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Abstract: In this study, the effect of electrochemical hydrogen charging on the corrosion behavior of
an as-cast Mg–8%Li alloy was investigated. It was revealed that after being cathodically hydrogen
charged in a 0.1 M NaCl solution at a constant current density of 50 mA/cm2 for 3 h, a product film
with an average thickness of 20 µm was formed in the α-Mg phase, whilst the average thickness of
the product film being formed in the β-Li phase was 6 µm. When the charging time was prolonged to
18 h, the thicknesses of the product films being formed on the α-Mg and β-Li phases were increased
to 75 and 20 µm, respectively. The results of the grazing incidence X-ray diffraction (GIXRD) testing
showed that the product films of the differently charged samples mainly consisted of Mg(OH)2, LiOH
and Li2CO3. The formed product films on the two matrix phases were dense and could hinder the
erosion of Cl− in a solution, and hence improved the corrosion resistance of the alloy. After being
hydrogen charged for 3 h, the charge-transfer resistance (Rct) value of the alloy was increased from
527 to 1219 Ω·cm2. However, when the hydrogen charging time was prolonged to 18 h, the Rct was
slightly reduced to 1039 Ω·cm2 due to the cracking of the surface product films and the interfacial
cracking of the film/substrate matrix.

Keywords: magnesium–lithium alloy; hydrogen charging; product film; corrosion behavior

1. Introduction

As one of the lightest metallic structural materials, magnesium–lithium (Mg–Li) al-
loys have the high potential for reducing the weight of equipment and saving energy in
industrial fields [1–5]. Generally, the mass fraction of Li determines the crystallographic
structures of Mg–Li alloys [6]. Figure 1 shows the binary phase diagram of Mg–Li alloys
calculated by Pandat software (CompuTherm LLC, Madison, WI, USA, version 8.0). It
reveals that when the addition of Li ranges from 5.7 to 10.3 wt. %, the matrix of the Mg–Li
alloys has a dual-phase structure with hexagonal close-packed (HCP) structured α-Mg
and body-centered cubic (BCC) structured β-Li phases. Since dual-phase Mg–Li alloys
usually have moderate mechanical strength, excellent ductility and good deformability,
their development prospects in the aerospace, weapon and automotive industries are
promising [7–11]. However, since the chemical activities of Mg and Li are high, the anodic
dissolution of Mg–Li alloys can easily occur in aqueous environments and simultaneously
cause hydrogen evolution [12–15]. It has been widely reported that hydrogen could influ-
ence the service properties of Mg alloys, such as the mechanical properties [16–28] and
corrosion resistance [17–19,29–33]. For dual-phase structured Mg–Li alloys, Wang et al. [33]
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reported that hydrogen charging could simultaneously deteriorate the tensile strength
and ductility of an as-cast Mg–8%Li (in wt. %) alloy. However, few relevant investiga-
tions about the influence of hydrogen on the corrosion performance of Mg–Li alloys could
hitherto be referenced. Song et al. [32] reported that for a Mg–2Zn alloy being hydrogen
charged at 10 mA for 2 h in a 0.1 M NaCl solution, the measured corrosion current density
(icorr) was decreased by 80%. The higher corrosion resistance of the hydrogen-charged
sample originated from the barrier effect of a compacter Mg(OH)2 film being formed on
the sample surface [32]. Similarly, Wang et al. [17] reported that for an as-cast Mg–7%Gd–
5%Y–1%Nd–0.5%Zr alloy being hydrogen charged at −27.8 mA/cm2 for 1 h in a 3.5 wt. %
NaCl solution, an obvious surface product film could be formed. However, since the
Mg5Gd phase had a higher corrosion potential than the α-Mg matrix, the driving force for
hydrogen evolution in the Mg5Gd phase was stronger than that in the α-Mg phase under
the same applied cathodic charging potential. This resulted in severe hydrogen-induced
damages in the Mg5Gd phases and then a deterioration of the protectiveness of the surface
product film [17]. Similarly, for the Mg–8%Li alloy being conducted hydrogen charging at
50 mA/cm2 for 3 h, obvious product films were also formed on the surface in the α-Mg and
β-Li phases [33]. However, since the corrosion potentials in the α-Mg and β-Li phases were
−1.75 VSCE and −2.38 VSCE [34], respectively, the driving force for hydrogen evolution
in the α-Mg phase was stronger under the same applied hydrogen charging potential
and the hydrogen-induced damage mainly presented in the α-Mg phase [33]. Li et al. [6]
reported that for a dual-phase structured Mg–7.5%Li alloy immersed in a NaCl solution,
the film formed in the β-Li phase had good protectiveness and could effectively prevent the
corrosion attack of Cl− anions. However, whether or not the product films that formed due
to hydrogen charging could provide a similar protective effect on the dual-phase structured
Mg–Li alloys requires further investigation.
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Figure 1. Binary phase diagram of Mg–Li alloys. 
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Figure 1. Binary phase diagram of Mg–Li alloys.

