
Citation: Xiao, Y.; Da, X.; Cao, H.;

Xiong, K.; Li, G.; Tang, M. Modeling

of Ionizing Radiation Effects for

Negative Capacitance Field-Effect

Transistors. Coatings 2023, 13, 798.

https://doi.org/10.3390/

coatings13040798

Academic Editor: Torsten Brezesinski

Received: 23 March 2023

Revised: 10 April 2023

Accepted: 15 April 2023

Published: 20 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

coatings

Communication

Modeling of Ionizing Radiation Effects for Negative Capacitance
Field-Effect Transistors
Yongguang Xiao 1,2,*, Xianghua Da 1,2, Haize Cao 1,2, Ke Xiong 1,2, Gang Li 1,2 and Minghua Tang 1,2

1 Key Laboratory of Key Film Materials, Application for Equipments (Hunan Province), School of Material
Sciences and Engineering, Xiangtan University, Xiangtan 411105, China

2 Hunan Provincial Key Laboratory of Thin Film Materials and Devices, School of Material Sciences
and Engineering, Xiangtan University, Xiangtan 411105, China

* Correspondence: ygxiao@xtu.edu.cn

Abstract: A theoretical model for simulating ionizing radiation effects on negative capacitance field-
effect transistors (NCFETs) with a metal–ferroelectric–insulator–semiconductor (MFIS) structure
was established. Based on the model, the effects of total ionizing dose (TID) and dose rate on the
surface potential, ferroelectric capacitance, voltage amplification factor, and transfer characteristics
of NCFETs were investigated. The simulation results demonstrated that, with the increase in total
dose, the curves of surface potential versus gate voltage and driving current versus gate voltage shift
left significantly, resulting in the point of voltage amplification shifting left. Meanwhile, with the
increase in dose rate, the amplitude of both the surface potential and driving current decreases slightly.
Meanwhile, the derived result indicated that relatively thin ferroelectric thickness can effectively
reduce the effect of TID. It is expected that this model can be helpful for analyzing the radiation
effects of NCFETs.
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1. Introduction

Since Salahuddin first introduced the concept of the negative capacitance field-effect
transistor (NCFET) in 2008 [1], the investigation into the electrical properties [2–5] of the
ferroelectric negative capacitance effect and its theoretical mechanism [6–8] has yielded
significant advancements in the field. Furthermore, these studies have facilitated experi-
mental research into NCFET and have contributed to its characterization as a device with
exceptional performance [9–13]. Previous reports have demonstrated NCFETs’ potential for
circuit testing [14,15], further cementing its position as a promising technology for future
electronic applications. Negative capacitance field-effect transistors (NCFETs) can break
the Boltzmann limit, effectively solving the contradiction between low power consumption
and high performance of transistors, and can significantly enhance the performance of
integrated circuits. However, microelectronic devices can be damaged by radiation from
high-energy particles or rays in space, which can degrade the performance of the device
or even make it invalid. The total ionizing dose (TID) response as well as the dose rate
effect are important factors affecting the reliability of devices in the space environment. In
recent years, the effect of ionizing radiation on ferroelectric field-effect transistors (FeFETs)
has been a hot research topic. There are many theoretical models concerning the radiation
effect for FeFETs. For instance, a numerical model describing the leakage characteristics
of ferroelectric thin films under ionizing radiation has been developed by Sun et al. [16].
They modified the trap-controlled space charge-limited conduction mechanism by taking
into account the radiation-induced charge carrier and relative dielectric constant variations.
Chong et al. [17] have investigated the TID effect in oxide/source overlapped SOI (silicon-
on-insulator) TFETs (tunneling field-effect transistors). Ray et al. [18] studied the TID
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response of SOI-FinFET with linear gate work function modulation. Cui et al. [19] investi-
gated the TID effect of 22 nm bulk silicon nFinFETs with different bias conditions. However,
there are few research works on the radiation response of NCFETs at present [20,21]. In
this work, a theoretical model of ionizing radiation effects for NCFETs was proposed to
investigate the surface potential, ferroelectric capacitance, voltage gain, and drain current
by considering the radiation-induced trapped charges, the fixed charges generated in
the ferroelectric and insulating layers, and the interfacial charges generated between the
insulating layer and the silicon substrate caused by TID and dose rate effects.

