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Abstract: We investigated the photochemical stability of PbX2 (X = I and Br) halides by optical
and X-ray photoelectron spectroscopy (XPS). The optical absorbance displayed a strong reduction
for PbI2 with light soaking and permanent behavior for PbBr2. The XPS survey spectra showed a
sharp drop in the I:Pb ratio for PbI2 from 1.63 to 1.14 with exposure time from 0 to 1000 h while for
PbBr2, it remains practically unchanged (1.59–1.55). The measurements of the XPS Pb 4f and Pb 5d
spectra have shown the partial photolysis of PbI2 with the release of metallic lead whereas PbBr2

demonstrated remarkable photochemical stability. According to the density functional theory (DFT),
calculations of the metal and iodide vacancy formation energies for PbBr2 are higher than for PbI2

which confirms the better stability to light soaking. The high photochemical stability of PbBr2 means
that it can be used as excess under MAPbBr3 perovskite synthesis to improve not only the power
conversion efficiency but also stability to light soaking.

Keywords: XPS; DFT; hybrid perovskite; stability; lead bromide

1. Introduction

Lead halide perovskites are considered the most promising materials for photo-
voltaics [1–3]. The power conversion efficiency (PCE) of perovskite solar cells has rapidly
increased from 3.8 to 25.6% [4–6] and has reached the level of silicon cells. On the other
hand, the low resistance of halide perovskites to light, temperature, and humidity hinders
their commercialization [7]. To solve this problem, numerous studies have been performed
over the last years to analyze the causes and mechanism of degradation of halide per-
ovskites. Based on these studies, the main efforts have been directed at improving the
surface morphology [8], grain size [9], halogen ratio [10], the composition of cations [11],
charge transport layers [12,13], and electrodes [14,15]. It is found that the introduction
of excess PbI2 into CH3NH3PbI3 (MAPbI3) precursors reduced the defect density and
increased the carrier lifetime and efficiency in a thin PbI2-rich perovskite film [16–18]. Time
resolved photoluminescence (TRPL) measurements have shown that excess PbI2 results in
a longer carrier lifetime in MAPbI3 [19,20]. Scanning electron microscopy (SEM) and (X-ray
diffraction) XRD measurements showed that the addition of a 10 mol % excess of PbI2 to
MAPbI3 did not lead to obvious changes in morphology and crystal structure but was ac-
companied by a significant increase in PCE [16]. However, subsequent studies have shown
that despite the benefits of increasing PCE, the implementation of excess PbI2 does not
improve the long-term photochemical stability of perovskites since simultaneously formed
PbI2 crystals easily decompose to metallic Pb and gaseous I2 through photolysis [21–24].
In this regard, the search for other additives that perform the same useful role as excess
PbI2 but without photolysis is relevant and in demand [25]. One of these additives can be
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PbBr2, which like PbI2 passivates the defects at grain boundaries and interfaces improving
the quality of perovskite films [26–28]. It was found in Ref. [29] that if MAPbI3 perovskite
films decomposed with the formation of PbI2 upon irradiation with visible light, then the
introduction of PbBr2 into a mixed halide solid solution caused more structural defects and
grain boundaries and an increased defect density ensured the photochemical stability of
these perovskite materials. In connection with this, we have undertaken a comparative
study of the photochemical degradation of PbI2 and PbBr2 with the help of X-ray photo-
electron spectroscopy (XPS) which has proven itself in the study of the resistance of halide
perovskites currents to light soaking [30].

2. Experimental and Calculation Details

The PbI2 precursor solution was prepared by adding 1.35 M PbI2 in 1 mL anhydrous
dimethyl sulfoxide (DMSO) (Sigma-Aldrich, Taufkirchen, Germany) and stirring at 60 ◦C
for 12 h after which 7.5 mg of 2-TC Am was added to the precursor solution and then
centrifuged at 4000× g rpm min for 30 s. The spin-coating films were annealed at 70 ◦C
on a hot plate for 5 min. The successful formation of PbI2 and PbBr2 films was examined
by X-ray diffraction study (XRD) (Billerica, MA, USA). Only peaks of lead halides were
detected (Figure 1), which indicates the high quality of the original films.
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Figure 1. XRD of films under study: PbI2—upper panel, PbBr2—lower panel. 

For photochemical aging, an LG sulfur plasma lamp (LG, Seoul, South Korea) was 

used as a light source which provides a good approximation to the AM1.5G solar 

Figure 1. XRD of films under study: PbI2—upper panel, PbBr2—lower panel.