On the basis of the descriptions mentioned above, two questions can be proposed:
(1) How do the product films formed by hydrogen charging influence the corrosion resis-
tance of dual-phase structured Mg–Li alloys? (2) Do the product films prevent the α-Mg
and β-Li phases from corrosion attack? In this study, these proposed questions are an-
swered through an investigation of the corrosion behavior of an as-cast Mg–8%Li (in wt. %)
alloy being electrochemically hydrogen charged for different durations of time. Moreover,
the protection mechanism of the product film in the two matrix phases is discussed.
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2. Materials and Methods
2.1. Material Preparation and Homogenization Treatment

The investigated material was an as-cast Mg–8%Li alloy, which was smelt in a vacuum
resistance furnace under protective argon gas. After casting, the ingot with a dimension
of 300 mm × 250 mm × 40 mm was obtained. Then, the ingot was held at 400 ◦C for
2 h to homogenize the microstructure. Using an inductively coupled plasma–atomic
emission spectrum (ICP–AES) (Agilent, Beijing, China) apparatus, the determined chemical
composition of the alloy was 8.2 wt. % Li and Mg balance. Moreover, the density and
mechanical properties of the as-cast Mg–8%Li alloy were measured and listed in Table 1.

Table 1. Density and mechanical properties of the as-cast Mg–8%Li alloy.

Density (g/cm3)
Yield Tensile

Strength (MPa)
Ultimate Tensile
Strength (MPa)

Elongation Ratio to
Failure (%)

1.52 ± 0.04 65 ± 5 110 ± 5 38.5 ± 1.5

2.2. Microstructural Analysis

Samples with a dimension of 10 mm × 10 mm ×10 mm were sliced from the ingot.
The sample surface was mechanically ground to a 5000-grit SiC paper first and then
polished using diamond polishing paste to a 1.0 µm roughness. Thereafter, the polished
surface was cleaned with alcohol and dried in air. X-ray diffraction (XRD; D/Max 2400)
(Rigaku, Tokyo, Japan) was used for the phase analysis and scanning electron microscopy
(SEM; EmCrafts CUBE II) (EmCrafts, Hanam-si, South Korea) was adopted to observe
the microstructure.

2.3. Cathodic Hydrogen Charging Testing

Samples for cathodic hydrogen charging testing were connected to thin copper wires
with conductive adhesive and mounted with epoxy resin. One surface with an area of 1 cm2

was left exposed. Samples were polished to a 1.0 µm finish and then electrochemically
hydrogen charged in a 0.1 M NaCl solution for 3, 6 and 18 h at a constant cathodic current
density of 50 mA/cm2 (yielding an electrode potential of approximately −4.50 VSCE).
The applied current density was consistent with previous studies [21,33]. All hydrogen
charging tests were carried out using an electrochemical workstation (CorrTest CS350)
(CorrTest, Wuhan, China) with a classical three-electrode system in which the reference
electrode was the saturated calomel electrode (SCE) and the counter electrode was the
Pt electrode. To clearly observe the formed surface product films, surface and three-
dimensional (3D) morphologies of differently charged samples were observed using an
optical microscope (OM; Keyence VHX 2000) (Keyence, Osaka, Japan) and their cross
sections were observed using SEM. Moreover, a glancing incidence X-ray diffractometer
(GIXRD; D/Max 2400) (Rigaku, Tokyo, Japan) under a glancing angle of 0.5◦ was used
to analyze the compositions of product films. Compared with the X-ray photoelectron
spectroscopy (XPS) method, the GIXRD method could be more suitable for determining
whether the hydrates (such as LiOH·H2O) were contained in the product films [35].

