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Abstract: We investigated the effects and interactions of the organic additives Polyquaternium-2 (PUB)
and 1-benzyl pyridinium-3-carboxylate (BPC) in alkaline non-cyanide zinc electroplating. As PUB
and BPC were added, the cathode potential of the polarization curve shifted in the negative direction
at the same current density that occurred in the electrochemical experiment, and as confirmed by a
scanning electron microscopy, the particles on the plating surface in the zinc deposits became finer,
and the grain size decreased. Moreover, strong (101) and (002) peaks appeared in the X-ray diffraction
pattern when no additive was added. However, as PUB and BPC were added, the intensity of the
two peaks decreased, and an increase in the intensity of the (100) peak changed to a crystallographic
orientation. With the addition of PUB and BPC, the gloss and whiteness gradually increased, and
the surface roughness decreased. Finally, the throwing power tended to increase as PUB and BPC
were added.

Keywords: zinc electroplating; organic additives; alkaline electrolytes; non-cyanide; Polyquaternium-
2; high corrosion resistance

1. Introduction

Steel is one of the preferred materials for constructing and manufacturing various
structures because of its strength, ductility, and low cost. However, it has a major disad-
vantage of corrosion when it is exposed to oxygen and moisture. To prevent corrosion,
structural steel must be coated with a less corrosive metal, paint, or enamel. Zinc provides
good protection for steel because of its relatively low corrosion rate [1].

The most common industrial methods for zinc coating of steel are hot-dip galvanizing
and electro-galvanizing. Hot-dipping always involves alloying on some surfaces by diffu-
sion. The deposition thickness is more evenly controlled by hot-dip galvanizing than by
electro-galvanizing. Electro-galvanizing is performed at a lower temperature than hot-dip
galvanizing. Galvanizing does not affect the mechanical properties of the steel substrate. It
can also produce a uniform, bright, and adherent coating on steel. Electro-galvanizing is
often preferred over hot-dip galvanizing when a decorative finish is required [1,2].

Cyanide-based galvanizing baths have dominated the electro-galvanizing industry for
decades because of their efficiency and ease of use. However, their use has declined over
time because of cyanide toxicity and the increasingly stringent environmental regulations.
Electro-galvanizing technology has shifted to using less toxic acid zinc and alkaline zincate
(non-cyanide) baths [1,3].

Alkaline non-cyanide galvanizing baths solve the toxicity problems of cyanide-based
galvanizing baths and the inherent corrosiveness of acidic baths to the equipment used
while exhibiting adequate galvanizing adhesion. However, because there is no effect of
the complexation of cyanide, unattached precipitates in powder form are generated in the
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alkaline non-cyanide galvanizing bath. Therefore, plating additives are required in alkaline
non-cyanide galvanizing baths to produce smooth and adherent zinc plating [1–5].

Numerous research advances have been made in the field of reaction kinetics of metal
plating processes, and previous studies have shown that organic additives can be used to
improve the brightness, smoothness, residual stress, particle size, and metallic impurities
in zinc electroplating. However, many aspects of the mechanism of action of additives used
as levelers (carriers) or brighteners remain poorly understood. In addition, because there
are numerous additives that are used in electrodeposition, it is not easy to classify them. In
general, the two main types of additives used in alkaline non-cyanide zinc electroplating
are levelers (carriers) and brighteners [6,7].