For photochemical aging, an LG sulfur plasma lamp (LG, Seoul, Republic of Korea)
was used as a light source which provides a good approximation to the AM1.5G solar
spectrum. Wavelengths below 350 nm were cutoff using an additional UV filter. The light
power on the samples was ~70 mW/cm2 at a temperature of 45 ± 2 ◦C. The absorption
spectra were measured with an AvaSpec-2048-2 UV-VIS fiber spectrometer built into the
glove box.

XPS was used to measure core level and VB spectra with the assistance of a PHI
XPS 5000 VersaProbe spectrometer (ULVAC-Physical Electronics, Chanhassen, MN, USA)
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equipped with a spherical quartz monochromator and an energy analyzer working in the
range of binding energies from 0 to 1500 eV. The energy resolution was ∆E ≤ 0.5 eV.

The first principles calculations were carried out with the Vienna Ab initio Simu-
lation Package [31,32]. The generalized gradient approximation was chosen in the PBE
parametrization [33]. For an accurate calculation of the total energies and forces, the kinetic
energy cutoff for the plane waves was set to 500 eV. The total energy convergence was set
to 10−5 eV and atomic positions were relaxed with force convergence of 0.01 eV/Å per
atom. The Monhkorst–Pack k point mesh of 2 × 2 × 1 divided the reciprocal space.

3. Results and Discussion

The photochemical degradation of PbI2 and PbBr2 films was studied with the help of
optical spectroscopy. The obtained absorption spectra of PbI2 films irradiated for different
times are compared with the spectra of PbBr2 (Figure 2a,b). From the data obtained, it
follows that after 200 h of irradiation, a significant decrease in the optical absorption of
PbI2 is observed; this indicates the photochemical degradation of this halide. This causes
the film to decompose into Pb0 and iodine gas, thereby reducing the film thickness and
hence the absorption. On the other hand, the optical spectra of PbBr2 show no change until
1000 h of exposure to visible light.
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Figure 2. Optical absorbance of light-soaked PbI2 (a) and PbBr2 (b).

In Figure 3, the XPS survey spectra of PbI2 and PbBr2 halides irradiated with visible
light are presented. Table 1 shows the surface composition determined from these spectra.
As follows from these data, the I:Pb ratio drops sharply for PbI2 from 1.63 to 1.14 with
exposure time from 0 to 1000 h, while for PbBr2 it remains practically unchanged (1.59–1.55).
Such a reduction in the I:Pb ratio is usually associated with the photolysis of lead iodide
which is accompanied by decomposition into metal and gaseous iodine. For a more
complete analysis of the photolysis process, we measured the XPS Pb 4f and Pb 5d spectra
of the core levels of PbI2 and PbBr2 as a function of the irradiation dose with a high energy
resolution which is presented in Figure 3. For comparison, the spectra of metallic lead
taken from [34] are shown in this figure. Their analysis shows that the contribution of
metallic lead to the PbI2 halide consistently increases with exposure time, which indicates
an increase in the corresponding decay product and is in complete agreement with the
results of measurements of XPS survey spectra. On the other hand, as follows from Figure 4,
no traces of the appearance of metallic lead are observed when PbBr2 halide is irradiated for
1000 h which again coincides with the invariance of the I:Br ratio determined from the XPS
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survey spectra. Thus, the data obtained show a significant difference in the photochemical
stability of PbI2 and PbBr2 binary halides and make it possible to justify the choice of an
excess of PbBr2 in the synthesis of halide perovskites as having a much higher resistance
to photolysis.
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Table 1. Surface composition (in at.%).