2.4. Electrochemical Measurements

Electrochemical measurements for the differently charged samples were pursued
in 0.1 M NaCl solution and the electrochemical workstation (CorrTest CS350) (CorrTest,
Wuhan, China) with the same three-electrode system mentioned in Section 2.3 was used.
The potentiodynamic polarization tests were scanned from −250 mVSCE to 350 mVSCE
versus open-circuit potential (OCP) at a scanning rate of 0.1667 mV/s after being stabilized
for 600 s at OCP. After the potentiodynamic polarization tests, the obtained curves were
fitted using CorrView software (CorrTest, Wuhan, China, version 3.1c). Electrochemical
impedance spectroscopy (EIS) measurements were conducted at OCP after 600 s stabi-
lization with a sinusoidal potential destabilization of 5 mV and a frequency ranging from
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100 kHz to 0.01 Hz. The obtained EIS data were fitted using Zsimpwin 3.30d software
(Ametek, San Diego, CA, USA, version 3.30d).

2.5. Hydrogen Evolution and Immersion Testing

To observe the changes in hydrogen evolution volume for the sample being immersed
in the 0.1 M NaCl solution, the hydrogen-charged samples were mounted with epoxy
resin and only one surface with an area of 1 cm2 was left exposed. Then, the mounted
samples were immersed for up to 48 h at room temperature. During the testing, in order to
guarantee the stable pH of the experimental environment, the solution volume was about
200 times larger than the sample volume. Furthermore, the solution was renewed every
24 h and possessed a stable pH value of about 6.7 ± 0.2, measured from a digital pH meter
(INESA PHS-25) (INESA, Shanghai, China). To disclose the effect of hydrogen charging on
the corrosion mechanism of the alloy, the macro corrosion morphologies of the uncharged
and 3 h charged samples being immersed in 0.1 M NaCl solution for 0~48 h were observed
using OM. Moreover, highly magnified and 3D observations of the corrosion morphologies
in the uncharged and 3 h charged samples being immersed for 2, 4 and 8 h, respectively,
were observed in situ using OM.

3. Results
3.1. Microstructural Characterization

Figure 2 shows the initial microstructure of the Mg–8%Li alloy. The XRD pattern exhib-
ited that the alloy mainly consisted of α-Mg and β-Li phases (Figure 2a). The backscatter
electron (BSE) image showed that the alloy had a dual-phase structure (Figure 2b). Figure 3
exhibits the surface and 3D morphologies of differently charged samples. On the basis of
the 3D morphologies, it could be seen that the maximum surface height difference in the
uncharged sample was 0.99 µm (Figure 3b). For the 3 h charged sample, an obvious white
product film could be observed in the α-Mg phase and the surface in the β-Li phase was
uniformly covered with a layer of dark product film (Figure 3c). Moreover, the maximum
surface height difference was increased to 36.09 µm (Figure 3d). For the 6 h charged sample,
the damage to the α-Mg phase became much more severe and the maximum surface height
difference was increased to 54.78 µm (Figure 3e,f). After being charged for 18 h, the formed
product film almost covered the whole sample surface and the maximum surface height
difference increased to 100.60 µm (Figure 3g,h).
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Figure 3. Surface and 3D morphologies of different samples after being hydrogen charged for:
(a) 0 h, (c) 3 h, (e) 6 h and (g) 18 h. Images (b), (d), (f) and (h) are the corresponding 3D morphologies
of images (a), (c), (e) and (g), respectively.

