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Abstract: Placing micro-textures on a tool surface can play an anti-wear and friction-reducing role and
capture impurities and improve the tool-chip friction state, thus improving the cutting performance of
the tool and the quality of the workpiece. To ensure the processing quality in the micro-texture-coated
tool-cutting process, the process parameters and micro-texture parameters are limited to smaller
parameters, which reduces the processing efficiency and increases the cost. Aiming at this problem,
this paper designs orthogonal experiments of the cutting process and micro-texture parameters, builds
an experimental platform for milling titanium alloy with a micro-texture-coated ball-end milling
cutter, analyzes the influence of cutting parameters on tool milling performance and workpiece
quality, establishes a high fitting prediction model, and optimizes parameters. The results show
that the cutting parameters significantly affect the milling force, tool wear, and workpiece surface
roughness, which are in the first response level, and the micro-texture parameters, which are in the
second response level. It is proven that micro-texture has anti-wear and anti-friction effects, and
it is found that micro-texture parameters affect the evaluation index by changing the distribution
state of the micro-texture. It is found that the multiple linear regression model fits better. Parameter
optimization results are: v = 159.4232 (m/min), ap = 0.211 (mm), f = 0.06 (mm/r), micro-pit diameter
D = 62.3429 (µm), distance from blade L = 121.5184 (µm), and micro-pit spacing L1 = 235.6443 (µm). It
provides some guidance for the selection of micro-texture parameters and cutting parameters on a
micro-texture-coated tool.

Keywords: coated cemented carbide tool; micro-texture; cutting parameters; matching

1. Introduction

As a lightweight metal, titanium alloy is often used in lightweight designs, and its
material removal is large. However, because its processing quality is greatly affected by
temperature changes, the current cutting of titanium alloy is mainly limited to smaller
cutting parameters, which seriously affects the processing efficiency and indirectly increases
the production cost [1,2]. At present, in order to ensure the machinability of titanium alloy,
the tool surface will be coated to improve its friction and wear resistance. In addition, for
the processing of difficult-to-machine materials such as titanium alloys, the application of
surface micro-texture technology to the tool surface can improve the friction state during
the cutting process, thereby reducing tool wear and extending tool life [3,4]. It can be found
that the research on the matching of the cutting process and micro-textured tools is of great
significance for the rapid realization of processing objectives and cost reduction, as well as
the promotion of the continuous development of cutting to high efficiency and high quality.

