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Friction plays a crucial role in various engineering fields, including advanced manu-
facturing, transportation, aerospace, and bioengineering. It is a fundamental factor that
determines the efficiency, reliability, and lifespan of mechanical systems. Friction serves as a
primary damping source in dynamic environments, typically stabilizing vibrating systems
by consuming system energy. However, friction can also cause counterintuitive self-excited
vibration known as friction-induced vibration (FIV). FIV is a significant and challenging
vibration problem that exists in various fields. The manifestation of FIV can be flutter or
unfavorable noise in most cases [1]. Typical examples are automotive or aircraft brake
squeal [2], the unstable vibration of the drill string [3] or cutting machines [4], squeaking
human or artificial joints [5], and rattling robot joints [6].

Over the past few decades, scholars have dedicated their efforts to gaining a better
understanding of the mechanisms [7,8] and propensity of FIV [9]. It is accepted that the
mechanisms basically fall into four categories: (1) the negative gradient in the relations of
friction force and velocity (2); stick–slip instability [10,11], which is caused by the difference
between static and kinetic friction forces; (3) mode-coupling instability [12] or mode lock-
in instability caused by the geometric characteristics of the frictional structure; (4) and
sprag-slip instability [13]. Stick–slip mechanisms have a broader range of applications
compared with other mechanisms [11,14,15], which is demonstrated below. Investigating
the mechanisms underlying FIV remains a highly active and ongoing topic [16,17]. For
example, Fang et al. [17] pointed out that the high-frequency vibration of the frictional
system could be aroused by the partial separation between the slider and the moving
substrate even without mode-coupling instability.

The most well-known FIV issue is commonly referred to as brake squeal. In the
automotive industry, over 50% of the research conducted by friction material suppliers
is allocated towards understanding and addressing this challenging noise problem [18].
Research on brake noise has been underway for almost a century, preceding research in
other fields. Therefore, a significant amount of important research on self-excited vibrations
induced by friction has been carried out within the framework of investigating brake
noise [19]. The advancements in high-speed transportation have led to increasing concerns
regarding railway brakes [20] and wheel/rail noise [21], primarily due to the adverse effects
of noise pollution on both the environment and human health [22].

Previous studies have investigated various phenomenological sources that contribute
to FIV, including friction laws, geometry, operational conditions (the loading force and
the velocity), and surface topography [23,24], leading to different research branches. In
recent times, engineering advancements have led to a demand for the detailed modeling
of frictional systems. Factors such as uncertainty [25], new materials [26,27], nonlineari-
ties/nonsmoothness [28,29], computational accuracy [30], and efficiency [31] are all areas
of concern. Lacerra et al. [32] developed a novel stochastic friction model that incorporates
a perturbative term based on Coulomb friction. This modification enables the friction law
to replicate the FIV of two rough surfaces without taking into consideration the surface
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topography. In Ref. [33], the irregular vibration of a disc model was compared using
various friction laws, and it was discovered that the irregular friction formulation had
a more significant effect on the amplitude of instability rather than on the unstable be-
havior itself. Lazzari et al. [27] investigated the friction behavior and dynamic instability
of carbon/carbon composite materials, in which both mode-coupling instability and the
negative slope of friction laws were observed. Do et al. [34] proposed a novel strategy for an
instability analysis of FIV, which has been shown to maintain accuracy while significantly
reducing computational time. Stender et al. [35] proposed a purely data-driven approach
for detecting the occurrence of FIV and predicting the onset time of FIV.

Scholars have recently recognized that friction-induced vibration is not solely detri-
mental to engineering but could also have benefits. In contrast with other methods of
converting vibration energy into electrical energy, friction-induced vibration does not de-
pend on ambient vibration sources. New harvesting devices [15,36–39] that utilize FIV
based on various energy harvesting technologies, such as electromagnetic, electrostatic,
piezoelectric, and triboelectric, have been developed. Fu et al. [15] introduced a tribo-
electric energy harvester that utilizes a vibro-impact system, which effectively harvests
energy from low-frequency ambient vibrations by using the chatter- and stick–slip-induced
low-frequency vibrations in the vibro-impact system. Recently, the performance of the
harvesters has been improved by combining different technologies. Zhao and Ouyang [39]
developed a triboelectric energy harvester with grating-patterned films and magnetic
biostability, showing notable improvements in harvesting efficiency.

In addition, FIV in robot finger or arm joints is a significant concern for precise control
and positioning. Researchers [40] have utilized stick–slip transitions to drive the locomotion
of soft robotics, and the tactile sensing function of robots or mechanical arms relies on
vibration signals to identify and monitor object characteristics [41,42]. Investigations
into the tactile sensation of texture have been conducted on various surfaces, including
textiles [43], and textures with isotropic [42], periodic, or general topographies [44].

At the microscopic level, the emergence of atomic force microscopy and scanning
tunnelling microscopy has brought new advances to studying the origin of frictional
forces [45–47]. The Prandtl-Tomlinson (P-T) model is the most general model. Following
that, extension models based on the P-T model were proposed that can fit the frictional be-
havior of various materials and incorporate more environmental factors. [48]. Atomic-scale
stick–slip friction has been observed on a variety of materials, including metals such as
copper and gold [49], sodium chloride [50], and mica [51]. Socoliuc et al. [52] suggested that
ultra-low friction can be achieved when stick–slip diminishes. Various velocity-dependent
relationships of frictional forces, such as logarithmic velocity dependence, 2/3-order veloc-
ity dependence, or square velocity dependence, have been discovered [53,54]. However,
the mechanism of multi-atomic stick–slip vibration remains unclear [55,56].

In summary, the multidisciplinary and multiscale effects of friction present challenges
in the analysis of friction-induced vibrations. Integrating multidisciplinary technologies
can lead to a more comprehensive understanding of the characteristics of frictional forces,
providing benefits to multiple engineering fields.
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