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Abstract: In this study, a polyvinyl alcohol–sodium alginate blend, PVA:SA 3:1 (w:w), was doped
with different contents of TiO2 nanoparticles (NPs) prepared by aloe vera leaf extract to form the
investigated nanocomposites. The nonlinear parameters of third-order susceptibility (χ(3)) and
refractive index (n2) were detected by using UV-Vis spectroscopy and Z-scan techniques. Some
different optical parameters were also determined, including the refractive index (n), optical dielectric
parameters, volume and surface energy loss functions, and some others. The best solar skin protection
factor (SSPF) was investigated by 5 wt.% of TiO2 NPs doped in PVA:SA 3:1, which was about 84.6%
compared to the corresponding value of the host blend (41%). The studied nanocomposites were
examined for their utility in the optical limiting of CUT-OFF laser filters utilizing a continuous He-Ne
laser working at 632.2 nm. As a result, our finding demonstrated that TiO2 NPs doped in the host
blend of PVA:SA positively influences a laser light blocking for the investigated laser source. Using
the estimated gap energies values, different models were used to deduce theoretical values of the
linear refractive index (n). The presence of Ti peaks in the EDX spectrum confirmed the doping of
TiO2 NPs in the nanocomposites. SEM showed that the TiO2 NPs are homogeneously dispersed
through the host blend with some agglomerates. XRD spectra showed that the values of the lattice
strain εstr. detected at 2θ = 19.78◦ are 0.058, 0.055, and 0.060, corresponding to 1, 3, and 5 wt.% of
TiO2 NPs doped in the PVA:SA blend.

Keywords: Z-scan; optical properties; nonlinearity; nanocomposite; XRD; nanoparticles

1. Introduction

Many different optical applications, including optical computing, broadband optical
communications, refractive index modulation, integrated optics, and others, are based
on their fabrication on materials with large nonlinear refractive indexes and also large
third-order optical nonlinear susceptibilities. Therefore, numerous studies have focused
on the nonlinear optical (NLO) properties of a large number of materials, such as organic
and inorganic materials [1,2], polymers [3,4], nanomaterials [5,6], etc. Nonlinear optical
characteristics can be determined using transmission and absorption measurements [7].
Methods such as diffraction ring patterns, thermal lenses, and Z-scan open and closed
apertures are considered alternative methods for determining NLO [8]. Compared to
the other methods, Z-scan is better since it uses a low-incident intensity laser beam to
determine the nonlinear optical constants and provides valuable information on transient
process dynamics and response time [9].
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The innovative features of nanocomposite polymer materials that potentially open
up new optical application fields drew considerable interest in their development [10].
Some of the most common and straightforward techniques used to create a polymeric
composite material includes adding a suitable filler [11]. The type, concentration, and
effective cost of the incorporated filler in the host matrix can affect the degree of the chemical
composition alteration and the physicochemical properties of the produced nanocomposites
and, therefore, the appropriate application in the industrial world. Titanium dioxide (TiO2)
is considered an inorganic semiconducting NP, which has many advantages, such as being
a selective absorber of UV light, having high photostability, being low cost, and exhibiting
photocatalytic behavior in the anatase phase, which helps kill cancer cells. As a result, TiO2
NPs are proposed for many applications, such as the degradation of organic pollutants, as
well as air and water cleaning [12].

Polyvinyl alcohol (PVA) is a spectacular adhesive polymer that is transparent, water-
soluble, cheap, and simple to fabricate. When PVA was doped with titanium dioxide, it
demonstrated promising electrical and third-order nonlinear characteristics [13]. Addi-
tionally, 4N4MSP chalcone-doped PVA was shown to have significantly better nonlinear
absorption and refraction characteristics than pure PVA [14]. A film prepared from PVA
and an aqueous solution of potassium dichromate was produced an optical conductivity
with a value of 1010 s−1 and an n2 of 10−13 cm2W−1 [4]. Nanocomposites formed by doping
MnS/xZnS into the host blend of PVA/CMC displayed a change in the fluorescence inten-
sity and an enhancement in the nonlinear optical parameters, refractive index, conductivity,
dielectric function, and some other optical parameters [15].

Being biodegradable, stable, biocompatible, non-toxic, and inexpensive, and possess-
ing anti-inflammatory properties and pH sensitivity are some features of sodium alginate
(SA). Because of the hardness and fragility of SA, combining it with a flexible polyvinyl
alcohol (PVA) to make a patch was a good solution for this problem, as studied in a
published work [16]. Increasing the added amount of multi-walled carbon nanotubes in
a polyethylene oxide (PEO)/SA blend resulted in a decrease in the crystalline ratio ob-
served from the XRD spectrum and a decrease in the energy gap denoted by spectroscopic
techniques [17]. The formed nanocomposites of SA/TiO2 and SA/graphene oxide (GO)
achieved an increase in the absorbance of the host matrix (SA) by raising the nanofiller’s
content due to the interaction between SA and the doped nanofillers [18].

Some studies [19,20] have investigated the potential use of eco-friendly nanomaterials
and their nanocomposites in optoelectronics. In this work, the authors followed this trend
of research and prepared the nanocomposites based on green synthesized TiO2 NPs using
aloe vera leaf extract. The aloe vera leaf was chosen for the green preparation method of
TiO2 NPs because it is inexpensive and easy to be obtained. In addition, aloe vera leaf
was utilized as a reducing agent to create gold and silver nanoparticles, as reported in
some literature [21,22]. In this study, the aloe vera leaf extract was chosen as the reducing
agent for the green synthesis of TiO2 NPs from the precursor. According to our knowledge,
studying linear and nonlinear optical properties of the nanocomposites prepared by doping
green synthesized TiO2 NPs using aloe vera leaf extract into a PVA:SA blend has never
been explored, making the current work a novel study. This work presents the preparation
of nanocomposites of PVA:SA:TiO2 with different nanofiller contents (0, 1, 3, and 5 wt.%).
UV-Vis spectroscopy and Z-scan techniques were used to determine nonlinear optical
parameters, including n2 and the third-order susceptibility (χ(3)). Furthermore, different
important optical parameters were determined based on the absorption and transmission
spectrum to understand the additional effect of TiO2 NPs on the PVA:SA host blend. Some
different theoretical models were used to estimate the refractive index (n) based on the
deduced values of optical gap energies estimated by different models. The structure of the
prepared nanocomposites was examined by SEM measurement and XRD analysis. The
studied nanocomposites were examined for their utility in the optical limiting of CUT-OFF
laser filters utilizing a continuous He-Ne laser working at 632.2 nm.
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2. Experimental Technique
2.1. Materials and Preparation of the Samples

Polyvinyl alcohol (PVA) with Mw ≈ 115,000 g·mol−1 was purchased from LOBA
CHEMIE (Mumbai, India). Sodium alginate (SA) was purchased from Fisher Scientific
(Loughborough, UK). Both of these polymers were used with no purifications. TiO2 NPs
with an average size of 15.83 ± 0.902 nm were prepared in a previous work [23] using aloe
vera extract at a normal pH value.