Domestic and foreign scholars have studied the cutting process and micro-textured
coated tools from different aspects. Zhou [5] studied the mechanism of tool wear under
different cutting speeds through the combination of finite element simulation analysis and
cutting experiment and analyzed the cutting parameters that affect the cutting performance
index of the tool. Bi [6] used the control variable method to compare the experimental
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and theoretical analysis of different cutting parameters to find the optimal combination of
processing parameters. The experimental results showed that the surface roughness and
milling trace of the workpiece was sensitive to low spindle speed and high feed speed,
but not sensitive to cutting depth. Torrano [7] used three different finite element software
programs to establish three-dimensional models of Inconel718 to analyze and predict
residual stress. By changing the cutting speed and feed per tooth, the prediction model of
residual stress was obtained, and the accuracy of the prediction model of different analysis
software was compared. Li.A.H [8] found that when the cutting speed vc < 500 m/min, the
surface roughness decreases with the increase of cutting speed. When the cutting speed
vc > 500 m/min, the surface roughness value will increase with the increase in cutting
speed. Garrido [9] prepared pit-shaped micro-textures with laser cladding processing
technology and explored the relationship between micro-pit parameters and properties
through tribological experiments. The results showed that changing the micro-texture
parameters can change the performance of the micro-texture. Koshy [10] processed textures
with different regular morphologies, such as grooves and micro-pits, on the rake face
of the tooland carried out cutting experiments. The results showed that different micro-
texture parameters have a great influence on the performance of the tool, and all micro-
textures can improve the performance of the tool. Deba Kumar Sarma [11] et al. processed
grooves and pits on the surface of coated cemented carbide tools, and analyzed the effect
of micro-texture on coated tools, using cutting force, surface roughness and white layer
thickness as evaluation indicators. It was found that, compared with a pure-coated tool,
the addition of micro-texture made the tool performance better, while a micro-pittexture-
coated tool was better than a micro-groove-coated tool in terms of cutting force, white
layer thickness and friction coefficient. Tong X [12] designed an orthogonal dry-cutting
test, established a micro-texture distribution model under different cutting depths, studied
the influence of micro-texture parameters on tool milling performance under variable
cutting parameters, and optimized the combination of texture parameters according to
different evaluation indexes. To explore the role of micro-textured tools with different
shapes in the process of cutting titanium alloys, Wang Liang [13] selected several micro-
textures with different shapes and designed experiments with cutting parameters and
micro-texture parameters as changing factors. The results show that the micro-texture
shape had an effect on the positive pressure and surface friction coefficient of the tool
surface, and the cooling effect was restricted by the lubrication method. Rodrigo et al. [14]
studied the friction theory between the micro-textured surface of the tool and the chip.
Experiments showed that when the chip was continuous, the friction between the rake
face and the chip and the cutting force was reduced due to the micro-texture, and the
effect of discontinuous chips was not obvious. Therefore, cutting parameters also affect
the design of micro-texture. Cao Teng [15] designed surface micro-textures under different
cutting parameters in combination with micro-texture simulation morphology to study the
influence of surface micro-texture geometry on friction performance and provide a basis
for the optimization of processing parameters of micro-textured parts. Cheng Li [16] found
that, under the condition of variable cutting parameters, the placement of texture changes
the contact performance between the tool chip and the workpiece, effectively reducing the
main cutting force of the tool; after changing the cutting parameters, the cutting force of
the textured tool was affected to varying degrees.

In summary, when a micro-textured coated tool is used to process the workpiece
material, the cutting parameters have an important influence on the placement position
of the micro-texture on the tool surface, the distribution form of the micro-texture, and
the anti-wear and anti-friction effect of the micro-texture. Micro-texture parameters also
play a key role. Therefore, this paper studies the change of tool milling performance
under the joint influence of micro-texture parameters and cutting parameters when the
coating parameters are fixed. Taking a micro-texture coated ball-end milling cutter as
the research object, the experimental platform for milling titanium alloy was built. The
influence rule and mechanism of the combined action of micro-texture parameters and
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cutting parameters on milling force, rake face wear and workpiece surface roughness were
analyzed. The regression prediction model with a high fitting degree was established for
different evaluation indexes, and the parameters were optimized based on the artificial bee
colony algorithm.

2. Material and Methods
2.1. Tools and Workpieces

A YG8 tungsten-cobalt ball-end milling cutter was selected for the test. The tool type
was BNM-200, the diameter was 20 mm, the thickness was 5 mm, and the width was 15 mm.
AlTiN coating was deposited on the surface of the tool by physical vapor deposition. The
length of the special toolbar was 141 mm. The tool and its size are shown in Figure 1.
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The workpiece material used in the test is Ti6Al4 V, and the workpiece size is
130 × 76 × 60 mm. The titanium alloy square material test piece is shown in Figure 2.
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Figure 2. Test workpiece.

2.2. Orthogonal Experimental Design

Considering the cutting parameters (cutting speed, cutting depth, and feed rate)
and micro-texture parameters (micro-pit diameter, distance from the edge, and micro-pit
spacing), a total of 64 groups of six-factor eight-level orthogonal tests were designed. The
orthogonal experimental design is shown in Table 1. The parameter diagram is shown
in Figure 3.

2.3. Construction of the Experiment Platform

(1) Tool micro-texture preparation

The ZTQ-50 fiber laser (Zhengtian Laser, Beijing, China) is used to prepare micro-
texture on the rake face of the tool. The laser process parameters are: laser power, 40 W;
number of scanning times, 7; and scanning speed, 1700 mm/s. After the micro-texture
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preparation is completed, the tool surface is cleaned to ensure the quality of the tool
micro-texture. The prepared micro-texture morphology was observed using an industrial
camera tool image detection system, as shown in Figures 4 and 5. After measurement of
the prepared micro-texture, the error of the dimension parameter of the micro-pit texture
was less than 8%, within the allowable range, and the test results are considered credible.