The main function of a leveler was defined by Thomas [8] as the ability of an elec-
troplating solution to produce deposits that are relatively thick on small recess areas and
relatively thin on small protrusions as the depth or height of the small surface irregularities
ultimately decreases. A distinction must be made between “geometric leveling”, which
is produced by a uniform current distribution, and “true leveling”, which can occur in
the presence of organic additives because of a higher current density on recess areas than
on protrusions of the plating layer surface [7,9]. Levelers are organic additives that are
commonly used to improve the throwing power, which provides a uniform coating and a
smooth electrodeposition surface. A leveler effectively suppresses the electrode reaction,
particularly by blocking the active site while being adsorbed onto the surface of the cathode.
Thus, the further reduction of zinc ions is limited. This inhibitory effect can contribute
significantly to forming finer particles. One of the commonly used levelers for alkaline zinc
electroplating is poly[bis(2-chloroethyl) ether-alt-1,3-bis[3-(dimethylamino)propyl]urea]
(Polyquaternium-2 or Rugaban P), which belongs to the family of polycationic polymers.
Zinc ions and brighteners can be consumed quickly during the plating process, but levelers,
which are high-molecular-weight compounds, are difficult to deplete [6].

Gloss is achieved by the ability of an electroplating solution to produce fine deposits
that are composed of crystallites with an oriented grain structure smaller than the wave-
length of visible light (i.e., smaller than 0.4 µm [10,11]). A small particle size is a necessary
but not sufficient condition for brightness. Likewise, not all fine precipitates are bright.
Brightness depends on the extent to which the morphological components of the elec-
trodeposited surface lie in the same plane [7]. Brighteners are essential in controlling the
brightness, smoothness, reflectance, and corrosion resistance of the precipitate surface.
Small amounts of brighteners, such as carbonyl compounds, quaternary ammonium com-
pounds (QACs), and aromatic or heterocyclic aldehyde compounds, are usually added
to the plating bath to modify the crystal growth and control the rate of deposition dur-
ing the electroplating process. Typical brighteners for modern alkaline non-cyanide zinc
electrolytes include the following quaternary ammonium compounds (QACs): 1-benzyl-3-
carboxypyridinium chloride (3NCP), 1-propyl-3-carboxypyridinium bromide (P3N), and
1-benzyl-4-carboxypyridinium chloride (B4N). The surface brightness obtained is related to
forming a dimer species of QACs that can effectively inhibit the growth of zinc dendrites.
Of the typical brighteners, 3NCP is an excellent brightening agent when combined with
1-benzyl pyridinium-3-carboxylate (BPC) or Na-N-benzyl nicotinate, which is a carboxylate
form of 3NCP [6].

Some additives, such as thiourea in Watts-type nickel electroplating baths, can simul-
taneously function as levelers and brighteners. However, levelers and brighteners are often
combined to achieve both tasks. The specific action of particular agents in a particular
plating bath is one of the most elusive properties. Slight changes in the structure of the
polish can ruin the polishing ability. Therefore, there is little opportunity to use the same
agent in different plating baths [7].

The composition of the plating bath is one of the most important factors controlling
the plating appearance, desired surface properties, and efficiency of the plating bath.
Therefore, tracking and replenishing the additive content in the plating bath is necessary to
maintain the plating bath conditions and the quality of the electrodeposition according to
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the conditions. Additive replenishment is usually conducted based on plating ampere-hour
calculations or Hull cell analysis, which qualitatively approximates the amount of additives
remaining in the plating bath. An inadequate supply of additives can hinder effective
plating. Conversely, an excess of additives, particularly brighteners, can produce brittle
and porous coatings, particularly in the low-current-density region, reducing the plating
thickness and delaying blistering. Therefore, the consumption rate of additives and the
corresponding replenishment schedule are significant for accurately controlling the plating
bath [6].

Numerous organic additives were used in alkaline non-cyanide zinc electroplating
baths; however, the effect of each organic additive on zinc electroplating has not yet been
properly studied. Therefore, in this study, we evaluated the changes in the organic additive
content in an alkaline non-cyanide zinc electroplating bath and the effects on the corre-
sponding microstructure and electrodeposition properties. An alkaline non-cyanide zinc
electroplating solution was prepared using Polyquaternium-2 (PUB) and BPC as a leveler
and brightener, respectively. Their individual and synergistic effects on electrochemical
analysis, surface morphology change, X-ray diffraction (XRD) pattern, grain size, gloss,
whiteness, surface roughness, and throwing power were all investigated to characterize
the contributions of the organic additives.