Sample C O I Br Pb Na Ca I(Br):Pb

PbI2 as prepared 44.9 8.5 27.5 - 168 2.3 - 1.63

photo 200 h 53.4 11.0 20.3 - 15.3 - - 1.32

photo 500 h 56.3 15.4 12.6 - 10.8 4.9 - 1.16

photo 1000 h 50.0 19.2 9.7 - 8.5 8.4 4.2 1.14

PbBr2 as prepared 61.1 11.2 - 15.8 9.9 2.0 - 1.59

photo 1000 h 69.0 10.2 - 12.0 7.7 1.1 - 1.55

To demonstrate the relative stability of the PbBr2 with respect to PbI2, we calculated
the cohesive energy and defect formation energy of the PbBr2 monolayer. For this aim, the
monolayer with the 6 × 6 × 1 supercell and vacuum size of 23 Å was constructed for 1T
PbBr2 structure. The relaxed monolayer has a hexagonal honeycomb structure formed by
the Br edge-sharing octahedra with parameters that are in good agreement with the earlier
data of Ref. [35]. The Pb-Pb distance is 4.49 Å and a monolayer thickness is 3.33 Å, which
assumes an octahedron squeezing along the direction perpendicular to the slab. The Pb-Br
distance is 3.08 Å and Br-Pb-Br angles are 93.6 and 86.4 for the Bromium atoms in the same
and opposite Br surfaces, respectively.
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Figure 4. The comparison of high-energy resolved XPS Pb 4f7/2,5/2 (a) and Pb5d5/2,3/2 (b) spectra of
light-soaked halides and Pb-metal.

Figure 5 shows the relaxed crystal structures with the Pb and Br vacancies (left and
right panels, respectively). In the VPb structure (Pb vacancy), the most distant from the
vacant octahedron is almost unchanged: the Pb-Br distances deviate from ideal by the
order of mÅ and the angles are modified by less than half of a degree. This guarantees that
the supercell size was properly chosen to minimize the vacancy interaction. The Pb-VPb
distance is 4.36 Å and the thickness of the monolayer in this place, 3.29 Å, is about one
percent smaller than in the ideal case. The VPb-Br distance is 3.2 Å. Therefore, the lead
atoms near the vacancy move to each other trying to close the hole but the surrounding
Br6-octahedra are distorted in such a way that the Br-Br distance in the surface regular
triangle is 4.76 Å (this distance is 4.49 Å in the pristine structure). In the case of the VBr
structure, the most distant octahedron is also almost unchanged with respect to the pristine
structure. At the same time, the Pb-Pb distance for atoms close to the vacancy is 4.15 Å,
which is even smaller than the corresponding one in the VPb structure. The Br-Br distance
in the surface regular triangle is 4.43 Å, which is smaller not only with respect to the VPb
structure but with a pristine one also. So, in the case of the VBr structure, all atoms move
towards the empty space created by Br vacancy.

The cohesive energy and defect formation energies of the Pb- and Br- vacancies (VPb
and VBr) were calculated as described in Refs. [36,37]. These results are presented in Table 2.
We did not consider a charged defect since in the case of a charged slab, the total energy
grows linearly with the distance from the slab; hence, it cannot be used to evaluate relative
energies. The chemical potentials for the Br-rich and Pb-rich limits correspond to the Br2
molecule and Pb bulk solid, respectively. The Br-poor and Pb-poor limits can be obtained
from the formula for an equilibrium state for the compound under consideration,

µPbBr2 = µPb + µBr2, (1)

therefore, we take the values of the µBr from −3.04 eV to −1.5 eV and µPb from −6.66 eV
to −3.59 eV in the following discussions. One can clearly see that the all evaluated values
for the PbBr2 are larger than its corresponding PbI2 counterparts [38]. These findings
unambiguously indicate that PbBr2 has higher stability with respect to the single vacancy
formation of any type in comparison to the PbI2.
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Table 2. The cohesive and defect formation energies in charge neutral state for the PbBr2 compared
to PbI2 (from Wang et al. [38]). All values are in eV.

1T PbBr2 1T PbI2

Pristine VPb VBr Pristine VPb VI

Ecoh, eV 3.07 2.95 2.99 2.63 2.59 2.62

Edef, Br/I-rich 1.2 2.3 1.1 2.2

Edef, Br/I-poor 4.3 1.3 4 0.9
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Figure 5. Left: top and side views of the Pb vacancy. Right: top and side views of Br vacancy. Pb
and Br ions are shown by the grey and brown colours, respectively, a and b denotes crystal axys. The
VESTA program was used for visualization [39].

Thus, the conducted experimental and theoretical studies show a much higher pho-
tochemical stability of PbBr2 compared to PbI2 halide. This suggests that PbBr2 halide
can be preferable for use as an excess additive for the improvement of properties of
MAPbBr3 perovskite.

4. Conclusions

The results of this work unambiguously indicate a significant photochemical degrada-
tion of lead iodide compared to lead bromide. It has been shown by XPS that significant
degradation of PbI2 starts already at 200 h, while PbBr2 remains stable up to 1000 h of
light soaking. In accordance with the DFT calculations, the formation energies of lead
and halogen vacancies turn out to be higher in PbBr2 than in PbI2, which confirms our
experimental results. The obtained results indicate that the use of PbBr2 as an excess
additive in the development of stable hybrid organometallic perovskites is preferable.
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