The PVA:SA:TiO2 nanocomposite films were synthesized by a solvent casting method.
Firstly, the PVA solution was synthesized by dissolving PVA in distilled water and stirring
at 90 ◦C for 2 h until a clear solution was obtained. Next, the SA solution was prepared
by dissolving SA in distilled water and stirring at room temperature for 4 h. PVA and SA
(PVA:SA 3:1 w/w) were then mixed under constant stirring for 6 h until a homogenous
solution was obtained. Different proportions of TiO2 NP suspensions with contents of 0, 1, 3,
and 5 wt.% were added to the prepared PVA:SA solution after sonication for a few minutes.
The resulting suspension was stirred overnight. The final suspensions were ultra-sonicated
for 15 min. The obtained suspensions were cast in Petri dishes and dried. The resulting
films were reserved in a desiccator before further characterization. The preparation method
is represented in Scheme 1. The films of the nanocomposites have an average thickness of
0.15 ± 0.001 mm.
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Scheme 1. Preparation method of PVA:SA:TiO2 nanocomposites.

2.2. Absorption Measurements

A JASCO (V-550) UV-visible spectrophotometer (Tokyo, Japan) was used for the
absorption and transmission measurements.

2.3. X-ray Measurements

The measurements of the X-ray diffractometer (XRD, Panalytical X’Pert PRO diffrac-
tometer, Almelo, The Netherlands) were investigated in a scan range of 10◦–70◦. CuKα
radiation (Philips X’Pert Diffractometer) was used to investigate the samples.

2.4. SEM and EDX Measurements

Scanning electron microscopy (SEM) and EDX analysis were carried out using a ZEISS
EVO-15 (Oberkochen, Germany). For SEM measurements, the films were sputter-coated
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(Quorum: Q150RS plus) by a thin layer of gold. The sputtering process was carried out at
25 mA for 180 s.

2.5. Z-Scan Analysis

Z-scan technique was constructed with the assistance of a nanosecond pulsed laser
produced by a Nd:YAG laser (Continuum laser, PRII 8000, Electro-optics Inc., Wyandotte,
MI, USA) with an SHG crystal to generate 532 nm. The produced laser beam had a
repetition rate = 10 Hz and a laser influence = 111 mJ using the delay stage knob between
the laser device’s oscillator and amplifier. The sample position was tuned across the
focusing point using the delay moving X-Y-Z stage had 10 µm in each step to conduct the
Z-scan experiment investigation. The laser beam was concentrated in this investigation
using a convex lens (f = 100 mm). Two power meter detectors (LTS 150 M THORLABS,
Newton, NJ, USA). Additionally, a single-source He–Ne laser beam (632.8 nm) was used
to study the optical limiting inquiry on the manufactured samples. On the front of the
He–Ne laser source was mounted a focus lens of 7 cm. After that, the influence power of the
employed laser source was calculated using an optical measuring instrument (Scheme 2).
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3. Result and Discussion
3.1. SEM and EDX Analysis

To describe the dispersion of TiO2 NPs into the host blend, SEM was used as seen
in Figure 1. SEM images of the pure PVA:SA blend illustrated a close-net structure, as
observed in Figure 1a. The TiO2 NPs were homogeneously dispersed through the host
blend with some agglomerates; see Figure 1b–d. The agglomerates of TiO2 NPs are visible
in the SEM images as lighter-colored areas in contrast to the darker area corresponding to
the host blends. The non-compatibility between the TiO2 NPs and PVA:SA blend resulted
in some voids in the examined nanocomposites [24]. This result can be a consequence of
the poor intermolecular interaction between TiO2 NPs and PVA:SA blends. Such voids of
the nanocomposites increased by raising the amount of TiO2 NPs in the host blend. The
element distribution of PVA:SA:TiO2 nanocomposite films was depicted in Figure 2a–d
and Table 1. In the pure PVA:SA film, there are three main elements, including C, O,
and Na. The strong peaks of C and O were related to the hydrophilic functional groups
of hydroxyl and carboxylic groups, which were mostly connected with PVA and SA. In
contrast, the peak presence of Na was mostly associated with SA. Additionally, Ti peaks,
on the other hand, verified the doping of TiO2 NPs in the generated nanocomposite. In
addition, peaks of very small intensities corresponding to Mg, P, K, Ca, Zn, and Cr were
detected in PVA:SA:TiO2 nanocomposites, as seen in Figure 2b–d. Such peaks are assigned
to the plant bio-molecules [25], which are presented in the aloe vera leaf extract from the
preparation of TiO2 NPs [26]. Additionally, the atomic percentage of Ti increased from 0.7
to 1.13% when increasing the amount of TiO2 NPs. The EDX data supports the successful
preparation of PVA:SA:TiO2 nanocomposites.
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Table 1. Element content for the external surface of PVA:SA:TiO2 nanocomposite films doped with
different concentrations of TiO2 NPs (0, 1, 3, and 5%) from EDX.

PVA:SA:TiO2 NPs (wt.%) Element Weight (%) Atomic (%)

0
C 50.5 58.2
O 45.5 39.4

Na 4.00 2.41

1

C 42.2 50.8
O 50.8 45.9

Na 3.33 2.09
Ti 2.31 0.70

3

C 41.9 50.9
O 49.8 45.3

Na 3.20 2.03
Ti 3.54 1.08

5

C 40.4 49.40
O 50.5 46.30

Na 3.96 2.53
Ti 3.69 1.13

3.2. XRD Analysis

The XRD patterns of the pure PVA:SA blend and its nanocomposites with TiO2 NPs
are shown in Figure 3. The XRD pattern of the pure PVA:SA blend has two distinct sharp
diffraction peaks at 2θ = 19.78◦ and 23.17◦ corresponding to FWHM of 2.44◦ and 11.9◦ and a
d-spacing of 4.5 Å, and 3.8 Å, respectively. These two peaks are characteristic of PVA, which
indicates a low-crystallinity system, in agreement with some published literature [27,28].
Additionally, the presence of pure SA was confirmed from the appearance of peaks at
2θ = 13.52◦ and 40.19◦, corresponding to FWHM of 1.24◦ and 14.0◦, and d-spacing of 6.5 Å
and 2.2 Å, respectively [29].
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The XRD spectra of the different amounts of TiO2 doped in PVA:SA blend (1, 3, and
5 wt.%) are illustrated in Figure 3. The values of 2θ of the characteristic peaks, FWHM, and
d-spacing for the different nanocomposites of PVA:SA:TiO2 are tabulated in Table 2. For
the highest content of TiO2 NPs (5 wt.%) doped in the host blend, Table 2 illustrates the
presence of a characteristic peak of TiO2 NPs at 2θ = 25.25◦, in agreement with a previously
published work [23]. The addition of TiO2 NPs to the host blend caused a change in the
positions of the characteristic peaks of PVA and SA. It was also observed that the intensity
of the characteristic peak of PVA at 2θ = 19.78◦ increased by raising the content of TiO2 NPs
up to 3 wt.%, then decreased for the highest content (5 wt.%).

Table 2. FWHM, d-spacing, strain (εstr.), crystallite size (D), and dislocation density (δ) for different
concentrations of PVA:SA:TiO2 nanocomposites.

Content of TiO2
Doped in PVA/SA

(wt.%)

2θ
(Degree)

FWHM
(Degree)

d-Spacing
(Å)

D
(nm)

δ × 1015

(Lines/m2)
εstr.