2. Materials and Methods
2.1. Materials

The electrolyte solution used in this study contained 9.6 g/L of zinc obtained by
dissolving 12 g/L of zinc oxide (ZnO, Extra Pure, Duksan, Ansan, Republic of Korea) and
130 g/L of NaOH (Extra Pure, Duksan, Ansan, Republic of Korea). The organic additives
were a polymer of N,N′-bis[3-(dimethylamino)propyl]urea and 1,1′-oxybis[2-chloroethane]
at a concentration of 20 vol.% (PUB(Polyquaternium-2), CAS No. 68555-36-2, Wuhan Bright
Chemical, Wuhan, China), and 1-benzylpyridinium-3-carboxylate (BPC, CAS No. 15990-43-
9, Wuhan Bright Chemical, Wuhan, China) at a concentration of 3 vol.%. All solutions were
prepared using deionized water. Table 1 shows the properties of organic additives used in
this study.

Table 1. Properties of the studied organic additives.

Additives Structural Formula Image CAS No. Molecular Formula

PUB
(Polyquaternium-2)
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2.2. Methods
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The electrochemical experiment used the three-electrode method. A platinum (Pt)
mesh electrode was used as a counter electrode, and a saturated calomel electrode (SCE)
was used as a reference electrode. An iron (Fe) cathode specimen (25 × 40 mm2) was
used as the working electrode, and 500 mL of the electrolyte solution was used each time.
Electrochemical polarization curves were obtained using potentiostat/galvanostat (HA-
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151B, Hokuto Denko, Atsugi, Japan). Figure 1 shows a schematic of the polarization process
used in this experiment.
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Figure 1. Schematic of the polarization process.

The plated zinc (Zn) precipitate from the electrochemical experiment was dissolved
using nitric acid. The Zn content was quantitatively analyzed via atomic absorption spec-
trometry (AAS, iCE 3000 Series, Thermo Fisher Scientific, Waltham, MA, USA). The current
efficiency for zinc plating was calculated by comparing the theoretical electrodeposited
amount and the deposited Zn amount. The partial current densities for Zn and hydrogen
(H2) were calculated by multiplying each current efficiency by the total current density. The
current efficiency for hydrogen evolution was calculated by subtracting the zinc plating
current efficiency from 100%.

2.2.2. Hull Cell Experiment

In the Hull cell experiment, a 500 mL-long Hull cell tank (LHC-4, Jungdo, Gimpo, Repub-
lic of Korea) was used together with a Zn anode for the Hull cell (63 × 64 × 3 (t)mm, Jungdo,
Gimpo, Republic of Korea). An Fe cathode for the long Hull cell (200 × 65 × 0.3 (t)mm,
Jungdo, Gimpo, Republic of Korea) was used as the cathode specimen.

The morphology of the Zn surface was investigated using a scanning electron micro-
scope (SEM, PW-100-017, Phenom World, Eindhoven, The Netherlands). X-ray diffraction
experiments were performed using 2θ scans between 20◦ and 90◦ with an X-ray diffrac-
tometer (Empyrean, Malvern Panalytical, Almelo, The Netherlands). The grain sizes of the
Zn deposits were obtained using the well-known Scherrer equation [12]. The crystallite
size L was calculated as follows:

L =
Kλ

βcosθ
(1)

where λ is the X-ray wavelength (nm), K is a shape factor that varies with the shape of the
crystallite from 0.62 to 2.08 but is usually taken as 0.9, β is the full width at half maximum
(FWHM), and θ is calculated using the diffraction angle.

The external gloss of the coating layer was measured using a glossmeter (4563(micro-
TRI-gloss/20◦ 60◦ 85◦), BYK Gardner, Wesel, Germany) that integrates 20◦, 60◦, and 85◦

measurements into one glossmeter to measure high, medium, and low gloss (measurement
range: 0 to 2000 GU). The whiteness of the appearance of the coating layer was measured
using a spectrophotometer (CM-2500d, Konica Minolta, Chiyoda, Japan). The surface
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roughness of the appearance of the plating layer was measured using a confocal laser
scanning microscope (LSM700, Carl Zeiss, Oberkochen, Germany).

