeding 15%. Limited research has been conducted on the preparation
of Stellite 20 coatings using supersonic flame spraying technology. The Stellite 20 coating
prepared using HVOF and HVAF technology in this paper maintains its excellent wear
and corrosion resistance due to the low heat input during the preparation process. In this
paper, the microstructure, hardness distribution, wear resistance, and corrosion resistance
of Stellite 20 coating prepared by HVOF and HVAF technology on the surface of AISI
F310H heat-resistant stainless steel are systematically studied, aiming to provide a solution
and theoretical support for industrial applications under high temperature and corrosion
conditions in metallurgy, chemical, power industry, and other fields in the future.
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2. Materials and Methods
2.1. Coating Preparation

The substrate material utilized in this research was AISI F310H high-temperature
resistant stainless steel, which underwent solution treatment, resulting in an average of
195 HV0.3. The specimen size was Φ24.5 mm× 5 mm, and the surface roughness was Ra 0.4.
The chemical composition of the substrate is shown in Table 1, which was determined using
inductively coupled plasma optical emission spectrometry (ICP-OES) and a carbon sulfur
analyzer (CSA). The spraying powder used was Stellite 20 alloy powder obtained from
Kennametal Shanghai Company. The composition of the spraying powder is indicated in
Table 2.

Table 1. Chemical composition of F310H stainless steel (wt.%).

C Mn Si S P Ni Cr Fe

0.09 1.86 0.63 0.02 0.03 21.17 25.53 Bal.

Table 2. Chemical composition of Stellite20 alloy powder (wt.%).

C Cr Fe Mn Mo Ni P S Si W Co

2.43 32.47 1.47 0.1 0.09 1.61 0.01 0.014 0.63 17.31 Bal.

The high-temperature stainless steel substrate material, AISI F310H, was subjected
to a rigorous cleaning process prior to spraying. To remove any impurities, such as oxide
or oil residues that may remain on the surface of the sample, the F310H substrate was
repeatedly cleaned using acetone and absolute ethanol and dried with compressed air.
After cleaning, the substrate was sandblasted to ensure optimal surface roughness. The
substrate was coated with a layer of Stellite 20 alloy using both the PRAXAIR JP8000 K2
HVOF (Indianapolis, IN, USA) and Unique Coat M2 HVAF (Oilville, VA, USA) supersonic
flame spraying systems, respectively. The specific parameters used during the spraying
process are detailed in Table 3. The Schematic presentation of HVAF/HOVF spraying
technology is shown in Figure 1. Oxygen is used as a combustion-assisting gas to heat
micron-sized or nanometer-sized metal ceramic powder particles along the axial. The
melted or partially melted powder particles are accelerated and impacted on the substrate
surface, spreading and solidifying rapidly, and then layer by layer, forming a coating with
high bonding strength, good density, and excellent wear and corrosion resistance.

In order to obtain a smooth coating metallographic section, wire cutting was used to
extract samples at the cross-section of the coating. These samples were then subjected to
hot mounting, rough grinding, fine grinding, and polishing to achieve a surface roughness
of Ra < 0.1 µm.

Table 3. Process parameters of HVOF and HVAF.

HVOF
Oxygen flow

(L/min)
Kerosene flow

(L/h)
Nitrogen

flow (L/min)
Air flow

(m3/min)

Spraying
distance

(mm)

Powder
speed

(mm/s)

Powder
feeding
(g/min)

1820 21 20 10 370 720 110

HVAF
Air pressure

(MPa)
Propane pressure

(MPa)
Nitrogen

flow (L/min)
Air flow

(m3/min)

Spraying
distance

(mm)

Powder
speed

(mm/s)

Powder
feeding
(g/min)

0.54 0.49 60 20 230 800 110
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Figure 1. Schematic presentation of HVAF/HOVF spraying technology.