Table 1. Orthogonal test parameters.

Factor

Level
Cutting Speed

v
(m/min)

Cutting Depth
ap

(mm)

Feed Rate
f

(mm/r)

Micro-Pit
Diameter

D
(µm)

Distance
from Blade

L
(µm)

Micro-Pit
Spacing

L1
(µm)

1 110 0.2 0.05 30 90 120
2 120 0.25 0.06 40 100 140
3 130 0.3 0.07 50 110 160
4 140 0.35 0.08 60 120 180
5 150 0.4 0.09 70 130 200
6 160 0.45 0.1 80 140 220
7 170 0.5 0.11 90 150 240
8 180 0.55 0.12 100 160 260
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(2) Milling experimental platform

The milling method was one-way cutting along the milling. To protect the tool tip
and give the tool a good cutting performance, the workpiece was placed at 15◦ with the
horizontal plane. The ball-end milling cutter milling on the workpiece surface is shown in
Figure 6. The cutting environment is dry cutting.
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Figure 6. Milling diagram.

A three-axis vertical milling machine (VDL-1000E produced by Dalian Machine Tool
Factory, Dalian, China) was used in the milling test. The clamping method of the titanium
alloy workpiece is shown in Figure 7, and the angle between the surface to be machined
and the horizontal plane of the machine tool guide rail is consistent with that of Figure 6.

(3) Detection equipment

A rotary dynamometer (Kistler, Wintertour, Switzerland) was used to collect the
milling force in the milling process. The sampling time was 60 s and the sampling fre-
quency was 10,000 Hz. After removing the outliers, the extracted milling force diagram
is shown in Figure 8. According to the image data, the component forces in the X, Y and
Z directions were extracted, and the resultant force was calculated as the milling force in
the milling process.

A white light interferometer (Taylor Hobson, Leicester, Britain) was used to measure
the surface roughness Ra of the workpiece. Each specimen was measured at three points
and the average value was recorded. The tool image detection system SH-VS4K and 4K
fixed-multiple coaxial white light lens were used to photograph the wear indication of
the rake face of the tool after milling, and then the picture was imported into Image-Pro
software to measure the wear of the rake face. The wear of the rake face refers to the wear
length perpendicular to the direction of the cutting edge. Taking the average value of the
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wear amounts of the two rake faces, the test site and the Image-Pro interface are shown in
Figure 9. Wear and roughness were measured at the same cutting stroke.
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3. Results and Discussion
3.1. Result Analysis of Milling Force

The experimental results of the milling force are shown in Table 2. The results of
the range analysis are shown in Figure 10. According to the chart, among the factors
affecting the milling force, the cutting parameters are in the first level, and the micro-
texture parameters are in the second level.

Table 2. Experimental results of milling force (N).

Number Milling
Force Number Milling

Force Number Milling
Force Number Milling

Force

1 209.28 17 220.81 33 208.92 49 250.33
2 236.3 18 224.18 34 273.11 50 228.78
3 286.72 19 215.69 35 273.17 51 263.1
4 269.36 20 272.83 36 292.2 52 269.22
5 322.27 21 293.44 37 318.69 53 290.22
6 341.57 22 322.42 38 332.68 54 326.84
7 331.21 23 365.27 39 342.79 55 342.48
8 363.51 24 349.07 40 369.44 56 398.74
9 237.58 25 215.2 41 215.92 57 260.12
10 219.94 26 258.37 42 226.7 58 255.24
11 274.51 27 259.07 43 298.02 59 259.99
12 292.63 28 319.36 44 310.61 60 299.1
13 296.87 29 336.37 45 316.33 61 298.87
14 321.46 30 294.65 46 323.95 62 335.45
15 342.73 31 345.83 47 334.53 63 383.75
16 293.33 32 396.02 48 356.82 64 401.74
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It can be seen from the figure that, considering the cutting parameters, the cutting
depth ap affects the milling force most significantly. The increase in cutting depth causes
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the milling force to increase greatly. This is because the increase in cutting depth will
increase the cutting width and the cross-sectional area of the cutting layer, increase the
cutting deformation and friction, and increase the cutting force. Theoretically, when ap sad
is doubled, the cutting force is also doubled. According to the experimental results, it is
found that the milling force is increased by about 40%, which proves the anti-wear and
anti-friction effect of micro-texture. The feed rate mainly affects the cross-sectional area of
the cutting layer, thus affecting the milling force. The cutting speed has little effect on the
milling force, and the milling force is in a relatively stable state.