The GIXRD patterns in the formed product films are shown in Figure 4. For the 3 h,
6 h and 18 h charged samples, the product films were mainly constituted of Mg(OH)2,
LiOH and Li2CO3. Figure 5 presents the cross-sectional morphologies of the charged
samples. It could be seen that for the 3 h charged sample, the average thickness of the
product film formed in the α-Mg phase was 20 µm, whilst that in the β-Li phase was about
6 µm (Figure 5a,b). Moreover, the product films in the two phases were relatively uniform
and only several microcracks could be seen in the product films (Figure 5b). The energy
dispersive spectrum (EDS) results demonstrated that the product film in the α-Mg phase
mainly contained Mg and O, whereas the main elements of the film in the β-Li phase
were Mg, O and C (Figure 5b). With the prolongation of the hydrogen charging time, the
thicknesses of the product films in the two phases were gradually increased (Figure 5c–f).
For the 6 h charged sample, the average thickness of the product film formed in the α-Mg
phase was about 40 µm and that in the β-Li phase was 10 µm (Figure 5c,d). Meanwhile,
the number of cracks present in the interior of the product films increased (Figure 5d).
Moreover, cracks could also be formed at the interfaces of the product film/substrate phases



Coatings 2023, 13, 800 6 of 16

(Figure 5d). In the 18 h charged sample, the average thickness values of the product films in
the α-Mg and β-Li phases were further increased to 75 and 20 µm, respectively (Figure 5e,f).
Furthermore, the number of cracks being presented in the interior of the product films and
at the interfaces of the product film/substrate phases was further increased (Figure 5f).
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3.2. Electrochemical Measurements

The potentiodynamic polarization curves for the differently charged samples are
exhibited in Figure 6. This figure showed that the anodic and cathodic branches of the
curves were not symmetric. Generally, for the Mg alloys, the cathodic branch corresponded
to the occurrence of hydrogen evolution, whereas the anodic branch was concerned with
the anodic dissolution of the α-Mg matrix [36]. Due to the occurrence of a negative
difference effect (NDE) and pitting during the potentiodynamic polarization tests, the
anodic branch was not suitable for fitting [13,14,36,37]. Therefore, the measured corrosion
parameters of the differently charged samples were fitted from the cathodic branches
using Tafel extrapolation. The fitting results are listed in Table 2. The results revealed
that the corrosion potentials (Ecorr) of the differently charged samples were basically the
same (about −1.60 VSCE) and the corrosion current density (icorr) values of the 0, 3, 6 and
18 h charged samples were 51.9, 17.1, 18.2 and 19.1 µA/cm2, respectively, indicating that
the corrosion resistance of the Mg–8%Li alloy could be promoted by hydrogen charging.
However, it should be noted that with the hydrogen charging time being prolonged from
3 to 18 h, the corrosion resistance of the alloy decreased slightly. Moreover, for the charged
samples, an obvious film breakdown potential at about −1.45 VSCE could be observed in
their anodic branches.
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Figure 6. Potentiodynamic polarization curves of differently charged samples measured in a 0.1 M
NaCl solution.

Table 2. Fitting results from the polarization curves of differently charged samples measured in a
0.1 M NaCl solution.

Hydrogen Charging Time (h) icorr (µA/cm2) Ecorr (VSCE)

0
3
6

18

51.9 ± 8.1
17.1 ± 0.1
18.2 ± 0.3
19.1 ± 0.7

−1.61 ± 0.01
−1.61 ± 0.01
−1.62 ± 0.01
−1.62 ± 0.01

The EIS plots of the different samples are shown in Figure 7. The spectrum of the
uncharged sample was composed of a high-frequency capacitive loop and a low- frequency
inductive loop (Figure 7a). Generally, the low-frequency inductive loop was correlated
with the occurrence of localized corrosion [16]. For the charged samples, the plots had a
single capacitive loop and the impedance gradually decreased with the increase in charging



Coatings 2023, 13, 800 8 of 16

time. Moreover, in order to fit the EIS plots, two kinds of equivalent circuits were employed
(Figure 7b,c) and the fitting results are listed in Table 3. The equivalent circuit in the
uncharged sample consisted of the solution resistance (Rs), charge-transfer resistance (Rct)
and the double-layer capacitance at the alloy matrix/electrolyte interface (Qdl) in the high-
frequency capacitance loop, and the inductive resistance (RL) and inductance (L) in the
low-frequency inductance loop [16]. For the charged samples, the equivalent circuit was
composed of the Rs, Rct and Qdl. Among them, the Qdl was used to replace the ideal
capacitor and account for the heterogeneity in the system [6,14]. Moreover, the Qdl could be
defined as Ydl and ndl, where ndl is the dispersion coefficient [6,14]. Generally, the Qdl was
regarded as a capacitor when the ndl value was 1 and could serve as the resistance when
the ndl value was 0 [6,13]. This finding revealed that when the hydrogen charging time
was prolonged from 0 to 3 h, the determined Rct values of the alloy increased from 527 to
1219 Ω·cm2. After being hydrogen charged for 6 and 18 h, the Rct values were slightly
decreased to 1147 and 1039 Ω·cm2, respectively.
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Figure 7. Nyquist plots and equivalent circuits of differently charged samples measured in a 0.1 M
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Table 3. The fitting EIS data of differently charged samples based on the equivalent circuits.