1

13.27 1.10 6.66

24.32 ± 2.2 1.69

0.041
19.51 2.31 4.55 0.058
23.28 9.95 3.81 0.211
39.99 13.6 2.25 0.161

3

13.13 0.88 6.73

27.17 ± 1.6 1.35

0.033
19.54 2.19 4.54 0.055
23.62 7.31 3.76 0.152
40.36 10.4 2.23 0.123

5

14.07 1.64 6.29

10.42 ± 1.7 9.21

0.058
19.50 2.37 4.55 0.060
22.76 2.13 3.91 0.045
25.25 8.03 3.51 0.156
40.28 13.6 2.23 0.161

The broadening of the characteristic peaks can be understood from determining the
values of the lattice strain (εstr.) for the different nanocomposites. Stacking faults, coherency
stresses, contact stresses, lattice imperfections, distortion, and others can affect the values
of εstr. [30,31]. Therefore, it was important to estimate the values of εstr. for the different
nanocomposites. Stokes–Wilson [32–34] proposed a relationship to calculate the lattice
strain (εstr.) based on the FWHM of the peaks of the XRD pattern and the scattering angle
(θ) at the maximum peak as the following:

εstr. =
FWHM
4(tanθ)

(1)

The tabulated values of εstr. in Table 2 were TiO2 NP content-dependent. The values
of εstr. detected at 2θ = 19.78◦ are 0.058, 0.055, and 0.060, corresponding to 1, 3, and 5 wt.%
of TiO2 NPs doped in the PVA:SA blend, respectively.

The average crystallite size (D) was deduced using the Debye–Scherrer formula [35]:

D =
Kλ

(FWHM) × COSθ
(2)

where K is a constant related to a crystal form and the Miller index of reflecting crystallo-
graphic planes. It has a value of 0.9 [36]; furthermore, λ is the X-ray wavelength, and θ is
Bragg’s angle. By taking the logarithm for both sides of Equation (2):

Ln(FWHM) = Ln
Kλ

DCOSθ
= Ln

Kλ
D

+ Ln
1

COSθ
(3)
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The value of (Ln Kλ
D ) was obtained from the intercept determined from plotting

(Ln FWHM) versus (Ln 1
COSθ ), as observed in Figure 4. The average particle size (D)

has values of 24.32 nm, 27.17 nm, and 10.42 nm, corresponding to the TiO2 NPs doped
in the host blend, as listed in Table 2. The variation in the values of D can change the
related deformations in the prepared nanocomposites as a result of the inverse relationship
between them and the values of lattice strain (εstr.) [37].
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The dislocation density (δ) was utilized to characterize the number of defects in the
nanocomposites according to the following relationship [38]:

δ = D−2 (4)

From Table 2, the values of the dislocation density (δ) are 1.69, 1.35, and 9.21 (105 lines
per square meter) corresponding to TiO2 NPs doped in the PVA:SA blend from the lowest
to the highest content. Therefore, increasing the content of TiO2 NPs leads to an increase in
their defects.

3.3. Optical Parameters Deduced from UV-Vis Spectroscopy
3.3.1. Interband Transitions, Urbach Energy, and the Steepness Parameter (S)

An aspect of optical absorption study is one of the essential means of comprehension
of the material’s structure and energy gap. Figure 5a,b illustrates the variation of the
transmission and the absorption spectra, respectively, of different contents of TiO2 NPs
doped in the host blend of PVA:SA 3:1. An obvious improvement in the absorption of the
PVA:SA blend was detected by raising the content of the doped TiO2 NPs. The growth
of the TiO2 NPs in the host blend is thought to cause this attitude. In general, TiO2 NPs
have absorption peaks at wavelengths less than 400 nm, one at around 275 nm and the
other in a range from 320 nm to 382 nm, according to the published literature [39,40]. For
the nanocomposites of the current study, Figure 5b shows a small peak observed around
274 ± 1.4 nm for all the samples. This peak is related to the electronic transition from O
2p in VB to Ti 3d in CB [40]. Figure 5c shows the absorption spectrum of the different
nanocomposites divided by that of the host blend of PVA:SA 3:1. The produced spectrum
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in Figure 5c resulted in the appearance of an absorption peak at about 427 nm, 454 nm, and
450 nm corresponding to the TiO2 content of 1 wt.%, 3 wt.%, and 5 wt.%, respectively. Such
peaks are due to the presence of aloe vera, in agreement with some literature [41,42]. The
inset in Figure 5c illustrates the absorption spectrum of used TiO2 NPs with their extract
dissolved in deionized water, which illustrates the appearance of characteristic peaks at
275 nm and 367 nm. The main characteristic peak of TiO2 NPs at wavelengths of 367 nm
disappeared when they were embedded in the PVA/SA blend. Such behavior was also
observed for selenium nanoparticles (characterized by absorption peaks at 262 nm and
388 nm) doped in the PVA:SA blend [43].
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Figure 5. Plotting (a) transmission (%), (b) absorption, and (c) Ananocomposite/Ahost blend (the inset is
the absorption of TiO2 NPs with the extract in deionized water), with the incident wavelength for the
different concentrations of TiO2 NPs doped in PVA:SA 3:1. (d) Dependence of skin depth on E for the
different concentrations of TiO2 doped in PVA:SA 3:1. (e) Variation of dln(αE)/dE with E for 5 wt.%
of TiO2 NPs doped in PVA:SA 3:1. (f) Plotting ln (αE) versus ln (E-Eg) for 5 wt.% of TiO2 doped in
PVA:SA 3:1.

The penetrated distance of a material by the incident light can be described by the
skin depth factor, which equals the reciprocal of the absorption coefficient (the absorption
coefficient (α) is the ratio between the absorption and the thickness of the sample) [44]. The
variation of the skin depth with photon energy can be illustrated in Figure 5d for all the
samples under study. In Figure 5d, the increase in the TiO2 NPs in the host blend of PVA:SA
3:1 caused a decrease in the skin depth values and therefore decreased the transparency of
the nanocomposites. In addition, by increasing the applied photon energy, the skin depth
decreases until reaching the cut-off energy (Ecut-off), where its value equals zero. All the
samples have a cut-off energy of 6 eV corresponding to the cut-off wavelength of 206.6 nm.

The interband absorption process describes the electronic transition between the bands.
The energy gap (Eg) can be deduced from studying (αE)1/m as a function of Eg according
to the Tauc equation in the Tauc region (α ≥ 10,000 cm−1) [45–47]:

αE = B(E− Eg)
m (5)
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where m is the electronic transition (its value depends on the best linear fit [48]), and B
is a constant that relies on the transition probability. Equation (5) can be re-written as
the following:

dln(αE)
dE

=
m

E− Einitial
(6)

Plotting dln (αE)/dE versus E, for 5 wt.% of TiO2 doped in PVA:SA 3:1, shows an
obvious peak; see Figure 5e. This peak is centered at an energy corresponding to the initial
value of energy (Einitial), whose value is supposed to be close to the energy gap (Eg). The
tabulated values of Einitial in Table 3 are 5.78, 5.76, 5.74, and 5.57 eV, corresponding to 0,
1, 3, and 5 wt.% of TiO2 NPs, respectively. The values of Einitial were fruitfully utilized in
Figure 5f to plot ln (αE) versus ln (E-Einitial) for 5 wt.% of TiO2 NPs doped in PVA:SA 3:1,
as an example for all the samples. The estimated values of the electronic transition (m)
(Figure 5f) have values from 0.45 to 0.49. Consequently, for all the nanocomposites, the
suggested predominant transition could be the direct allowed transition (m = 0.5).