Considering the micro-texture parameters, the distance from the edge has the most
significant effect on the milling force. With the increase of the distance from the edge, the
milling force decreases first and then increases. The reason is that when the distance from
the cutting edge is small, the micro-texture near the cutting edge is easy to bond and block,
the friction resistance increases, and the strength near the cutting edge is affected, so the
milling force is large. With the increase of the distance from the edge, the micro-texture
plays an anti-wear and anti-friction role and acts as a chip breaker. The positive effect
is greater than the negative effect, and the cutting deformation and friction are reduced,
so the milling force is reduced. When the distance from the edge is large, the effect of
micro-texture decreases, and the milling force increases. The micro-texture diameter and
micro-texture spacing mainly affect the cutting force by affecting the tool-chip contact area.

3.2. Analysis of Tool Wear Results

The experimental results of tool wear are shown in Table 3, and the results of range
analysis are shown in Figure 11. According to the chart, the main influencing factors
affecting tool wear are axial cutting depth ap, feed rate f, and micro-texture diameter D.

Table 3. Experimental results of tool wear (µm).

Number Tool Wear Number Tool Wear Number Tool Wear Number Tool Wear

1 46.21 17 61.69 33 28.29 49 71.97
2 34.36 18 49.72 34 55.82 50 50.01
3 45.4 19 39.22 35 62.88 51 53.95
4 54.33 20 37.38 36 82.49 52 55.9
5 66.6 21 47.61 37 57.27 53 76.57
6 58.5 22 66.63 38 74.52 54 28.53
7 47.38 23 78.48 39 53.4 55 89.25
8 72.97 24 101.66 40 67.46 56 79.19
9 41.47 25 50.37 41 48.8 57 16.41
10 38.85 26 69.93 42 29.76 58 57.79
11 54.34 27 36.55 43 88.22 59 48.99
12 45.34 28 41.87 44 68.25 60 43.52
13 59.45 29 56.87 45 77.96 61 47.2
14 66.04 30 55.44 46 63.54 62 91.15
15 66.6 31 73.08 47 79.18 63 85.35
16 50.43 32 90.31 48 69.69 64 112.19

It can be seen from the diagram that the tool wear VB increases with the increase in
the three elements of cutting parameters in a certain range. The cutting depth ap has the
greatest influence on the tool wear, which is slightly greater than the influence of the feed
rate, and the cutting speed has less influence than the feed rate. The main reason is that,
with the increase in feed rate, the cutting deformation work and friction work increase,
and the increase in cutting heat makes the tool wear more severely. The increase in cutting
depth increases the cutting heat, which is difficult to dissipate and aggravates the bonding
phenomenon, so the cutting temperature increases. The increase in tool–chip contact area,
the aggravation of the plowing phenomenon, and the increase in friction resistance lead to
a significant increase in tool wear.
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Considering the micro-texture parameters, the micro-texture diameter affects the tool
wear most significantly. With the increase of micro-texture diameter, the tool wear decreases
first and then increases. This is because when the diameter of the micro-texture is small,
the volume of the micro-pit is small, and the micro-texture will be filled with impurities
such as abrasive particles and wear debris in a short time, resulting in the blockage of the
micro-texture, resulting in adhesion and increased tool wear. With the increase of the micro-
texture diameter, the tool-chip contact area decreases, and the tool surface area increases,
which is beneficial to heat dissipation, and the micro-pit edge is conducive to chip breaking,
which reduces tool wear. When the micro-texture diameter is large, the edge of the micro-
pit will produce a ′secondary cutting′ phenomenon; the negative effect is greater than the
positive effect, resulting in increased tool wear. The micro-texture spacing and the distance
from the edge mainly affect the tool wear by changing the micro-texture distribution.