2.2.3. Throwing Power Experiment

A 1000 mL Haring–Blum cell (HBC3, Jungdo, Gimpo, Republic of Korea) was used
with a Zn anode for the Hull cell. An Fe cathode for a Haring cell (65 × 80 × 0.3 (t)mm,
Jungdo, Gimpo, Republic of Korea) was used as a cathode specimen. The throwing power
experiment was conducted after fixing a cathode specimen at each end of the Haring cell
and one anode in the middle. The distance ratio from the anode to the cathode at both ends
was 5:1. The throwing power (TP (%)) was calculated using Field’s formula [13]:

TP(%) =
P−M

P−M− 2
× 100 (2)

where P is the current distribution ratio from the anode to both cathodes, which is the
reciprocal of the distance (b/a) and M is the metal precipitation ratio of both cathode
specimens (A/B). Figure 2 shows a schematic of the Haring cell used in this experiment.
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3. Results and Discussion
3.1. Electrochemical Experiment

In alkaline non-cyanide zinc electroplating, organic additives are essential for pro-
ducing a bright, uniform layer during zinc electrodeposition. In a previous study, the Zn
reduction reaction occurred in the order of Equations (3)–(6). Equation (4) is known as the
rate-determining step [14–17].

Zn(OH)2−
4 
 Zn(OH)−3 + OH− (3)

Zn(OH)−3 + e− → Zn(OH)−2 + OH− (4)

Zn(OH)−2 
 Zn(OH) + OH− (5)

Zn(OH) + e− → Zn + OH− (6)

PVA + Zn(OH)−3 + 1e− → [Zn(OH)2PVA]− + OH− (7)

[Zn(OH)2PVA]− → Zn(OH) + PVA + OH− (8)
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Zn(OH)2−
4 + 2e− → Zn + 4OH− (9)

In conventional zinc cyanide electroplating, the presence of cyanide ions not only
forms complexes with Zn but also controls the reaction rate. It acts as a complexing agent
and a refining agent to refine zinc metal particles [15]. However, in non-cyanide zinc
electroplating, organic additives must play this role instead of cyanide ions. A similar
mechanism was proposed for the role of the additive polyvinyl alcohol (PVA) [14,15]. This
additive is considered to form an adsorbed barrier that controls the rate of Equation (4),
which is represented by Equations (7) and (8). In the presence of PVA, the rate of Equation (7)
is lowered, and this is expected to result in finer particles and the formation of a bright
layer because of the slow rate of ions migrating to the electrodeposition site [14]. Other
organic additives are expected to act similarly.