For greater precision, Figure 6a,b shows the direct and indirect gap energies (ETauc
direct)

and (ETauc
indirect) that were determined by using Equation (5) from the linear portion of the plot

between (αE)2 and (αE)0.5, respectively, versus E, for 5 wt.% of TiO2 NPs doped in PVA:SA
3:1, as an example of the others. The values of ETauc

direct listed in Table 3 are 5.78, 5.69, 5.67,
and 5.50 eV, whereas the values of ETauc

indirect are 4.91, 4.78, 4.71, and 4.44 eV, corresponding
to the content of TiO2 NPs from 0 to 5 wt.% doped in the host blend.
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versus E, (c) (A/λ)0.5 versus (1/λ), (d) (A/λ)2 versus (1/λ), and (e) ln(A) versus (1/λ).

The absorption spectrum fitting (ASF) procedure based on absorption spectra was
also used to calculate the optical band gap, which was proposed by Souri and Shoma-
lian [49] and Escobar-Alarc’on et al. [50] by making some adjustments to the Tauc model as
follows [48,51]:

α(λ) = 2.303d−1A(λ) = J(hc)−1+mλ
(
λ−1 − λ−1

g

)m
(7)

where J is a constant, and λg is the wavelength at which the optical gap occurs. The
index “m” corresponds to the kind of electronic transitions responsible for the absorption
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and takes the values of 1/2 and 2 for direct and indirect allowed transitions, respectively.
Extrapolation of the linear part of the plot of (Aλ−1)1/m against λ−1 at zero value of
(Aλ−1)1/m yielded the reciprocal values of λg. The indirect (EASF

indirect) and direct (EASF
direct)

energy gaps were determined from the product of 1239.83 times λ−1
g . Figure 6c,d shows

the variation of (Aλ−1)0.5 and (Aλ−1)2, respectively, with λ−1, for 5 wt.% of TiO2 doped
in PVA:SA 3:1, as an example for all the samples. The values of (EASF

direct) and (EASF
indirect)

are tabulated in Table 3. The listed values of energy gaps estimated from Tauc and ASF
methods decreased with an increase in the content of TiO2 NPs doped in PVA:SA 3:1. This
behavior can be attributed to the creation of defects in a polymeric matrix that resulted in
the formation of localized states in the optical band gap [52]. This finding agrees with the
XRD data of the nanocomposites under investigation.

It is known that the fundamental absorption edge of most amorphous materials
follows an exponential law. The ASF model effectively modified Urbach’s law [53], which
could be expressed by the following relationship [54]:

A(λ) = Hexp(
hcλ−1

ETail
) (8)

where ETail describes the width of the tail of localized states (Urbach energy) when an optical
transition occurs between a localized tail state near the valence band and an extended
conduction band state above the mobility edge, whereas H is a constant. The best linear
fitting of lnA-λ−1 plot was used to determine the values of ETail by using the relation of
ETail = 1239.83/slope. Plotting lnA against λ−1 was depicted in Figure 6e for 5 wt.% of
TiO2 NPs doped in PVA:SA 3:1, as an example of the others. A redistribution of states
from band to tail can be inferred based on the rising values of ETail as a result of the
increasing concentration of TiO2 NPs doped in PVA:SA 3:1. This attitude can result in the
possible occurrence of band-to-tail and tail-to-tail transitions [55]. This behavior is in good
agreement with some previous work [56–58].

Table 3 illustrates a comparison between the values of the energy gap and tailing
state energy (Urbach energy) of the samples of the current study and some published
literature [17,18,59–61]. Figure 7 illustrates the variation of ETail with the optical energy
gap obtained by the different techniques used (Tauc and ASF). It was observed that the
behavior of ETail of the different nanocomposites is contrary to the behavior of the optical
gap (ETauc

gab and EASF
gab ). In addition, the linear equation obtained in Figure 7 from the linear

fitting between ETail and ETauc
indirect, EASF

indirect, ETauc
direct, and EASF

direct provided the intercept with
values of 4.9 ± 0.4 eV, 5.7 ± 0.08 eV, 6.1 ± 0.06 eV, and 6.1 ± 0.05 eV, respectively. These
values of the intercept act as the expected energy gap values in the absence of the effect of
ETail (ETail equals zero).

The strength of the interactions between electrons and phonons (Ee-ph) is given by
the steepness parameter S, which was proposed by Skettrup [62–64], and it is responsible
for the absorbance edge broadening. The S values can be determined from the following
equation [65]:

S =
TroomkB

ETail
(9)

where kB is the Boltzmann constant. Table 3 depicts that the values of Ee-ph (Ee-ph = 2/3S)
increase by raising the content of the TiO2 NPs. The nanocomposite of PVA:SA:TiO2 with
5 wt.% TiO2 NPs have the highest value of Ee-ph, which is 25.64. This result indicates that
the filled bands increased with the addition of TiO2 NPs [66]. However, the values of S
decrease by raising the amount of the embedded nanoparticle, and the highest value was
detected in the host blend, which was 0.044. The inverse relation between S and Ee-ph may
result from the embedding of TiO2 NPs into the host blend, which leads to the alteration of
ionicity and the anion valence [66,67].
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Table 3. The determined values of initial gap energy (Einitial), the kind of electronic transitions (m), Tauc optical gap (ETauc
gab ), ASF optical gap (EASF

gab ), and energy gap
(Eg) estimated from plotting (εi) versus energy, tailing state energy (Urbach energy, ETail), the steepness parameter (S), the strength of electron–phonon interactions
(Ee-ph), solar material protection factor (SMPF), and solar skin protection factor (SSPF).

Current Work Previously Published Works

Content of TiO2 (wt.%) Doped in PVA:SA 3:1

PVA Ref [59] SA Ref [18] TiO2 Ref [61]
0, 1.5, and 2.5 wt.% of
TiO2 Doped in PVA

Ref [60]

SA/PEO Ref [17]
30/70 wt.%Optical

Parameter 0 1 3 5

Einitial
(eV) 5.78 5.76 5.74 5.57

m 0.45 ± 0.042 0.47 ± 0.039 0.45 ± 0.037 0.49 ± 0.037

EASF
direct
(eV)

5.790 5.687 5.678 5.566

EASF
indirect
(eV)

5.145 4.955 4.897 4.711

ETauc
direct
(eV)

5.786 5.694 5.673 5.500 6.35 5.44

ETauc
indirect
(eV)

4.905 4.780 4.710 4.439 5.26 5.26 2.90 4.8, 4.2 & 3.8 5.05

Eg estimated
from plotting
(εi) vs. E (eV)

5.728 5.667 5.647 5.529

ETail
(eV) 0.584 ± 0.03 0.709 ± 0.028 0.805 ± 0.03 0.999 ± 0.029 0.23 0.2, 0.4 & 0.8

S 0.044 0.036 0.032 0.026

Ee-ph 14.94 18.14 20.59 25.64

SMPF
(%) 27.0 41.8 58.3 76.4

SSPF
(%) 41.1 56.6 69.4 84.6
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3.3.2. Solar Protection Factors
Solar Material Protection Factor (SMPF)

A measure of how well the PVA:SA blend and its nanocomposites with TiO2 NPs
resist degradation carried on by solar energy is called the solar material protection factor
(SMPF), which determined by the following formula [68]:

SMPF = 1−
Σλ=600 nm
λ=300 nmCλSλ∆λT(λ)
Σλ=600 nm
λ=300 nmCλSλ∆λ

(10)

where Cλ equals e−0.012λ, T(λ) is the sample transmittance estimated from Figure 5a, ∆λ is
the wavelength interval, which equals 5 in the range 300–400 nm and 10 in the range of
400–600 nm, Sλ is the relative spectral distribution of solar radiation [69,70], and CλSλ∆λ is
obtained from a published reference [68]. The tabulated values of SMPF in Table 3 are 21%,
41.8%, 58.3%, and 76.4%, corresponding to the content of TiO2 NPs from 0 to 5 wt.%