3.3. Result Analysis of Workpiece Surface Roughness

The experimental results of workpiece surface roughness are shown in Table 4, and
the results of range analysis are shown in Figure 12. According to the chart, the main
factors affecting the surface roughness of the workpiece are cutting speed v, feed rate f,
micro-texture diameter D and micro-texture spacing L1.

It can be seen from the figure that, considering the cutting parameters, the cutting
speed v affects the surface roughness of the workpiece most significantly. With the increase
in cutting speed, the surface roughness of the workpiece decreases. This is because when the
cutting speed is low, the cutting deformation is large, the system stability is poor, and burrs
are prone to occur, resulting in poor surface roughness. When the cutting speed increases,
the cutting deformation decreases, the milling force decreases, the system stability increases,
and the surface roughness of the workpiece is improved. With the increase in feed rate, the
surface roughness increases. This is due to the increase in feed rate, which increases the
residual height and is prone to burr and vibration, resulting in poor surface roughness.
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Table 4. Experimental results of workpiece surface roughness (nm).

Number Surface
Roughness Number Surface

Roughness Number Surface
Roughness Number Surface

Roughness

1 343 17 349 33 322 49 371
2 305 18 338 34 302 50 301
3 373 19 336 35 326 51 312
4 394 20 300 36 363 52 260
5 376 21 354 37 334 53 323
6 399 22 328 38 361 54 227
7 399 23 371 39 339 55 300
8 374 24 402 40 312 56 316
9 319 25 328 41 300 57 296
10 318 26 377 42 272 58 319
11 376 27 328 43 322 59 244
12 370 28 332 44 297 60 297
13 359 29 288 45 354 61 252
14 370 30 317 46 320 62 329
15 341 31 379 47 329 63 256
16 366 32 343 48 294 64 345
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Considering the micro-texture parameters, the micro-texture diameter affects the
surface roughness of the workpiece most significantly. With the increase in micro-texture
diameter, the surface roughness of the workpiece decreases first and then increases. This
is because the change of micro-texture diameter will affect the tool-chip contact area,
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the ability to store impurities such as abrasive particles and wear debris, and the heat
dissipation area, thereby constraining the milling force, milling temperature and system
stability, affecting the tool wear state, ultimately causing the surface roughness of the
workpiece. The change of micro-texture spacing will affect the distribution density of
micro-texture in the tool-chip contact area. A micro-texture density that is too small
will weaken the micro-texture effect. If the density of the micro-texture is too large, the
phenomenon of ′secondary cutting′ at the edge of the micro-texture will be aggravated,
and the positive effect of the micro-texture will be reduced.

4. Regression Model and Parameter Optimization
4.1. Establishment of the Prediction Model

(1) Empirical regression model

To clarify the complex exponential relationship between each test index and cutting
parameters and micro-texture parameters, an empirical regression model was established,
with milling force, tool wear and surface roughness as evaluation indexes. The established
empirical model of milling force, surface roughness and tool wear of a micro-textured
ball-end milling cutter for milling titanium alloy are:

F = 267.9168v0.1211ap
0.4886 f 0.1147D0.0053L−0.0194L1

0.0668

VB = 1130.138v0.2551ap
0.5733 f 0.6073D−0.1L−0.453L1

0.1212

Ra = 10658.35v−0.4792ap
0.0503 f 0.2171D−0.0268L0.016L1

−0.0908
(1)

(2) Multiple linear regression model

In many practical problems, the dependent variable is usually affected by many
factors. According to the empirical polynomial regression method, the predicted value of
the regression equation may deviate greatly from the true value. It is of great significance to
improve the prediction accuracy of the regression equation by retaining the items that have
a significant influence on the evaluation index and establishing the ′optimal′ regression
model. The multiple linear regression method is developed based on this [17,18].