Figure 3 shows the potentiodynamic polarization curves representing the zinc elec-
trodeposition behavior according to the plating conditions. Compared to the case of no
organic additives, as PUB was added, the cathode potential of the polarization curve shifted
in the negative direction because seemingly, the electron e generated in Equation (4) is
not immediately used for the reaction and it accumulates on the surface of the cathode,
shifting the potential in the negative direction. This suggests that PUB lowers the rate of
ion movement to the electrodeposited site, which is similar to the PVA effect in Equation (7).
When BPC, a brightener, was added to PUB, the cathodic potential of the polarization curve
shifted further in the negative direction. This suggests that the particles of the precipitate
became finer and that a bright plating layer was formed as a result of the BPC slowing
the ion movement. The shift in the negative direction of the cathode potential with the
addition of organic additives was only observed in the current density range of 50 to 1 ASD
(A/dm2). This mechanism does not seem to occur below 0.5 ASD.
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Figure 4 shows the partial polarization curves for zinc (Zn) and hydrogen (H2) accord-
ing to the plating conditions (note that, for example, the label “PUB 4 mL” denotes 4 mL
of the PUB additive, and the same notation is used for this and other additive amounts
hereinafter). The partial polarization curve of zinc was calculated by multiplying the total
current density with the current efficiency for zinc plating. The partial polarization curve
for hydrogen was obtained by subtracting the current density for the zinc deposition reac-
tion from the total current density. Overall, the polarization curve for hydrogen evolution
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was higher than that of zinc at high current densities. In the range of 2 to 0.5 ASD, the
polarization curve for zinc plating was higher than that for hydrogen generation, as the
current efficiency for zinc plating exceeded 50%.
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Figure 5 shows the current efficiency of zinc precipitates for zinc electroplating ac-
cording to the plating conditions. The current efficiency was the highest without additives
because zinc was deposited rapidly. As PUB was added, the rate of the precipitation reac-
tion decreased, resulting in a decrease in the current efficiency. When BPC was also added,
the current efficiency reduced further, and therefore, the rate of the precipitation reaction
reduced further. Overall, the current efficiency was low in the high current density range,
and the current efficiency increased as the current density decreased. The best current
efficiency was found to be in the range of 2 to 0.5 ASD. When the current density decreased
below 0.5 ASD, the current efficiency decreased, which is similar to the effect observed at
high current densities.



Coatings 2023, 13, 781 8 of 15

Coatings 2023, 13, x FOR PEER REVIEW 8 of 17 
 

 

the current efficiency reduced further, and therefore, the rate of the precipitation reaction 
reduced further. Overall, the current efficiency was low in the high current density range, 
and the current efficiency increased as the current density decreased. The best current 
efficiency was found to be in the range of 2 to 0.5 ASD. When the current density decreased 
below 0.5 ASD, the current efficiency decreased, which is similar to the effect observed at 
high current densities. 

 
Figure 5. Current efficiency of Zn electrodeposits with different additive combinations. 

3.2. Morphology of Zinc (Zn) Surface 
Figure 6 shows the SEM images of the structure of the Zn plating deposits according 

to the composition of additives or without additives at a current density of 4 ASD (A/dm2). 
An increase in the amount of organic additives increases the precipitation overpotential 
of zinc, which refines the crystal grains [18,19]. In addition, free active surface sites on the 
cathode are blocked, thereby improving electrodeposition. Therefore, the heterogeneous 
and rapid growth of zinc is restricted, and the nuclear density is correspondingly pro-
moted [6]. When plated without additives, the zinc exhibited round leaf shapes that were 
stacked on top of each other, resulting in a rough surface. The crystal grains were refined 
and changed to needle-like shapes as PUB was added. Therefore, a somewhat smooth 
surface was obtained when 8 mL of PUB was added. When PUB and BPC were both 
added, the needle-like shapes changed to slightly angular spheres, and a smoother surface 
was achieved. 

Figure 5. Current efficiency of Zn electrodeposits with different additive combinations.

3.2. Morphology of Zinc (Zn) Surface

Figure 6 shows the SEM images of the structure of the Zn plating deposits according
to the composition of additives or without additives at a current density of 4 ASD (A/dm2).
An increase in the amount of organic additives increases the precipitation overpotential
of zinc, which refines the crystal grains [18,19]. In addition, free active surface sites on
the cathode are blocked, thereby improving electrodeposition. Therefore, the heteroge-
neous and rapid growth of zinc is restricted, and the nuclear density is correspondingly
promoted [6]. When plated without additives, the zinc exhibited round leaf shapes that
were stacked on top of each other, resulting in a rough surface. The crystal grains were
refined and changed to needle-like shapes as PUB was added. Therefore, a somewhat
smooth surface was obtained when 8 mL of PUB was added. When PUB and BPC were
both added, the needle-like shapes changed to slightly angular spheres, and a smoother
surface was achieved.
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Figure 7 shows the SEM images of the zinc plating deposit structures according to the
additive composition and without additives at the current density of 2 ASD (A/dm2). In
the case of plating without additives, the structure was slightly larger than that at 4 ASD. As
the organic additive was added, the crystal grains were refined and changed to needle-like
shapes, similar to the case of 4 ASD, showing a smooth surface. When PUB and BPC were
both added, the needle-like shapes changed to slightly angular spherical shapes, similar to
those obtained at 4 ASD.
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3.3. XRD Patterns