Hydrogen
Charging
Time (h)

Rs
(Ω cm2)

Ydl
(µF) ndl

Rct
(Ω cm2)

L
(H cm−2)

RL
(Ω cm2)

0
3
6

18

42 ± 1
43 ± 2
46 ± 3
46 ± 7

36.9 ± 3.6
24.3 ± 1.3
39.9 ± 1.5
31.8 ± 0.2

0.88 ± 0.01
0.90 ± 0.01
0.87 ± 0.01
0.88 ± 0.01

527 ± 22
1219 ± 40
1147 ± 83
1039 ± 62

3411 ± 854
-
-
-

256 ± 16
-
-
-
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3.3. Hydrogen Evolution

The hydrogen evolution curves of the differently charged samples immersed in a
0.1 M NaCl solution are presented in Figure 8. Following the gradients of the different
curves, the results of the hydrogen evolution rates in the 3, 6 and 18 h charged samples
were similar and were about 0.67 times lower than that of the uncharged sample. Since
the electrochemical corrosion rates of the Mg–Li alloys were always proportional to the
hydrogen evolution rates when immersed in the NaCl solution at OCP [13,14,17], this
proved that the charged samples had the higher corrosion resistance, which was broadly
consistent with the polarization and EIS data (Figures 6 and 7).
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3.4. Corrosion Morphology

The macro corroded surfaces of the uncharged and 3 h charged samples immersed
in the 0.1 M NaCl solution for different durations are exhibited in Figure 9. The results
showed that for the uncharged sample, the localized corrosion mainly occurred at the edges
of the sample when immersed for 2 h. The corroded area was significantly increased as
the immersion time was prolonged. After being immersed for 48 h, substantial corrosion
products almost covered the whole sample surface. In the 3 h charged sample, when the
immersion time was less than 24 h, no obvious localized corrosion could be observed
on the surface, demonstrating that the hydrogen-charged sample had a high corrosion
performance in the NaCl solution. After being immersed for 48 h, the localized corrosion
only occurred at the edges of the sample.
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Figures 10 and 11, respectively, present the in situ observations of the evolution of
the corroded regions on the surfaces of the uncharged and 3 h charged samples immersed
for 2, 4 and 8 h in the 0.1 M NaCl solution. For the uncharged sample, at the early stage
of corrosion, pits preferentially occurred at the α-Mg/β-Li interphases and in the α-Mg
phase. The maximum surface height difference was almost unchanged (Figure 10c,d). After
being immersed for 4 h, obvious localized corrosion propagated from the α-Mg phase to
the β-Li phase and the maximum surface height difference due to the formed corrosion
products was reached at 20.56 µm (Figure 10e,f). When the sample was immersed for 8 h,
the corrosion severity further intensified and the maximum surface height difference of the
localized corrosion was 35.87 µm (Figure 10g,h).
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(h) are the corresponding 3D morphologies of images (a), (c), (e) and (g), respectively.
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Figure 11. Surface corrosion morphologies and 3D images of the 3 h charged sample after being
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(h) are the corresponding 3D morphologies of images (a), (c), (e) and (g), respectively.

In the 3 h charged sample, obvious product films were formed in the two matrix
phases and the maximum surface height difference was 43.41 µm (Figure 11a,b). With the
immersion time being prolonged from 2 to 8 h, no obvious localized corrosion occurred on
the sample surface and the maximum surface height difference was slightly increased from
46.35 to 47.65 µm (Figure 11c–h), indicating that the product films being formed in the two
matrix phases of the 3 h charged sample exhibited good corrosion protectiveness.