Finally, the equation established by the multiple regression principle is as follows:

F = 296.65 + 9.04v + 71.13ap + 14.43 f + 0.7712D− 3.02L + 7.04L1
+13.05vap − 6.87vL1 + 5.65ap f − 6.82apL− 9.42 f D

(2)

VB = 59.70 + 5.67v + 16.50ap + 15.41 f − 2.96D− 6.21L + 2.35L1
+6.05vap + 13.17v f − 10.81apD− 7.48 f D + 7.25 f L + 4.91LL1

(3)

Ra = 330.42− 38.14v + 9.93ap + 30.03 f − 2.44D + 1.33L− 10.93L1
−33.41vap + 11.01vL− 19.02apL1 + 17.10DL + 22.88LL1

(4)

(3) BP neural network milling performance prediction model

Considering that there are many factors in this experiment, the mathematical equation
established by the traditional multiple regression model have difficulty achieving the goal,
so the milling performance is predicted by establishing a BP neural network. A BP neural
network does not need to clarify the mapping relationship between independent variables
and evaluation indicators. Through the training and operation rules of the neural network
itself, it can output the most suitable training results under the neural network rules [19].

The training initial setting is: Sigmoid function as activation function, andeight hidden
layer nodes. The experimental data are imported into Matlab. After the network structure
is built, the experimental data are divided into 44 groups as the training set, and the
remaining 20 groups as the test set. The output of the neural network prediction value is
observed in the test set. Figures 13–15 show, respectively, the milling force, tool wear and
surface roughness prediction value comparison chart and training process curve.
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After the training is completed, the root means square error and determination coeffi-
cient of the neural network with the best training effect is obtained in Table 5. It can be seen
that the coefficient of determination is above 75%, which proves that the training effect
is good.

Table 5. Root mean square error and determination coefficient of neural network.

Evaluating Indicator Root Mean Square Error Coefficient of
Determination r2

Milling force 21.025 83.062
Tool wear 8.3378 76.211

Surface roughness 19.374 80.752

4.2. Significance Test and Optimization of the Prediction Model

To further investigate the accuracy of the prediction model, it is necessary to test
its significance. The significance test of the established empirical model and multiple
regression model is carried out to evaluate the model. When the significance test is passed,
the root mean square error is used to describe the fitting degree between the predicted
value and the actual value, and the model with a high fitting degree is selected to improve
the prediction accuracy of milling performance.

(1) Empirical model significance test

Through variance analysis, the results of the variance analysis of the empirical regres-
sion model are shown in Table 6.

Table 6. Variance analysis of empirical regression model.

Degree of
Freedom

Regression Sum of
Squares

Mean
Square F Significance F

Milling force
Regression analysis 6 0.3308 0.0551 77.0077 1.6395 × 10−25

Residual error 57 0.0408 0.0007 — — — —
Grand total 63 0.3716 — — — — — —

Tool wear
Regression analysis 6 0.9397 0.1566 19.2547 4.0847 × 10−12

Residual error 57 0.4636 0.0081 — — — —
Grand total 63 1.40343 — — — — — —

Surface roughness
Regression analysis 6 0.12848 0.02141 24.6066 3.6314 × 10−14

Residual error 57 0.04960 0.00087 — — — —
Grand total 63 0.17809 — — — — — —

According to the analysis of the variance table, it can be seen that the degree of
freedom m between groups is 6, the degree of freedom within groups is 57, the total degree
of freedom n is 63, and the significance level is 0.05. The milling force, rake face wear,
and surface roughness P values of the empirical regression equation are 1.6395 × 10−25,
4.0847 × 10−12 and 3.6314 × 10−14, respectively, which are far less than the significance
level of 0.05. The F values of the three are 77.0077, 19.2547 and 24.6066, respectively. By
checking the F-test critical value table, F (m, n-m-1) = F0.05 (6.56) = 2.266 can be obtained.
The actual value of the statistic F is much larger than 2.266, and the significant difference can
be judged. The regression models of milling force, rake face wear and surface roughness
established by the empirical regression equations are highly significant.