2. Physical Model

First, the MFIS NCFET structure considered in this work is shown in Figure 1. For this
structure, the potential balance equation for classical MOSFETs can be written as [22]

Vg = Vf b + VF + ψox + ϕs, (1)

where Vfb is the flat-band voltage and VF and ψox are the potentials dropped across the
ferroelectric (FE) layer and the oxide layer, respectively. ψox = Q/Cox, where Q and Cox are
the charge density and the oxide capacitance per unit area, respectively. In order to obtain
VF, one needs to invoke the Landau–Devonshire theory, relating the electric field (E) and
the polarization (P), which is expressed as

E = 2αP + 4βP3 + 6γP5, (2)

where, α, β, and γ are the Landau coefficients [23]. According to the integrated derivation
of the Landau–Khalatnikov (LK) theory and Gibb’s free energy, from [24], one can obtain

VF = 2αd f eQ + 4βd f eQ3 + 5γd f eQ5, (3)

Coatings 2023, 13, x FOR PEER REVIEW 2 of 8 
 

 

Sun et al. [16]. They modified the trap-controlled space charge-limited conduction mech-
anism by taking into account the radiation-induced charge carrier and relative dielectric 
constant variations. Chong et al. [17] have investigated the TID effect in oxide/source over-
lapped SOI (silicon-on-insulator) TFETs (tunneling field-effect transistors). Ray et al. [18] 
studied the TID response of SOI-FinFET with linear gate work function modulation. Cui 
et al. [19] investigated the TID effect of 22 nm bulk silicon nFinFETs with different bias 
conditions. However, there are few research works on the radiation response of NCFETs 
at present [20,21]. In this work, a theoretical model of ionizing radiation effects for 
NCFETs was proposed to investigate the surface potential, ferroelectric capacitance, volt-
age gain, and drain current by considering the radiation-induced trapped charges, the 
fixed charges generated in the ferroelectric and insulating layers, and the interfacial 
charges generated between the insulating layer and the silicon substrate caused by TID 
and dose rate effects. 

2. Physical Model 
First, the MFIS NCFET structure considered in this work is shown in Figure 1. For 

this structure, the potential balance equation for classical MOSFETs can be written as [22] 

g fb F ox sV V V ψ ϕ= + + + , (1)

where Vfb is the flat-band voltage and VF and ψox are the potentials dropped across the 
ferroelectric (FE) layer and the oxide layer, respectively. ψox = Q/Cox, where Q and Cox are 
the charge density and the oxide capacitance per unit area, respectively. In order to obtain 
VF, one needs to invoke the Landau–Devonshire theory, relating the electric field (E) and 
the polarization (P), which is expressed as 

3 52 4 6E P P Pα β γ= + + , (2)

where, α, β, and γ are the Landau coefficients [23]. According to the integrated derivation 
of the Landau–Khalatnikov (LK) theory and Gibb’s free energy, from [24], one can obtain 

3 52 4 5F fe fe feV d Q d Q d Qα β γ= + + , (3)

The term of dfe stands for the ferroelectric thickness. According to Equation (3), Cfe can 
be expressed as [25] 

 
Figure 1. Schematic of an MFIS-NCFET structure. 

2 4/ 1/ (2 12 25 )fe F fe fe feC Q V d d Q d Qα β γ= ∂ ∂ = + + , (4)

The insulating layer in the device structure is SiO2, the ferroelectric material is stron-
tium bismuth tantalite (SrBi2Ta2O9, SBT), and the channel material is assumed to be silicon. 
We take SBT as the example of which of the exact coefficients are expressed as α = 2.03 × 

Insulator
Ferroelectric

Metal

G

DS

Figure 1. Schematic of an MFIS-NCFET structure.