2.2. Performance Characterization

The Navo Nano SEM450 (FEI, Hillsboro, OR, USA) field emission scanning electron
microscope (SEM) was utilized to observe the powder morphology, surface, cross-section,
and coating morphology following friction and wear testing. The chemical composition of
the coating was analyzed by Quantax-200 EDS (Bruker, Billerica, MA, USA) spectrometry,
and the particle size distribution of the powder was determined using a laser particle
size analyzer (Microtrac S3500, Largo, FL, USA). The coating porosity was calculated
according to ASTM E-2109-01 standard [24] by measuring the area of voids in the coating
cross-section using Image J image processing software. Five measurements were taken in
different regions and averaged.

The microhardness of the coating was measured using the INNOVATEST FALCON
500 (Eindhoven, The Netherlands) Vickers hardness tester. ASTM E-384-89 [25] with
a loading load of 300 g and a loading time of 15 s were used to measure 15 points in
the field of view area of the coating cross-section, according to the normal distribution
curve. The hardness distribution characteristics of the coating were investigated using
Weibull distribution, and Equations (1) and (2) were employed to characterize the hardness
distribution characteristics of the coating [26].

ln{− ln[1− F(x)]} = β ln x + ln ϕ (1)

F(x) =
i− 0.5

n
(2)

A linear expression is obtained by fitting a regression line to the discrete data using
linear regression, which involves plotting ln x ~ ln{− ln[1− F(x)]} coordinate points and
determining the equation of the line that best fits the data:

y = kx + b (3)

where x is the hardness value and β and ln ϕ are the values of the parameters and are the
slope and y-intercept of the line on the axis, respectively. i is the index corresponding to
the hardness values sorted in ascending order, n is the number of experiments, and β is the
modulus of the Weibull distribution.

The Rigaku D/MAX 2500 PC (Tokyo, Japan) X-ray diffractometer (XRD) was used
to analyze the phase of the powder and coating by selecting Cu target Kα radiation with
a voltage of 40 kV, current of 300 mA, and a scan speed and step size of 6 (◦/min) and
0.02 (◦), respectively.

The friction and wear test of the coating was carried out according to ASTM G99-
05 [27] standard. Prior to testing, the sample surface was sequentially polished with 220,
500, 800, and 1200 grit SiC sandpaper and Al2O3 suspension to achieve a surface roughness
(Ra) below 0.1 µm. The MFT-5000 (Rtec Instruments, San Jose, CA, USA) multifunctional
friction and wear tester was used to test the friction and wear performance of the coating.
In this study, a 9.5 mm diameter WC ceramic ball was used as the friction pair, and the
load, frequency, stroke, test environment temperature, humidity, and test time were set to
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5 N, 2 Hz, 5 mm, 28 ◦C, 40%, and 10 min, respectively. Three samples were performed for
each coating.

Electrochemical measurements were conducted in a three-electrode cell using a plat-
inum counter electrode, the sample as the working electrode and a saturated calomel
reference electrode (SCE). The samples for the corrosion test were sealed with epoxy resin
around, leaving only an end surface (with a surface area of about 1 cm2) exposed for
testing. The potentiodynamic polarization curves were recorded at a sweep rate of 2 mV/s
in 3.5% NaCl solution open to air at room temperature. During the measurement of
the potentiodynamic polarization curve, three repeated experiments were conducted for
each coating.

3. Results and Discussion
3.1. Powder Morphology

The microstructure of the Stellite 20 alloy powder raw material prepared by gas
atomization is shown in Figure 2a. The high sphericity of the powder indicates good
flowability of the powder. Figure 2b shows that the particle size distribution of the powder
raw material conforms to the Gaussian curve, with dmean = 35 µm, d10 = 20 µm, and
d90 = 53 µm. The different particle size distributions of the powder can have a significant
impact on the various physical properties of thermal spray coatings [28,29]. Therefore, it is
important to select powder raw materials with appropriate particle size distributions when
using different thermal spray processes and process parameters [30]. To ensure reliable and
stable comparability of coating performance for comparative studies, this study used raw
powder materials with the same particle size distribution for coating preparation while
using the most suitable HVOF and HVAF thermal spray process parameters.
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Figure 2. (a) The morphology of Stellite 20 powder and (b) particle size distribution of the feed-
stock powder.