4. Discussion

In this study, the corrosion resistance of an Mg–8%Li alloy was effectively improved
after hydrogen charging (Figures 6–8). Previous work demonstrated that for hydrogen-



Coatings 2023, 13, 800 12 of 16

charged Mg alloys, the change of their corrosion behavior was related to the formation
of product films during the hydrogen charging process [17,29–32]. Therefore, in order to
disclose the mechanism for improving corrosion resistance in the charged Mg–8%Li alloy,
it was necessary to investigate the components and formation mechanisms of the formed
product films in two matrix phases. Based on the Pourbaix diagram of the Mg–H2O system,
when the applied potential was lower than −2.36 VSCE, the anodic dissolution of Mg could
not occur in a neutral solution at 25 ◦C and an atmosphere of 1 atm [38]. Similarly, on the
basis of the Pourbaix diagram of the Li–H2O system in a neutral solution at 25 ◦C and
an atmosphere of 1 atm, it was revealed that Li could not be corroded when the applied
potential was lower than −3.25 VSCE [39]. In the current investigation, since the applied
charging potential was −4.50 VSCE, the anodic dissolution in the α-Mg and β-Li phases
could not occur during the hydrogen charging process. Therefore, the formation of the
product films in the two matrix phases could be induced by hydrogen charging. Previous
research reported that Mg and Li could react with charged hydrogen to form MgH2 [38]
and LiH hydrides [40], which are expressed in Reaction (1) and Reaction (2), respectively:

Mg + 2H→MgH2 (1)

Li + H→ LiH (2)

However, MgH2 and LiH could be easily decomposed into Mg(OH)2 and LiOH and
generate H2 when exposed to water [38,41], as expressed in Reaction (3) and Reaction (4).
Moreover, LiOH could react with CO2 in the air to form Li2CO3 [42], as expressed in
Reaction (5):

MgH2 + 2H2O→Mg(OH)2 + 2H2 (3)

LiH + H2O→ LiOH + H2 (4)

2LiOH + CO2 → Li2CO3 + H2 (5)

Therefore, it could be inferred that for the charged Mg–8%Li alloy, the formed product
film in the α-Mg phase should mainly consist of Mg(OH)2 (Figure 5) originating from the
hydrolysis of the MgH2 hydrides. Moreover, the product film in the β-Li phase should
be composed of LiOH and Li2CO3, and the presence of Li2CO3 could be ascribed to the
transformation of LiOH during long-time exposure to the air after the hydrogen charging
processes. It was interesting to note that the thicknesses of the product films in the α-Mg
phase were much larger than those in the β-Li phase for the differently charged samples
(Figure 5). The main reason was that for the dual-phase structured Mg–Li alloys, the
corrosion potentials in the α-Mg and β-Li phases were −1.75 VSCE and −2.38 VSCE [34],
respectively, and the driving force for hydrogen evolution in the α-Mg phase was much
stronger than that in β-Li phase under the same applied hydrogen charging potential of
−4.50 VSCE. This could lead to the formation of more product films in the α-Mg phase
(Figure 5). It has been reported that when dual-phase Mg–Li alloys were immersed in a
NaCl solution, the main component of the product film formed in the α-Mg phase was
Mg(OH)2 [6,13,14]. However, the Cl− could react with the Mg(OH)2 film to form MgCl2,
resulting in the degraded protectiveness of the Mg(OH)2 film in the α-Mg phase [13,14].
For to this reason, Li et al. [6] reported that after being immersed in a 0.1 M NaCl solution
for 4 h, the Rct of the Mg–7.5Li alloy was reduced by 62% and pits mainly initiated in the
α-Mg phase. However, in the current work, the Rct of the Mg–8%Li alloy was increased
by 57% after being hydrogen charged for 3 h (Figure 7). Furthermore, the product film
in the α-Mg phase could effectively prevent the occurrence of localized corrosion after
being immersed in the 0.1 M NaCl solution for 8 h (Figure 11). Therefore, it could be
inferred that the Mg(OH)2 film being formed by electrochemical hydrogen charging had
a good corrosion performance in the NaCl solution. Wu et al. [43] reported that a dense
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Mg(OH)2 film, which could hinder the erosion of Cl−, could be prepared on the surface of
the AZ91D alloy using cathodic polarization. Thus, it could be conjectured that a Mg(OH)2
film being prepared using a similar cathodic polarization method should also have the
dense structure and the strong corrosion protectability. In addition to the product film in
the α-Mg phase, the product film being formed in the β-Li phase also had good corrosion
protectiveness (Figure 11). As mentioned previously, the product film in the β-Li phase
should be constituted by LiOH and Li2CO3. However, for dual-phase Mg–Li alloys, Mg
could exist in the β-Li phase as the solid solute [6]. Thus, it could be found that a small
amount of Mg(OH)2 could be formed in the β-Li phase during the hydrogen charging
process. Zhang et al. [44] reported that the mixture of LiOH/Mg(OH)2 could effectively
promote the corrosion resistance of a Li–Mg electrode. Similarly, it could be speculated
that the β-Li phase could also be protected by the LiOH/Mg(OH)2 film. Moreover, Xu
et al. [45] reported that a BCC structured Mg–10.95%Li–3.29%Al–0.59%Y–0.19%Zr alloy
could have superior corrosion resistance due to the formation of the protective Li2CO3 film
on the surface. Thus, it could be deduced that the Li2CO3 film in the β-Li phase should
also have similarly high corrosion protectability.