The term of dfe stands for the ferroelectric thickness. According to Equation (3), Cfe can
be expressed as [25]

C f e = ∂Q/∂VF = 1/(2d f eα + 12d f eβQ2 + 25γd f eQ4), (4)

The insulating layer in the device structure is SiO2, the ferroelectric material is stron-
tium bismuth tantalite (SrBi2Ta2O9, SBT), and the channel material is assumed to be silicon.
We take SBT as the example of which of the exact coefficients are expressed as α = 2.03× 105

(T-620) m/F, β = 3.75 × 109 m5/(F·C4), and γ = 0. In the MOS (metal oxide semiconductor)
structure, considering the radiation conditions, Vfb can be expressed as [26]

Vf b = ϕms − q(∆N f e + ∆Nit + ∆Nox)/Cstack, (5)
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where ϕms is the work function difference between the gate and the substrate.
Cstack = (Cox

−1 + Cfe
−1)−1, Cox = εox/dox, where εox is the permittivity of the oxide layer and

dox is the oxide layer thickness. ∆Nfe is the number of radiation-induced trapped charges
in the FE layer. ∆Nit is the number of radiation-induced oxide–silicon interface trapped
charges. ∆Nox is the number of radiation-induced trapped charges in the insulator layer.
Under radiation conditions, excess electron–hole pairs generated per unit volume in the
silicon substrates are [27] ∆n = gsiDτr, where

τr = (−Nd +
√

Nd
2 + 4gsi NdτD)/(2gsiD), (6)

where Nd is the doping concentration, gsi is the carrier generation rate conversion factor
[carrier = (m3·rad)] in the silicon substrate, D is the incident dose rate (rad/s), τ is the
lifetime of minority carriers before radiation, and τr is the lifetime of minority carriers after
radiation. The one-dimensional continuity equation for uniform ionizing radiation-induced
charges for the valence band hole concentration in the ferroelectric and insulator layers can
be written as [28]

∆N f e = (1/d f e)

d f e∫
0

pt− f e · xdx, (7)

∆Nox = (1/dox)

dox∫
0

pt−ox · xdx, (8)

where pt−fe and pt−ox are the concentration of radiation-induced trapped holes in the FE
and oxide layer, respectively. The number of radiation-induced oxide–silicon interface
trapped charges can be written as [29]

∆Nit = (1/2)NitσitNDHσDH gsi fitd2
oxDt, (9)

where Nit is the interface trap, σit is the interface capture cross-section, NDH is the density
of hydrogen-containing defect cavity traps in the insulator layer, σDH is the cross section of
hydrogen-containing defect traps, and fit is the electron–hole separation probability at the
interface under irradiation.

According to Sze’s model, considering the irradiation conditions, the relationship
between Q and ϕs can be described as [30]

Q(ϕs) = −sign(ϕs)×
√

2εs
βLD[(

n2
i

(Nd+∆n)2

(
e−βϕs + βϕs − 1

)
+
(
eβϕs − βϕs − 1

))1/2
]

(10)

Here, LD is the Debye length, Nd stands for the majority carrier concentration, and
ni is the intrinsic carrier concentration. β is defined as β = q/(kT), with the Boltzmann
constant k, the electronic charge q, and temperature T. The current from source to drain for
MFIS-NCFET can be obtained by [31]

Id = qµ
W
L

∫ VDS

0

∫ ϕs

ϕB

n2
i e−β(ϕ−V)

(Nd + ∆n)ξ(ϕs, V)
dϕdV, (11)

Here, ϕB = (kT/q)ln((Nd + ∆n)/ni), and ξ(ϕs, V) can be expressed as

ξ(ϕs, V) =
√

2(Nd+∆n)kT
εs[(

eβϕ − βϕ− 1
)
+

n2
i

(Nd+∆n)2 eβV(e−βϕ + βϕe−βV − 1
)]1/2

.
(12)
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3. Results and Discussion

To investigate the effect of TID on the performance of the NC-MFIS-FETs, we firstly
plotted the curves of ϕs–Vg under different total doses (from 0 rad to 2 Mrad) in Figure 2a.
The ferroelectric thickness was assumed to be 35 nm [16] and the dose rate was kept
constant at 10 rad(Si)/s. From Figure 2a, one can see that, with the increase in the total
dose, the curves of ϕs–Vg show an apparent leftward shift, indicating that the point of
voltage amplification (G = ∂ϕs/∂Vg) shifts left, which is shown in Figure 2b. This is
undesirable in logic devices. In order to understand this phenomenon well, the relationship
between ferroelectric capacitance (Cfe) and gate voltage is also illustrated in Figure 2c.
From Figure 2c, it is found that the ferroelectric capacitance appears to have negative
values, resulting in the voltage amplification in Figure 2a. Interestingly, with the total
dose increasing from 0 rad to 2 Mrad, the point where the negative capacitance occurs
also moves to the left. This is the reason the point of voltage amplification shifts to the
left. Additionally, it can be seen from the transfer characteristics that the point for the
appearance of the steep subthreshold slope shifts left with the increase in total dose, which
is shown in Figure 2d. This is owing to the left shift of the point for the appearance of the
negative capacitance on the Cfe–Vg curve, which is shown in Figure 2c.
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Figure 2. (Color online) (a) Silicon surface potential versus gate voltage; (b) voltage gain versus gate
voltage; (c) ferroelectric capacitance versus gate voltage; (d) transfer characteristics with different
total doses.