3.2. Surface Morphology

The surface morphology of Stellite 20 coatings prepared by HVAF and HVOF is shown
in Figure 3. The surface morphology of HVAF coatings, as shown in Figure 3a,c, exhibits a
large number of fragmented particles and partially melted zones, as well as a small amount
of fully melted zones, with a high surface roughness. This behavior can be attributed
to the HVAF flame temperature of approximately 1800 ◦C, which is slightly higher than
the melting point of the cobalt bonding phase in Stellite 20 alloy. Moreover, the HVAF
flame velocity is approximately 1.5 times higher than that of HVOF, causing the powder
to undergo strong plastic deformation upon impact on the substrate surface. This process
impedes the formation of molten or semi-molten droplets, and the powder is then stacked
layer by layer to form a coating.
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Figure 3. (a,c) are the morphology and high magnification picture of the as-sprayed Stellite 20 coating
prepared by HVAF; (b,d) are the morphology and high magnification SEM image of the as-sprayed
Stellite 20 coating prepared by HVOF.

On the other hand, Figure 3b,d illustrate that the HVOF coating exhibits a uniform
and relatively smooth surface structure, consisting of numerous partially melted and fully
melted regions, with only a small quantity of fragmented particles. In contrast to ceramic
spraying powders, such as WC and Cr7C3, which possess higher melting points, Stellite
20 alloy, primarily composed of cobalt metal powder, has a relatively low melting point
of approximately 1500 ◦C. As a result, in the HVOF spraying process, most of the metal
powder is heated above its melting temperature, as the flame temperature of HVOF is
approximately 3000 ◦C. The molten droplets hit the substrate surface at an extremely high
velocity, solidify and stack layer by layer, ultimately generating a dense and bonded coating.

3.3. Section Morphology

Figure 4 shows the SEM cross-sectional morphology of Stellite 20 coatings prepared by
HVAF and HVOF. The experimental results indicate that the thickness of Stellite 20 coatings
prepared by HVAF and HVOF is 0.25–0.30 mm. Additionally, the coatings exhibit a highly
compact structure with a typical thermal spray layer formation. This formation is due to
the flattening and spreading of high-velocity molten particles that collide with the substrate
and subsequently cool down. In Figure 4, numerous black contours can be observed at
the junction of completely molten particles. The EDS spectrum analysis of these contours
(Table 4) reveals the presence of O elements, indicating the occurrence of a minor oxide film
between the layered structures. This is because some of the molten metal powder particles
in the flame flow come into contact with the surrounding air and undergo oxidation,
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forming a layer of oxide film enveloping the particle surface. However, the high velocity
of the particles in the flame flow limits the contact time with the air, resulting in minimal
oxidation and thin oxide film thickness.
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of Stellite 20 coating deposited by HVOF.

Table 4. EDS results of the corresponding areas of section morphology (at%).

Areas
Element

O Co Cr C Fe W Ni Mo Si Sr Ti

1 3.63 23.62 23.41 38.62 1.62 3.40 1.67 1.09 1.75 1.19 -
2 3.98 22.24 18.29 49.85 1.43 2.58 1.40 - - - 0.23

By observing the cross-sections of the HVAF coatings in Figure 4a,b, it is apparent that
there are interfacial boundaries and small pores, as well as a large number of unmelted
particles that are broken up and enclosed by the melted Co-based binder phase with a low
melting point. This phenomenon is a result of the HVAF process’s lower flame temperature
during spraying, which causes some metal powder particles to fail to melt completely
before impacting the substrate surface at high velocities.

In contrast, Figure 4c,d illustrate the cross-sectional morphology of HVOF coatings,
which have a dense structure and exhibit fewer unmelted particles in comparison to HVAF
coatings, with particles being more fully melted and flattened. This can be attributed to
the fact that in the HVOF process, most of the powder is deposited in the form of liquid
droplets on the substrate or bottom layer surface and solidifies into a coating. Additionally,
the particle flight speed is relatively low, resulting in less breakage and more uniform
distribution within the Co-based binder phase.
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Figure 4 demonstrates that the coating pores are primarily found at the interface of
fragmented particles, and some pores are distributed around the bonding phase due to
incomplete compensation for the solidification shrinkage of the fully melted bonding phase.
The “gray-scale method” was used to accurately assess the effect of HVAF and HVOF
spraying processes on the coating porosity of Stellite 20 coatings, resulting in average
values of 0.32% and 0.41%, respectively, indicating that both methods produce coatings
with high density.