Solar Skin Protection Factor (SSPF)

The term “solar skin protection factor”, or “SSPF”, refers to the capacity of the PVA:SA
blend and its nanocomposites with TiO2 NPs to shield the skin of humans from the degra-
dation that is brought on by the effects of prolonged exposure to solar energy [66]:

SSPF = 1−
Σλ=400 nm
λ=300 nmEλSλ∆λT(λ)
Σλ=400 nm
λ=300 nmEλSλ∆λ

(11)

where ∆λ is the wavelength interval (∆λ = 5 in the λ range from 300 nm to 400 nm), EλSλ∆λ
is obtained from published literature [69,70], and Eλ is the CIE erythemal effectiveness
spectrum [69,71]. The values of SSPF for the different studied samples are listed in Table 3.
The best SSPF was investigated by 5 wt.% of TiO2 NPs doped in PVA:SA 3:1, which was
about 84.6% compared to the corresponding value of the host blend (41%). As a result,
the increased values of SMPF and SSPF due to the addition of TiO2 NPs enable these
nanocomposites to effectively protect materials and human skin from the damaging effects
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of solar energy. The estimated values of the skin depth factors are fairly close to being in
line with the findings of SSPF and SMPF.

3.3.3. Refractive Index, Attenuation Coefficient, and Optical Dielectric Constants

In analyzing a material’s optical properties, the index of refraction, denoted by “n”,
is one of the most important quantities. Due to its significant relationship with the local
electric field and the electronic polarizability within the material, determining the refractive
index of polymeric materials is one of their intriguing properties. It is also vital for assessing
the materials’ suitability for application in various optoelectronic devices. The n value was
calculated using Fresnel’s formula according to the following formula [72,73]:

n =

(
1 + R
1− R

)
+

√
4R

(1− R)2 − k2 (12)

where R is the reflection (R = 1 −
√

transmissionxexp(absorption) [74]) and k is the
extinction coefficient that relates the absorption coefficient (α), (k = αλ

4π [72]). The varying
of k on the different nanocomposites is shown in Figure 8a, the values of k depend on
the content of the nanoparticles doped in the host blend as the extinction coefficient
increased by raising the TiO2 content. Because of the interaction between the incoming
light and the polymeric medium, the extinction coefficient increases as the wavelength
increases [75]. Figure 8b depicts a typical dispersion curve of n for PVA:SA 3:1 and its
various nanocomposites based on decreasing the refractive index (n) with the wavelength.
The refractive index values at 400 nm are 2.38, 2.99, 3.92, and 6.06, corresponding to 0, 1, 3,
and 5 wt.%, respectively, of TiO2 NPs doped in the host blend. From previous work [60],
the refractive index of 5 wt.%TiO2 NPs doped in PVA is 3.5, which is less than the refractive
index of the corresponding concentration of TiO2 NPs extracted from aloe vera and doped
in the PVA/SA blend (6.06). The formation of intermolecular bonds between the host blend
and the embedded nanofiller is responsible for the observed enhancement in values of n
with increasing the nanofiller concentration [76]. In addition, increasing the optical density
of the prepared nanocomposites can also explain the enhancement of their refractive
index by adding the TiO2 NPs. The enhancement in the refractive index value of the
nanocomposites by increasing the nanofiller content enables the suggestion of using them
in different optical devices as antireflection coating for solar cells [23].

In an effort to establish a universal correlation between the refractive index and optical
bandgap, many different methods have been implemented. Therefore, it is crucial to
establish a connection between (Eg) and (n) in order to comprehend the band structure
of the nanocomposites under study. Understanding the relationship between Eg and n
facilitates the determination of the additional optical characteristics. Within the scope of
this study, several ways for establishing a correlation between Eg and n were achieved,
including some models suggested by Moss (nM), Anani et al. (nA,etal.), Kumar-Singh (nK,S),
Hervé-Vandamme (nH,V), Reddy-Ahammed (nR,Ah), Ravindra, et al. (nR,etal.), and Tripathy
(nT), and the average refractive index (naverage) [77–83]:

n4
M = C1E−1

g ; C1 = 95 eV (13)

nA,et al. = C2 + C3Eg; C2 = 3.4 & C3 = −0.2 eV (14)

nK,S = C4 × E−C5
g ; C4 = 3.3668 eV & C5 = 0. 32234 (15)

nH,V =

√
1 +

(
C6

Eg + C7

)2
; C6 = 13.6 eV & C7 = 3.4 (16)
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n4
R,Ah = C8(C9 + Eg)

−1; C8 = 154 eV & C9 = −0.365 (17)

n4
R et al. = C10E−1

g ; C10 = 108 eV (18)

nT =
[
1 + C11× exp

(
C12 × Eg

)]
×C13; C11 = 1.9017 eV & C12 = −0.539 & C13 = 1.73 (19)

naverage = [nM +nA,et al.+nK,S+nH,V+nR,Ah+nR,etal. +nT]÷ 7 (20)
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Figure 8c,d illustrates the calculated theoretical values of the linear refractive index (n)
using ETauc

direct, and ETauc
indirect, respectively, for the studied samples using these different models.

The estimated values of n, for the studied nanocomposites, by the different models are close
to each other, and they show their influence by increasing the addition of TiO2 NPs. The
average refractive index (naverage) has values of 2.029 and 2.065 when using ETauc

direct and 2.13
and 2.21 when using ETauc

indirect, corresponding to 0 and 5 wt.% of TiO2 content, respectively.
Additionally, the complex dielectric parameter (ε*) is a summation of two parts, which

are the real part (εr) and the imaginary part (εi) [75]. The imaginary part (εi) describes the
dissipative rate of light during transmission through a material. However, the real part (εr)
depends on electron mobility during light transformation in the medium. The following
relationships provide the dependence of the two parties of complex dielectric functions on
the refractive index (n) and the extinction coefficient (k) [84]:

εr = n2 − k2; εi = 2nk (21)
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The reliance of εr and εi on wavelength is clearly shown in Figure 9a,b, respectively,
for all the investigated samples. By increasing the amount of TiO2 NPs, it can be seen that
the values of εr and εi improved. The change in the values of εr by adding TiO2 NPs to the
host blend can be argued to the incident photon-free electrons interactions in the material
of the studied nanocomposites [85]. The change in the dipole motion of the polymeric
blend can describe the change in the values of εi by the addition of TiO2 NPs to it [86].
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Recent research has demonstrated that electronic transitions between occupied and
unoccupied states can be primarily described by the imaginary part of the optical dielectric
function, εi [87,88]. It was demonstrated by Yu et al. [89] that the fundamental absorption
edge could be identified using the εi -photon energy plot since it was so similar to the value
obtained using Tauc’s calculation. Plotting the change of εi with the photon energy E (eV),
as shown in Figure 9c, revealed that all of the samples under investigation exhibited a nearly
linear behavior at high energies. The values of Eg obtained from Figure 9c are tabulated
in Table 3. Table 3 illustrates the close correspondence between the Eg values (ETauc

direct and
EASF

direct) derived from Figure 6a,d and the values estimated from Figure 9c. Therefore, the
direct allowed transition was prevalent in all examined samples, as demonstrated by three
powerful methods, including Tauc’s formula, the ASF model, and the obtained fundamental
absorption edge from the εi- E plot.