However, it should be noted that the corrosion resistance of the charged samples
gradually decreased with prolonged hydrogen charging time (Figures 6–8). The SEM
observations of the cross-sections of the charged samples revealed that when the hydrogen
charging time was prolonged, the number of cracks being presented in the interior of the
surface product films and at the interfaces of the product film/substrate phases would be
increased (Figure 5). In a previous study, Chen et al. [31] reported that during the hydrogen
charging process of an AZ91 Mg alloy, the charged hydrogen atoms could combine into the
H2 gas in the interior of the corrosion film and react with the alloy matrix to form hydride.
With the increase in hydrogen charging time, the hydrogen pressure induced by the H2
gas and expansion stress caused by the formation of the hydrides could lead to the rupture
of the corrosion film and degrade the corrosion resistance. Similarly, it can be speculated
that for the charged Mg–8%Li alloy, cracking of the product film in the α-Mg phase should
also be attributed to the formation of H2 gas and hydrides. Moreover, it has been reported
that the Pilling–Bedworth ratios (PBR) of the Mg(OH)2, LiOH and Li2CO3 films were all
larger than 1 [46], indicating that they had a larger volume than the Mg–Li matrix and
their formation could induce local stresses [47]. Thus, for the sample being charged for a
longer time, the gradually increased local stresses in the product films and at the product
film/substrate phases could further promote the formation of cracks and degrade the
corrosion protectability of the product films. In addition, previous studies demonstrated
that although the yield strength, ultimate tensile strength and the elongation ratio to failure
of the investigated Mg–8%Li alloy were gradually decreased with the increase in hydrogen
charging time, the elongation ratio to failure of the alloy could still be 12.4 % even after
being hydrogen charged at the cathodic current density of 50 mA/cm2 for 18 h. This
indicated that the Mg–8%Li alloy had a high resistance to hydrogen embrittlement [33].
Combined with the beneficial effect of hydrogen charging on the improvement of corrosion
performance, this demonstrated that the Mg–8%Li alloy could be used as a candidate
material in the hydrogen-containing service environment.

5. Conclusions

In this study, the effect of a product film formed by electrochemical hydrogen charg-
ing on the corrosion behavior of an as-cast Mg–8%Li alloy was investigated. The main
conclusions were as follows:

(1) After being hydrogen charged at 50 mA/cm2 for 3 h in a 0.1 M NaCl solution, an
obvious product film composed of Mg(OH)2, LiOH and Li2CO3 was formed in the two
matrix phases of the Mg–8%Li alloy. Moreover, the thickness values of the formed product
films in both of the phases increased with the prolongation of the hydrogen charging time.

(2) After being hydrogen-charged for 3 h, the formed product films in both of the
two matrix phases were dense and had a high corrosion resistance in the NaCl solution.
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Therefore, the matrix of the Mg–8%Li alloy underneath the product films could be protected.
However, when the hydrogen charging time was increased to 18 h, the protectiveness of the
product films was weakened because the number of cracks being presented in the interior
of the films and at the interfaces of the product film/substrate phases was increased.
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