Figure 5 exhibits the X-ray diffraction (XRD) spectra of Stellite 20 coatings prepared
by HVOF and HVAF, respectively, as well as the initial powder. The Stellite 20 coating is
primarily composed of face-centered cubic (fcc) cobalt-based solid solution (i.e., γ-Co solid
solution) and a small quantity of densely packed hexagonal (hcp) filling phase (i.e., ε-Co
solid solution) formed during spraying. Meanwhile, a Cr-rich solid solution was also
obviously observed. The presence of two distinguishable solid solutions in the coatings can
be ascribed to particles’ melting within the flame and to the extremely high cooling rates
subsequently experienced by the fully melted particles when impacting the cold substrate.
A low-intensity peak is observed in the XRD spectrum, which can be identified as M7C3
carbide (WC, Cr7C3). The presence of this carbide is in agreement with the Co-Cr-C phase
diagram, which predicts the equilibrium between M7C3 and γ-Co solid solution, i.e., the
theoretical composition of Co-28%Cr-1.1%C (wt.%) [31]. Only small amounts of M7C3
are visible in the powder and coating XRD spectra owing to the high cooling rate of the
powder during gas atomization and spraying, which reaches 105 ◦C/s [32], inhibiting
the precipitation of the M7C3 carbide second phase. During supersonic spraying, the Co
(hcp) content in the Stellite 20 coating marginally increases relative to the initial powder,
implying the occurrence of martensitic phase transformation (γ→ ε) during the coating
preparation process [7,8]. These outcomes suggest that the microstructure of the Stellite
20 coating is influenced by the spraying process, and its primary composition phase is
identical to that of the initial powder but with slight variations.
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Figure 5. XRD patterns of HVAF and HVOF sprayed coatings. Figure 5. XRD patterns of HVAF and HVOF sprayed coatings.

Through a comparison of the X-ray diffraction (XRD) patterns of the raw powders and
the HVOF/HVAF coatings, it was observed that all diffraction peaks in the HVOF/HVAF
coatings exhibited significant broadening [13,33]. Extant research indicates that this broad-
ening phenomenon arises from the micro-stresses engendered during the powder depo-
sition process [34] and the grain refinement that occurs during the high-speed cooling of
the melted powders. Furthermore, from the XRD patterns, a small quantity of CoCr2O4
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oxide was detected in the coatings, suggesting that the metal powders underwent slight
oxidation during the supersonic spraying process.

3.4. Microhardness and Weibull Distribution

Figure 6 displays the microhardness distribution of Stellite 20 coatings that were
prepared by HVAF and HVOF methods. The microhardness of the Stellite 20 coating was
found to be three times higher than that of the F310H substrate. The microhardness near the
interface between the coating and substrate increased slightly to about 350 HV0.3, indicating
that the powerful impact during powder deposition had a certain work-hardening effect
on the substrate. The microhardness of the HVAF coatings ranged from 600 to 800 HV0.3,
with an average value of 690 HV0.3, whereas that of the HVOF coatings ranged from
600 to 700 HV0.3, with an average value of 601 HV0.3. As noted in a previous study [35],
during supersonic spraying, Stellite powder particles underwent strong plastic deformation,
leading to the formation of a large number of twin crystals in the coating that increased
its microhardness. However, due to the high flame temperature of the HVOF technology
and the more complete melting of the powder, the hard phase broke and dissolved into
the binder matrix, thereby reducing the microhardness of the coating. Hence, the average
microhardness of the HVAF coatings was higher than that of the HVOF coatings.
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In order to address the issue of large dispersion in determined microhardness values,
which can be attributed to the non-uniformity of composition and microstructure of thermal
spray coatings, as well as errors in sample preparation and measurement, this study
employs the Weibull statistical method [25] to further characterize the relationship between
the microstructure and microhardness of supersonic sprayed coatings. The shape parameter
(β) in equation (1) reflects the dispersion of coating hardness distribution, with a larger
value indicating lower dispersion and higher stability of coating properties, and vice versa.