3.3.4. Volume and Surface Energy Loss Functions

The energy loss functions include the surface energy loss function (SELF) and volume
energy loss function (VELF). VELF denotes the absence of rapid electron energy as they
propagate through a material. On the other hand, the term SELF refers to the probability
that fast electrons will suffer an energy loss as they go across the surface of a material.
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The values of SELF and VELF were determined using the real and imaginary parts of the
complex dielectric as follows [90,91]:

VELF =
εi

ε2
r + ε

2
i

; SELF =
εi

(εr + 1)2 + ε2
i

(22)

Figure 10a,b shows the changes in VELF and SELF with the incident wavelength
for all the nanocomposites. The fast electrons lose more energy during their propagation
within the examined materials than during their transit on their surfaces. This behavior can
be understood from the higher values of VELF than that of SELF for the same nanocom-
posites investigated. The values of SELF and VELF were incident wavelength- and TiO2
content-dependent.
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3.3.5. Linear STATIC Refractive Index (no), High-Frequency Dielectric Constant (ε∞), and
Optical Electronegativity (ηopt)

Dimitrov and Sakka proposed a relationship that describes the linear static refractive
index (no) for the prepared samples as follows using ETauc

direct [92]:

no =

(
(2C14 + 1)
(1−C14)

)0.5

; C14 = −

(ETauc
direct
20

)0.5
+ 1 (23)

Figure 11a shows the variation in the values of the linear static refractive index (no)
with the content of TiO2 NPs. The deduced values of no are 1.89, 1.90, 1.91, and 1.93,
corresponding to TiO2 NPs from the lowest (0 wt.%) to highest (5 wt.%) content. This
incremental behavior of the refractive index can be due to increasing the interaction between
the nanocomposites and the incident photons as a result of increasing the density of the
nanofiller doped in the host blend. The following polynomial equation shows the best
fitting for the relationship between no and TiO2 NP contents (wt.%) when R2 equals one:

Y = A1 + B1X + B2X2 + B3X3 (24)
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where X is the content of TiO2 NPs (wt.%), Y is no, A1 is 1.89, B1 is 0.018, B2 is −0.008, and
B3 is 0.001.

Coatings 2023, 13, x FOR PEER REVIEW 19 of 29 
 

 

 
Figure 11. Plotting (a) no, (b) ε∞, (c) ηoptical, (d) χ(1), (e) χ(3), and (f) n2 with the content of TiO2 nano-
particles doped in PVA:SA 3:1. 

The high-frequency dielectric constant (ε∞) was calculated from the following for-
mula for all the investigated samples using the values of the linear static refractive index 
(no) [93]: ε = n  (25)

Increasing the TiO2 content in the host blend resulted in an improvement in the es-
timated values of ε∞, as observed in Figure 11b. The best fitting for the relationship be-
tween ε∞ and TiO2 content is presented by a polynomial equation as follows:     Y =  A + B X + B  X + B  X  (26)

where X describes the content of TiO2 NPs (wt.%), Y gives ε∞, A2 is 3.57, B4 is 0.072, B5 is 
−0.032, and B6 is 0.004. 

The ability of the positive radicals of the atoms of the examined material to attract 
the electrons to form ionic bonds is the definition of optical electronegativity (ηopt) as 
proposed by Duffy [94] according to the following relationship: η = C n  (27)

where C15 is a constant and has a value of 25.54 [95]. The variation of the optical electro-
negativity (ηopt) with the content of TiO2 NPs is shown in Figure 11c. The following pol-
ynomial equation provides the best match for the relationship between and TiO2 content:     Y =  A + B X + B  X + B  X  (28)

where Y provides ηopt and X represents the content of TiO2 NPs (wt.%) within the host 
blend, A3 is 1.92, B7 is −0.005, B8 is 0.002, and B9 is −0.0003. The highest value of ηopt was 
detected in the PVA/SA blend, which had a value of 1.92. 

Figure 11. Plotting (a) no, (b) ε∞, (c) ηoptical, (d) χ(1), (e) χ(3), and (f) n2 with the content of TiO2

nanoparticles doped in PVA:SA 3:1.

The high-frequency dielectric constant (ε∞) was calculated from the following formula
for all the investigated samples using the values of the linear static refractive index (no) [93]:

ε∞ = n2
o (25)

Increasing the TiO2 content in the host blend resulted in an improvement in the
estimated values of ε∞, as observed in Figure 11b. The best fitting for the relationship
between ε∞ and TiO2 content is presented by a polynomial equation as follows:

Y = A2 + B4X + B5X2 + B6X3 (26)

where X describes the content of TiO2 NPs (wt.%), Y gives ε∞, A2 is 3.57, B4 is 0.072, B5 is
−0.032, and B6 is 0.004.

The ability of the positive radicals of the atoms of the examined material to attract the
electrons to form ionic bonds is the definition of optical electronegativity (ηopt) as proposed
by Duffy [94] according to the following relationship:

ηopt =
4

√(
C15

no

)
(27)
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where C15 is a constant and has a value of 25.54 [95]. The variation of the optical electroneg-
ativity (ηopt) with the content of TiO2 NPs is shown in Figure 11c. The following polynomial
equation provides the best match for the relationship between and TiO2 content:

Y = A3 + B7X + B8X2 + B9X3 (28)

where Y provides ηopt and X represents the content of TiO2 NPs (wt.%) within the host
blend, A3 is 1.92, B7 is −0.005, B8 is 0.002, and B9 is −0.0003. The highest value of ηopt was
detected in the PVA/SA blend, which had a value of 1.92.

3.3.6. Nonlinear Optical Parameters

One of the materials’ most interesting and exciting characteristics is their nonlinearity,
which broadens their potential uses in nonlinear devices. The first-ordered nonlinear
susceptibility (χ(1)) and the third-ordered nonlinear susceptibility (χ(3)) were determined
using Miller’s empirical rule [96]:

χ(1) =
(n2

o − 1)
4π

(29)

χ(3) = C16

[
χ(1)

]4
; C16 = 1.7× 10−10 e.s.u. (30)

The variation of χ(1) with the content of TiO2 (wt.%) is offered in Figure 11d for the
differently prepared samples. The best fit for the correlation between χ(1) and the TiO2 NP
concentration is given by the following polynomial equation:

Y = A4 + B10X + B11X2 + B12X3 (31)

where Y denotes χ(1), and the content of TiO2 nanoparticles (wt.%) is given by X; A4 is
0.205, B10 is 0.005, B11 is −0.003, and B12 is −0.0004.

Figure 11e displays the dependence of χ(3) on the TiO2 content for all the examined
samples. The following polynomial equation provides the best fit for the relationship
between χ(3) and TiO2 content:

Y = A5 + B13X + B14X2 + B15X3 (32)

where χ(3) describes Y and the content of TiO2 NPs (wt.%) is represented by X; A5 is
3.0 × 10−13, B13 is 3.5 × 10−14, B14 is −1.5 × 10−14, and B15 is 2.3 × 10−15.

The nonlinear refractive index (n2) was calculated from the following equation [97]:

n2 =
12πχ(3)

no
(33)

The dependence of the n2 of the different samples on the content of TiO2 is shown
in Figure 11f. The best fit of the data in Figure 11f is described by the following polyno-
mial equation:

Y = A6 + B16X + B17X2 + B18X3 (34)

where X is the content of TiO2 NPs (wt.%), Y is n2, A6 is 6.0 × 10−12, B16 is 6.3 × 10−13, B17
is −2.8 × 10−13, and B17 is 2.3 × 10−14.