Figure 8 shows XRD diffractograms of zinc deposits according to the composition of
added additives and without additives. In the absence of additives, the (002) plane, which
is the base plane, was preferentially oriented, and the peak of the (101) plane, which is a
high-angle pyramid plane tilted at an angle of 65◦ from the base material, was large [18].
Therefore, the (002) and (101) planes were preferentially oriented in the non-additive
case, in which the mass transfer of zinc was promoted. When an additive is added, the
preferential orientation changes to the (100) plane because it hinders the movement of zinc
and increases the precipitation overpotential. Such a change in the preferential orientation
is also related to the shape or size of the crystal grains. The (002) plane has large crystal
grains and a hexagonal plate shape. As the preferential orientation changes from the
pyramid (104), (103), (112), and (101) planes to the prism (110) and (100) planes, the crystal
grains become finer and rounder [18].

Figure 9 shows the grain sizes of the zinc deposits without additives and according to
the composition of added additives. In the absence of additives, the crystal grain size is the
largest, as shown in the SEM images in Figures 6 and 7. As the additives are added, the
rapid growth of zinc is restricted, and the precipitation overpotential is increased, resulting
in a finer grain size.
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3.4. Appearance of the Plating Layer Surface

Figure 10 shows the glossiness of the zinc plating layers without additives and accord-
ing to the composition of added additives. Glossiness refers to the degree of gloss on the
surface [20], and a change in the glossiness of a coated specimen occurs because of the fine
particles of the coating layer and their preferential orientation [21]. When plated without
additives, little gloss is observed because the zinc deposits are stacked non-directionally on
top of each other, resulting in a rough surface. As PUB is added, the crystal grains of the
zinc deposit are refined, the glossiness increases, and a smooth surface is obtained. As BPC,
a brightening agent, is added, the crystal grains become finer, and the shape changes from
a needle-shape to a spherical shape, which further increases the glossiness.
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Figure 11 shows the whiteness of the zinc plating layer without additives and accord-
ing to the composition of added additives. Whiteness is an index related to the color sense
of an object and is a value that measures the contrast of the surface color [20]. The L* value
is data measured for reflectance using a spectrophotometer, and represents the similar
brightness as human vision and is displayed as a value from 0 to 100. As with glossiness,
the lowest whiteness value was obtained when no additive existed. As PUB was added,
the whiteness value increased like the glossiness. As BPC, a brightening agent, was added,
the whiteness value increased further. The glossiness and whiteness of coated specimens
are affected by the preferential orientation of crystal planes and the size of fine particles
and crystal grains in the coating layer [18,21]. When the preferential orientation is changed
to the prism plane (100), the crystal grains become finer, and the glossiness and whiteness
increase as the shape becomes round.
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Figure 12 shows the surface roughness of the zinc plating layer without additives
and according to the composition of added additives. When plated without additives, the
surface roughness is high. When PUB is added, the surface roughness is greatly reduced.
The PUB leveler increases the nucleation rate rather than increasing the nucleus and refining
the crystal grains, reducing the surface roughness [18,22]. The result is the same as that for
the grain size shown in Figure 5. When BPC, a brightener, is added, the surface roughness
tends to decrease slightly.
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3.5. Throwing Power