The Weibull distribution curves of microhardness for HVAF and HVOF coatings are
shown in Figure 7. Both coatings exhibit a single peak distribution feature under a 300 g
load, which means that there is only one peak point on the distribution curve, indicating
that the hardness of the coatings has a relatively concentrated range of values and follows
the assumption of Weibull distribution. This performance shows that the microhardness of
the coatings is relatively stable within a certain range. The β of Stellite 20 coating prepared
by HVAF is 9.27, with a wide distribution range of microhardness values and a large range
of extreme values, indicating relatively lower mechanical stability of the coating. In contrast,
the β of HVOF coating is 13.96, with a narrow distribution range of microhardness values
and a small range of extreme values, indicating a more stable mechanical performance of
the coating. This can be attributed to the higher flame temperature of the HVOF process,
which enables sufficient melting of powder particles. Partially melted or unmelted particles
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are dissolved in the fully melted matrix or low melting point Co-based binder phase during
the spraying process, resulting in a more uniform microstructure distribution and higher
mechanical stability of the coating. In contrast, the lower flame temperature of the HVAF
process leads to a relatively higher number of partially melted or fractured particles, which
are randomly distributed in the fully melted matrix, resulting in the lower mechanical
stability of the coating.
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3.5. Wear Behavior
3.5.1. Friction Coefficient and Wear Volume

Figure 8 illustrates the friction coefficient curves of Stellite 20 coatings prepared by
HVAF and HVOF techniques under dry sliding conditions. As depicted in the figure, the
friction coefficients of the coatings display an initial running-in stage followed by a stable
period. During the running-in stage, the mating material shears the micro-convexities
present on the coating surface. Due to the loose structure of the micro-convexities, the
contact area between the mating material and the coating surface rapidly increases, leading
to a sharp surge in the friction coefficient of the coating. As the friction and wear test
progresses, the micro-convexities are worn down, and the coating surface becomes compar-
atively smoother. Nonetheless, the presence of hard phases and defects, such as pores, in
the coating results in fluctuations in the friction coefficient within a certain range during
the stable period.

The friction coefficient of the HVAF coating initially increases rapidly and then drops
sharply within the duration of 0–90 s. Afterward, the coefficient increases slowly and tends
to be stable with minor fluctuations, with an average friction coefficient of 0.4483. The
friction coefficient of the HVOF coating increases rapidly during the running-in period and
gradually decreases afterward, eventually tending to be stable with an average friction
coefficient of 0.3974. During the stable period, the friction coefficient of the HVOF coating
exhibits higher stability compared to the HVAF coating, which can be attributed to the
lower dispersion of hardness in the HVOF coating. This, in turn, enables the HVOF coating
to display exceptional stability.

The 3D morphology of the wear tracks and wear volume of Stellite 20 coatings pre-
pared by HVAF and HVOF are presented in Figure 9. The observed wear tracks of Stellite
20 coatings show typical groove shapes, which are attributed to the groove-shaped wear
generated by the tungsten carbide (WC) in the process of shear and cutting of the microsur-
face between the mating pair and the coating [18,19]. Furthermore, conspicuously raised
accumulations on both sides of the wear marks are observed, indicating that the alloy
material does not directly fracture during the friction process but is continuously extruded
along both sides, which reflects the good toughness of the alloy [25].
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Figure 8. Friction coefficient curve of Stellite 20 coating deposited by HVAF and HVOF. 
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(a) HVAF spray coating; (b) HVOF spray coating.

The average depth of the wear marks on the HVAF coating shown in Figure 9 is
0.199, which is lower than the average depth of wear marks on the HVOF coating (0.358).
Moreover, the cumulative wear volume of the HVAF coating is 25% lower than that of the
HVOF coating. As indicated by the results in Figures 4 and 5, this is due to the HVAF coating
undergoing a certain degree of grain refinement and containing more hard-phase particles
and fewer oxides, which enables it to better resist wear from the mating surface. Thus, the
HVAF coating exhibits better wear resistance, with smaller wear marks and volumes.
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It is worth noting that the width of the wear marks on the HVAF coating in Figure 9a is
wider than that of the HVOF coating. This could be attributed to the HVAF coating having
a relatively higher hardness, causing the WC counterpart to undergo more wear during the
sliding process than it does on the HVOF coating, resulting in a wider wear mark on the
HVAF coating.