The addition of TiO2 NPs to the host blend caused an improvement in the values of
χ(1), χ(3), and n2.

3.4. Nonlinear Optical Analysis by Z-Scan Technique
3.4.1. Investigation of Nonlinear Optical Parameters

Recently, different approaches have been used to study the higher order of the non-
linear optical absorption coefficient. From these techniques, the Z-scan technique could
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be represented as one of the most promising, simplest, and most accurate techniques that
could be used to investigate this issue with high precision. For this, the Z-scan technique
was employed to study the nonlinear optical response of the prepared nanocomposites of
PVA:SA:TiO2 by the ablation of the ns laser.

The Z-scan method’s open- and closed-aperture approaches (OA and CA) were used
to assess the NLO-specific properties of the prepared samples. To calculate χ(2), the OA
approach method was utilized, whereas the closed-aperture approach method was used
to calculate n2 and χ(3). In the OA approach, the parameter of χ(2) is evaluated without
the presence of an aperture in which the transmitted light is recorded in the far field upon
travelling through the investigated materials as a function of the position from focusing
on the Z-axis. Conversely, in the closed-aperture approach method, an aperture is sited
past the samples. The studied samples were tuned across the laser-focused point, and the
far-field profile revealed the intensity change along the beam profile as a function of the
sample location through the Z-axis [98–100].

The prepared samples’ OA and CA Z-scan investigations are shown in Figure 12a,b. It
became evident that the sample’s linear and nonlinear absorption processes under high
stimulation were manifested. As shown in Figure 12a, the PVA:SA:TiO2 nanocomposite
with various amounts of TiO2 NPs increased the transmittance intensity. This was due to
the oxygen vacancies produced between CB and VB by laser irradiation, which resulted in
the production of donor impurities with low formation energies. This was then followed
by an electron transition between the bands responsible for producing the oxygen defects
and CB. In other words, Figure 12b’s normalized transmittance of the prepared samples’
closed aperture had a peak-valley shape, which suggested that their NLO characteristics
were self-defocusing. The nonlinear parameters of n2 and χ(3) could be estimated by these
equations [101,102]:

χ(2) =
2
√

2
I◦Leff

∆T, Leff =
[
1− exp(−αL)

]
/αandI/I◦ = e−αL (35)

n2 =
∆ϕ◦λ

2πI◦Leff
, ∆Tp−v = 0.406(1− s)0.25∆ϕ◦ (36)

where Leff and L are the effective and real thickness of the studied sample, respectively,
I and I◦ are the measured laser influence following and prior to traveling the sample,
respectively, ∆ϕ◦ is the phase shift of the laser beam at focusing, S is the used aperture
linear transmittance, ∆Tp−v is the difference between the peak and valley’s normalized laser
transmittance, ∆ϕ◦ is the shift amplitude, and ∆T is the difference transmittance intensity
value between peak and baseline at the focusing. The use of the theoretical approximation
formula for the transmission of OA and CA can be represented by Equation (37) and
Equation (38), respectively [103–105]:

T(z) =
∞

∑
m=0

(
−qo

)m

(m + 1)3/2
(

1 + Z2/Z◦2
)m , qo(z) = IoLeffχ

(2), Leff =
[
1− exp(−αL)

]
/α, and I/I◦ = e−αL (37)

T(z) = 1− 4(Z/Z0)∆ϕ◦(
Z2

Z◦ 2 +1
)(

Z2

Z◦ 2 +9
) , ∆ϕ◦ = 2π

λ n2IoLeff, ∆ϕ◦ = ∆Tp−v

0.406(1−s)0.25 , S = 1− exp(2ra
2/wa

2), and

wa
2 = w0

2
(

1 + (Z/Z0)
2
) (38)

where Z and Z0 are the sample locations as a function of the focal point and the Rayleigh
diffraction length (kw0

2/2), respectively; m is the number of the multi-photon process,
which equals 1 for the two-photon absorption (TPA), and w0 is the beam waist.
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Additionally, Figure 12a shows the symbol data obtained from the OA Z-scan ap-
proach using Equation (35), whereas a solid line shows the experimental data that has been
theoretically fitted using Equation (37). In the absence of an aperture, the normalized curves
for the transmission intensity curve samples showed that the approximately symmetrical
curves with a lower limit at z = 0 imply a positive value for χ(2). The theoretical sample
curves fitted to the experimental data were related to TPA, which may be a clue as to which
TPA is in charge of this nonlinearity. Table 4 lists the developed nonlinear parameters of
the following embedding of the host material of PVA:sodium alginate with TiO2 NPs. Fur-
thermore, reverse saturation absorption (RSA) from TPA may be the cause of minima at the
focus point in the OA technique. These results agreed with earlier work on semiconductor
nonlinearity utilizing short and ultra-short laser processes, which showed that TPA was
an appearance of excited state absorption. Additionally, the 2.33 eV produced by the 2nd
harmonic generation of the Nd:YAG laser system (excitation wavelength: 532 nm) is less
than the estimated direct Eg of the nanostructured material. As a result, it is possible to
identify the TPA as the mechanism in charge of causing the nonlinearity process, which
was required for the transition of the inter-band between VB and CB [106,107].
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Table 4. The estimated linear and nonlinear absorption coefficients for the prepared nanocomposites.

Different Concentration of
TiO2 NPs in the Blend of

PVA:SA

χ(1)

(cm−1)
χ(2)

(cm/W)
n2

(cm2/W)
χ3

(esu)

0 wt.% 0.274 3.54 × 10−6 0.81 × 10−13 4.31 × 10−12

1 wt.% 0.556 3.87 × 10−6 1.57 × 10−13 5.75 × 10−12

3 wt.% 4.75 10.4 × 10−6 1.91 × 10−13 12.1 × 10−12

5 wt.% 11.5 21.2 × 10−6 5.83 × 10−13 27.1 × 10−12

Figure 12b displays the symbol data obtained from the CA Z-scan methodology based
on Equation (36), with a solid line representing the experimental data that has been theoreti-
cally fitted using Equation (38) for the Z-scan CA methodology. The aperture controlled the
laser beam’s cross-sectional area. When an aperture was present, the normalized intensity
sample showed a peak followed by a valley. Using the graphs from the CA Z-scan method,
it is possible to calculate the interval between the peak and valley, ∆Tp−v. Equation (36)
was then used to compute the amount of n2. The n2 parameter could have a different
sign depending on the intensity profile curve, reacting to the peak-to-valley or the reverse,
respectively, in the transmission intensity curve of the Z-scan CA.

The relationship between the laser radiation and the examined sample was self-focused
in the positive value of n2, whereas the relationship in the negative value was self-defocused.
The NLR index is positive, demonstrating the presence of self-focusing optical nonlinearity
in the material, and a peak appears following a valley. The peak-valley pattern also implies
nonlinear optical refraction that is negative. Raising the amount of the TiO2 in the host
materials consequently enhances the samples’ nonlinear optical properties, enabling them
to change their amounts of n2, tabulated in Table 4, which showed that TiO2 NPs play a
significant role in enhancing features of NLO properties of the host blend of PVA:SA due to
increases in their charge transfer.