Solutions with an ideal throwing power appear at a metal precipitation weight ratio
(M) = 1. The ratio increases rapidly in plating baths with a low throwing power [13].
The throwing power depends on plating parameters such as the zinc concentration, pH,
current density, temperature, and plating duration. Some studies have shown that additives
can improve the throwing power in non-cyanide zinc plating baths [1]. Figure 13 shows
the throwing power (TP (%)) and metal precipitation weight ratio (M) of both cathode
specimens according to the composition of the additives added and without additives at a
current density of 2 ASD (A/dm2). In the case of plating without additives, the throwing
power was low because the zinc plating precipitation weight of the cathode specimen near
the anode was approximately 4.4 times higher than the zinc plating precipitation weight
of the cathode specimen that was far from the anode. As the additives were added, the
zinc precipitation overpotential increased, and the rapid and non-uniform growth of zinc
was restricted. As a result, the zinc plating precipitation weight reduced. In other words,
the metal precipitation ratios (M) of both negative plates decreased as the zinc plating
precipitation weight of the cathode specimen near the anode reduced. Conversely, the
throwing power increased.

Figure 14 shows the throwing power and metal precipitation weight ratio of both
cathode specimens without additives and according to the composition of added additives
at a current density of 4 ASD. In the absence of additives, the throwing power is low
because the zinc plating precipitation weight of the cathode specimen near the anode is
approximately 2.8 times higher than the zinc plating precipitation weight of the cathode
specimen far from the anode. The metal precipitation ratio (M) decreased compared to that
at 2 ASD because the zinc plating precipitation weight of the cathode specimen farther from
the anode increased as the applied current increased. When PUB was added, the throwing
power increased as the metal precipitation weight ratio (M) decreased, which is similar
to that at 2 ASD. However, when BPC, a brightening agent, was added, the throwing
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power decreased, in contrast to the results at 2 ASD. When BPC was added, the amount of
zinc plating was reduced for both cathode specimens. However, the metal precipitation
weight ratio (M) increased, and the throwing power decreased because the galvanized
precipitation weight of the cathodic specimen farther from the anode decreased further.
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4. Conclusions

We investigated how organic additives to an alkaline non-cyanide zinc electroplating
bath affect the resulting microstructure and properties of the electrodeposits obtained. The
following conclusions were drawn from the results:
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In alkaline non-cyanide zinc electroplating, the speed of ions moving to the electrode-
position site is reduced to refine the particles and form a bright plating layer in the presence
of organic additives. As PUB and BPC were added, the cathode potential of the polarization
curve shifted in the negative direction. In addition, the current efficiency for zinc plating
gradually decreased at high current densities as PUB and BPC were added.

In the case of plating without additives, the surfaces of the zinc deposits exhibited
round leaf shapes and rough surfaces as they were stacked on top of each other. However,
as PUB was added, the crystal grains were refined and changed to a needle-like shape,
resulting in a relatively smooth surface shape. When PUB and BPC were combined, the
needle shape changed to a slightly angular spherical shape with a smoother surface.

In the XRD pattern obtained in the case of plating without additives, the (002) plane,
which is the basal plane, was preferentially oriented, and a strong peak of the (101) plane
appeared. However, with additives, the preferential orientation changed to the (100) plane
because the precipitation and voltage increased as the movement of zinc was hindered.
The crystal grain size was the largest without additives. As PUB and BPC were added, the
size of the crystal grains was refined.

The glossiness of the surface of the plating layer increased when PUB was added
and increased further when BPC was added. The whiteness also increased as PUB and
BPC were added. The surface roughness was high in the case of plating without additives.
When PUB was added, the surface roughness decreased to less than 0.5 µm. When BPC
was added, it decreased slightly further.

The throwing power increased the zinc precipitation overpotential as PUB and BPC
were added, limiting the zinc’s rapid and uneven growth. Therefore, the metal precipitation
weight ratio (M) decreased, and the zinc plating precipitation weight of the cathode speci-
men near the anode decreased significantly. Conversely, the throwing power increased. At
a current density of 2 ASD, the throwing power increased as PUB and BPC were added. At
4 ASD, the throwing power increased as PUB was added. However, the throwing power
decreased slightly when BPC was added.
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