3.5.2. Wear Mechanism

Figure 10 shows the wear morphology of Stellite 20 coatings prepared by HVAF and
HVOF under a 5 N load. The coatings exhibit evident plastic deformation zones on their
surfaces, with continuous and complete scratches. The surface of the HVAF coating, shown
in Figure 10a,b, is characterized by distinct furrows, indicating abrasive wear. Additionally,
pits are present on the surface of the coating due to the layered structure of supersonic flame
spraying coatings, formed by numerous deformed particles interlocking, overlapping, and
stacking. During the friction and wear process, the wear initially originates from the lower
hardness Co bonding phase. Under the action of normal loading force, WC is pressed into
the coating, causing hard particles to protrude from the surface of the coating. Subsequently,
as the hard particles move relative to the counter surface, a considerable tangential friction
force is generated, leading to the cutting of the micro-protrusion, plastic deformation, and
accumulation on both sides, forming furrows through multiple reciprocating frictions.
Further, as the plastic deformation continues to develop and accumulate to the coating’s
limit, the WC and Cr7C3 hard particles in the coating become loose and fall off, forming
pits. Consequently, abrasive wear is the primary wear mechanism for the HVAF coating.

To conduct a more detailed analysis of the changes in coating elements during the
friction and wear process, an energy-dispersive X-ray spectroscopy (EDS) analysis was
performed on the worn coating, and the results are summarized in Table 5. The wear
morphology and an enlarged image of the HVAF coating are presented in Figure 10a,b,
respectively. The EDS analysis revealed large amounts of O elements at points 1 and
2, indicating that the HVAF coating underwent oxidation during the friction and wear
process. This can be attributed to the high temperature generated by the contact between
the WC counterface and the tip of the coating during dry friction, leading to the oxidation
of the Cr and W elements in the coating [27]. Moreover, large amounts of C elements were
detected at point 3, suggesting that the high hardness of the coating resulted in the transfer
of material from the counterface to the coating surface during the friction and wear process.
Interestingly, no O elements were detected at point 4, but a high content of C elements was
present, indicating that this was likely the result of carbide (WC, Cr7C3) particles or debris
that had been worn away and re-filled into the pits by the friction and compression of the
friction pair.

Table 5. EDS results of the corresponding region of Stellite 20 coating wear morphology (at%).

Areas
Elements

Co Cr C O W Fe

1 9.02 9.01 31.99 44.62 2.11 0.75
2 8.37 7.60 29.23 45.64 7.99 0.55
3 17.40 16.93 51.33 6.73 2.69 0.80
4 18.89 20.85 48.63 - 3.53 2.16
5 21.60 24.85 38.56 3.65 3.82 1.79
6 26.62 12.20 - 53.45 1.75 1.25
7 38.97 32.72 - 14.24 4.44 2.52
8 40.24 32.36 - 17.35 4.62 2.40
9 26.62 12.20 - 53.45 1.5 1.25

10 45.14 38.96 - - 4.73 3.13
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Figure 10. The wear morphology of Stellite 20 coating: (a,b) the wear morphology of HVAF spraying
coating; (c,d) Wear morphology of HVOF sprayed coatings. The numbers in this figure correspond to
the ‘Areas’ in Table 5, indicating that EDS analysis was performed at these locations.

Combining the data presented in Figure 10c,d, and Table 5, it can be inferred that
the surface of the HVOF coating contains numerous cracks and Co/Cr oxide debris, as
well as traces of coating detachment at the edge of the wear mark. These observations
are attributed to the plastic deformation that occurs on the surface of the coating under
normal stress. The proliferation and movement of dislocations during plastic deformation
results in work hardening and embrittlement in the sub-surface layer, which eventually
leads to the origination and propagation of cracks at a certain depth below the coating
surface. The resulting thin plate-like wear debris exhibits typical fatigue wear morphology.
Additionally, shallow furrows are observed at the edge of the wear mark, indicating that
mild abrasive wear accompanies the occurrence of fatigue wear in the HVOF coating.