In order to understand well the effect of ionizing radiation on the properties of NC-
MFIS-FETs, we also investigated the dose rate effect on the electrical characteristics of
NC-MFIS-FETs. In the simulating process, the total dose was assumed to be 500 krad.
Figure 3a–d present the silicon surface potential (ϕs), voltage gain (G = ∂ϕs/∂Vg), ferroelec-
tric capacitance (Cfe), and drain current (Ids) as a function of gate voltage (Vg), respectively.
As seen in Figure 3a, the ϕs–Vg curve shows a leftward shift with the increasing dose
rate, leading to a leftward shift in the boost transition point. The results indicated that
there is a decrease in the surface potential when the dose rate increases. It is due to the
ionizing particles that create trapped charges in the insulating layer of the device. The
trapped charges can be attributed to the presence of acceptor-like traps that possess energy
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levels located below the conduction band, thereby facilitating the capture of electrons. The
trapped charges in the insulating layer can reduce the effectiveness of the gate voltage in
controlling the drain current through the device. However, there is nearly no influence on
the capability of step-up conversion, which can be confirmed from Figure 3b. It should
be noted that, with the increase in dose rate, the value of negative capacitance shows
a slight increase trend, which is shown in Figure 3c. Even so, it has little effect on the
steep switching in the transfer characteristic curve, as shown in Figure 3d. It is worthy
paying attention to the fact that the driving current decreases with the increasing dose
rate; the result can also be understood from the doping effect, just like the result modeled
by Liu et al. [32]. They derived that the drain current decreases as the channel doping
concentration increases.
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For the purpose of further understanding the effect of ionizing radiation on the elec-
trical properties of NC-MFIS-FETs, the Cfe–Vg curves for various ferroelectric thicknesses
(range from 10 nm to 50 nm) are presented in Figure 4. The total dose and dose rate were
assumed to be 500 krad (Si) and 10 rad/s (Si), respectively. For comparison, the results of
Cfe–Vg before irradiation for different ferroelectric thicknesses were also illustrated. The
solid lines stand for the results before irradiation, while the dash lines denote the results
after irradiation. It is interesting that, for a fixed dfe, the positive capacitance will increase,
while the negative capacitance will decrease after irradiation. Additionally, after irradiation,
there is a leftward shift for the curve of Cfe–Vg, and the shift becomes more obvious as the
thickness of the ferroelectric film increases. This result indicated that the relatively thin
ferroelectric thin film is beneficial to reduce the effect of irradiation.
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4. Conclusions

In summary, we developed a total dose as well as a dose rate model for NC-MFIS-
FETs. Based on this model, the effects of irradiation on the surface potential, ferroelectric
capacitance, voltage gain, and transfer characteristics of NC-MFIS-FET were investigated.
The results show that the surface potential, ferroelectric capacitance, voltage gain, and
transfer characteristics show a negative drift with the increasing total dose, which is caused
by the fixed charge of the ferroelectric layer and the trapped charge of the insulating layer
owing to irradiation, while the amplitude of drain current decreases with the increasing
dose rate, which is owing to the decrease in the surface potential caused by the accumu-
lation of electrons generated by irradiation on the silicon surface. It is expected that this
result may help to elucidate the irradiation mechanism of NC-FETs and provide valuable
information for researchers and practitioners for designing and optimizing NCFET devices
for use in radiation-prone environments. This proposed model can be integrated into
circuit simulators to predict the radiation response of NCFET-based circuits, providing
valuable insights for developing radiation-hardened techniques for negative capacitance
field-effect transistors.
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