Additionally, n2 and β calculations were performed to compute the χ3 of the prepared
nanocomposite by these equations [108–111];

Re(χ3)(esu) =
10−4ε0c2n◦2

π
n2(

cm2

W
) (39)

Im(χ3)(esu) =
10−2ε0c2n◦2λ

4π2 β(
cm
W

) (40)

where n◦ is the material linear index of refraction and εo is the electric permittivity of free
space (8.85 × 10−12 F/m). From Table 4, it is clear that the values of χ(1), χ(2), n2, and χ(3)

increased as the amount of TiO2 NPs increased, which encouraged the host blend and TiO2
NPs to improve the NLO characteristics of the nanocomposite structure. The deduced
values of χ(3) ranged from 4.31 × 10−12 esu to 27.1 × 10−12 esu using the Z-scan technique
and 30.2 × 10−12 esu to 37.4 × 10−12 esu using UV-Vis spectrum, corresponding to the
lowest (0 wt.%) and the highest (5 wt.%) contents of TiO2 NPs doped in the host blend,
respectively. As a result, there is a remarkable agreement between the two approaches that
were utilized to ascertain the values of χ(3).

3.4.2. Optical Limiting Effectiveness

With the aid of optical limiting flexible nanocomposite films, remarkable advance-
ments have been made in the fabrication of optical and shielding for ocular laser sensors.
To this end, prepared samples of nanocomposites of TiO2 NPs doped in the host blend
of PVA:SA were examined for their utility in the optical limiting of CUT-OFF laser filters
utilizing a continuous He–Ne laser working at 632.2 nm. In this study, the aperture Z-scan
characteristics can be used to measure the prepared samples’ nonlinear influence power
magnitudes in watts per area [112]. The synthesized nanocomposites’ output influence
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power and their normalized influence power are shown against the percentage of TiO2,
as shown in Figure 13, where the normalized power was represented as the equivalent
ratio between input influence power and output influence power. The prepared samples in
this study had a negligible effect on the influence intensity. In order to achieve the limiting
optical impact, the TiO2 filler concentration is essential. Absorption process interactions,
such as increased sample density during differential absorption operations owing to light
contact from the He–Ne laser with the produced samples, were linked to the increase in
TiO2 content in the nanocomposite samples. This causes the optical restriction to be much
less in the low-concentration TiO2 samples than in the higher-concentration ones. As the
amount of TiO2 NPs in the host blend of PVA:SA increases by 0, 1, 3, 5 wt.%, respectively,
the laser influence power of wavelength 632.8 nm is lowered by 15%, 22%, 34%, and 47%,
respectively. As a result, our finding demonstrated that TiO2 NPs doped in the host blend
of PVA:SA has a positive influence on laser light blocking for the investigated laser source.
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4. Conclusions

The method of solution casting was used to synthesize PVA:SA:TiO2 nanocomposites
with different contents of the doped nanofiller. Some voids appeared in SEM images of
the nanocomposites, which raised by increasing the added amount of TiO2 NPs to the host
blend. Peaks of very small intensities corresponding to Mg, P, K, Ca, Zn, and Cr were
detected in PVA:SA:TiO2 nanocomposites, which are assigned to the plant bio-molecules
present in the aloe vera leaves extract from which TiO2 NPs were prepared. XRD spectra
illustrated that the average particle size (D) has values of 24.32 nm, 27.17 nm, and 10.42 nm,
corresponding to the TiO2 NP contents of 1, 3, and 5 wt.%, respectively, doped in the host
blend. The values of solar material protection factor (SMPF) are 21%, 41.8%, 58.3%, and
76.4%, corresponding to the content of TiO2 NPs from 0 to 5 wt.%. More energy is lost
by the fast electrons during their propagation within the examined materials than during
their transit on their surfaces. This behavior can be understood from the higher values
of VELF than SELF for the investigated nanocomposites. The detected values of no, ε∞,
ηoptical, χ(1), χ(3), and n2, for the studied nanocomposites proved to be TiO2 NP content-
dependent. UV-vis spectroscopy and Z-scan analysis were effectively used to determine
the nonlinear optical parameters. The studied samples were examined for their utility in
the optical limiting of CUT-OFF laser filters utilizing a continuous He–Ne laser working at
632.2 nm. As the amount of TiO2 NPs in the host blend of PVA:SA increases by 0, 1, 3, and
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5 wt.%, the laser influence power of wavelength 632.8 nm is lowered by 15%, 22%, 34%,
and 47%, respectively. The direct allowed transition was prevalent in all examined samples,
as demonstrated by three powerful methods, including Tauc’s formula, the ASF model,
and the obtained fundamental absorption edge from the εi-E plot.
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108. Pepe, Y.; Karatay, A.; Donar, Y.O.; Sınağ, A.; Unver, H.; Elmali, A. Tuning the energy bandgap and nonlinear absorption coefficients
of CdO nanocomposite films with doping and annealing process. Opt. Mater. 2020, 103, 109880. [CrossRef]

109. Alkallas, F.H.; Ahmed, H.A.; Pashameah, R.A.; Alrefaee, S.H.; Toghan, A.; Trabelsi, A.B.G.; Mostafa, A.M. Nonlinearity
enhancement of Multi-walled carbon nanotube decorated with ZnO nanoparticles prepared by laser assisted method. Opt. Laser
Technol. 2022, 155, 108444.

110. Darwish, W.M.; Darwish, A.M.; Al-Ashkar, E.A. Synthesis and nonlinear optical properties of a novel indium phthalocyanine
highly branched polymer. Polym. Adv. Technol. 2016, 26, 1014–1019. [CrossRef]

111. Torres-Torres, D.; Trejo-Valdez, M.; Castañeda, L.; Torres-Torres, C.; TamayoRivera, L.; Fernández-Hernández, R.C.; Reyes-
Esqueda, J.A.; Muñoz-Saldaña, J.; Rangel-Rojo, R.; Oliver, A. Inhibition of the two-photon absorption response exhibited by a
bilayer TiO2 film with embedded Au nanoparticles. Opt. Express 2010, 18, 16406. [CrossRef]

112. Muhammed, M.I.; Yahia, I.S.; Farid, A.S. Synthesis and characterization g-C3N4-doped PMMA polymeric nanocomposites films
for electronic and optoelectronic applications. J. Appl. Polym. Sci. 2022, 139, e53064. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.dyepig.2013.10.006
http://doi.org/10.1016/j.apsusc.2013.06.028
http://doi.org/10.1364/JOSAB.11.001009
http://doi.org/10.1016/j.cplett.2020.137727
http://doi.org/10.1016/j.molliq.2019.112057
http://doi.org/10.1016/j.optmat.2020.109880
http://doi.org/10.1002/pat.3520
http://doi.org/10.1364/OE.18.016406
http://doi.org/10.1002/app.53064

	Introduction 
	Experimental Technique 
	Materials and Preparation of the Samples 
	Absorption Measurements 
	X-ray Measurements 
	SEM and EDX Measurements 
	Z-Scan Analysis 

	Result and Discussion 
	SEM and EDX Analysis 
	XRD Analysis 
	Optical Parameters Deduced from UV-Vis Spectroscopy 
	Interband Transitions, Urbach Energy, and the Steepness Parameter (S) 
	Solar Protection Factors 
	Refractive Index, Attenuation Coefficient, and Optical Dielectric Constants 
	Volume and Surface Energy Loss Functions 
	Linear STATIC Refractive Index (no), High-Frequency Dielectric Constant (), and Optical Electronegativity (opt) 
	Nonlinear Optical Parameters 

	Nonlinear Optical Analysis by Z-Scan Technique 
	Investigation of Nonlinear Optical Parameters 
	Optical Limiting Effectiveness 


	Conclusions 
	References