3.6. Corrosion Resistance

The polarization curves of F310H, HVAF, and HVOF coatings were measured in a 3.5%
NaCl solution at room temperature, as shown in Figure 11. The corresponding corrosion
potential (Ecorr), corrosion current density (Icorr), and polarization resistance (Rp) were
extracted and documented in Table 6. The results indicated that both HVAF and HVOF
coatings exhibit a pronounced passivation region, indicating the remarkable resistance
of the Stellite 20 coating to the harmful effects of corrosive media on the substrate. The
corrosion potential of the HVAF coating (−0.376 V) is substantially higher than that of the
HVOF coating (−0.532 V), with an increase of 0.156 V. The corrosion current density of the
HVAF coating is one order of magnitude lower than that of the HVOF coating, while the
polarization resistance is 2.39 times higher than that of the HVOF coating, affirming the
outstanding corrosion resistance performance of the HVAF coating.
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the F310H substrate in 3.5 wt.% NaCl solution. 

Figure 11. Potentiodynamic polarization curves of HVAF and HVOF coatings in comparison with
the F310H substrate in 3.5 wt.% NaCl solution.

Table 6. Parameter values of potentiodynamic polarization curves of HVAF and HVOF spray coatings
in 3.5 wt.% NaCl solution at room temperature.

Coating Ecorr/V Icorr/A·cm−2 βa/mV·dec−1 −βc/mV·dec−1 Rp/kΩ·cm2

F310H −0.210 4.220 × 10−6 77.00 35.90 2.520 × 103

HVAF −0.376 6.268 × 10−7 493.50 114.85 6.454 × 104

HVOF −0.532 1.692 × 10−6 216.07 205.63 2.704 × 104

Based on the cross-sectional morphology and XRD results of the HVAF and HVOF
coatings presented in Figures 4 and 5, the underlying reason for the discrepancy in corro-
sion resistance between the coatings can be elucidated. Firstly, it should be noted that the
HVOF coatings with oxygen as the combustion-supporting gas have a higher content of
CoCr2O4 metal oxide when compared to HVAF coatings. These metal oxides may impede
the development of a dense passive film on the surface of the Stellite 20 coating and may
even offer pathways for internal corrosion by electrolytes. Additionally, the HVAF coating
has lower porosity, which effectively blocks the diffusion channels of the electrolyte. Con-
sequently, the HVAF coating exhibits superior corrosion resistance performance compared
to the HVOF coating.

4. Conclusions

1. The HVOF and HVAF-prepared Stellite 20 coatings exhibit typical thermal spray
coating structures, with the HVOF coating composed of partially melted and fully
melted zones and a small number of fragmented particles, while the HVAF coating is
composed of fragmented particles and partially melted zones, with a small amount of
fully melted zones.

2. Both HVOF and HVAF-prepared coatings show grain refinement compared to the
powder raw materials and consist of γ-Co solid solution, ε-Co solid solution, Cr-rich
solid solution, Cr7C3, WC, and trace amounts of CoCr2O4.

3. The microhardness of the Stellite 20 coatings prepared by HVOF and HVAF processes
is three times higher than that of the F310H substrate. The HVOF coating exhibits a
relatively smooth surface and a porosity of 0.41%, and the HVAF coating exhibits a
relatively rough surface and a porosity of 0.32%. The HVOF coating has a smaller
hardness dispersion, indicating higher mechanical stability.
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4. The wear mechanisms of the coatings are different, with the HVAF coating exhibiting
abrasive wear, while the HVOF coating exhibits mainly fatigue wear with slight abra-
sive wear. The HVAF coating shows better wear resistance due to its higher hardness.

5. The HVAF coating exhibits lower corrosion current density, measuring 6.268× 10−7 Acm−2,
one order of magnitude lower than that of the HVOF coating. This is attributed to the
lower oxide content and porosity of the HVAF-prepared Stellite 20 coating, resulting
in better corrosion resistance compared to the HVOF coating.
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