(2) Significance test of tbe multiple regression model

A significance test was performed on the regression equation, as shown in Table 7.
According to the data results, it can be seen that the p-value of the multiple regression model
of milling force F, tool wear VB and surface roughness Ra is far less than the significance
level of 0.05, and the statistic F is also greater than 2.266. It can be judged that there is a
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significant difference, and the multiple linear regression model is significant. In addition,
the coefficient of determination (R2) of the regression formula is close to 0.9, which is close
to 1, indicating that the fitted multiple regression equation is better.

Table 7. Multiple regression equation milling performance significance.

Evaluating Indicator R2 Adjusted R2 F Significance F

Milling force F 0.918 0.894 49.39 <0.0001
Abrasion loss VB 0.841 0.803 22.44 <0.0001

Surface roughness Ra 0.858 0.828 28.49 <0.0001

(3) Evaluation of the milling performance prediction model

The root mean square error is commonly used to describe the fitting degree between
the measured value and the actual value. The smaller the root mean square error is, the
higher the fitting degree is. It can be seen from Table 8 that the root mean square error of
multiple regression analysis is smaller than that of the other two models, indicating that
the model has a good fit, so the multiple regression model is better. Therefore, the multiple
regression model is selected as the prediction model of milling performance and as the
objective function of subsequent parameter optimization.

Table 8. Root mean square error results.

Evaluating Indicator Empirical Formula Multiple Linear
Regression BP Neural Network

Milling force F 16.4745 15.9 21.025
Abrasion loss VB 10.1494 7.69 8.3378

Surface roughness Ra 21.4313 14.3 19.374

4.3. Establishment of the Optimization Model of Micro-Texture Parameters and Cutting Parameters

(1) Objective function and constraint conditions

Since there are multiple optimization objectives, the data need to be dimensionless
processed first, before establishing a model for an optimization. For the parameter opti-
mization process, the objective function should be determined first. For the optimization
problem of multiple objectives, the weighted objective function is often established by the
integration method. The optimization objective function of micro-texture parameters and
cutting parameters of the micro-texture ball-end milling cutter is as follows:

M′(X) = λ1F(X) + λ2VB(X) + λ3Ra(X) (5)

In the formula, λ1, λ2, and λ3 are weighted coefficients, which reflect the importance
of the objective function, and X is the optimal design variable. Then the constraint con-
ditions are established according to the selection of parameters in the actual test. The
feed per tooth satisfies the constraint: 0.05 mm/r ≤ f ≤ 0.12 mm/r; the cutting depth
satisfies the constraint: 0.2 mm ≤ ap ≤ 0.55 mm; the cutting speed satisfies the constraints:
110 m/min ≤ v ≤ 180 m/min; the micro-texture diameter satisfies the constraint:
30 µm≤D≤ 100 µm; the distance from the blade meets the constraint: 90µm ≤ L ≤ 160 µm;
and the micro-texture spacing satisfies the constraint: 120µm ≤ L1 ≤ 260µm.

(2) Implementation and verification of artificial bee colony algorithm parameter opti-
mization model

The artificial bee colony algorithm is a kind of swarm intelligence optimization algo-
rithm inspired by the behavior mechanism of bees picking honey [20]. Through Matlab
programming, set the same weight of F, VB and Ra, and set relevant parameters and con-
straints to search for the optimal solution. When v = 159.4232 (m/min), ap = 0.211 (mm),
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f = 0.06 (mm/r), D = 62.3429 (µm), L = 121.5184 (µm), and L1 = 235.6443 (µm), the milling
force, the surface roughness of the workpiece and the amount of tool wear are minimized.
The search results are shown in Figure 16.
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Based on the above optimization parameters, the verification test of the ball-end cutter
milling titanium alloy is carried out. The milling force F, tool wear VB and roughness Ra in
the machining process are measured, and the error between the optimization value and
the experimental value is recorded. The optimization and experimental results are shown
in Table 9.

Table 9. Relative error of experimental results.

Evaluating Indicator Optimization Actual Measurement Relative Error

Milling force (N) 203.58 219.52 7.26%
Tool wear (µm) 14.89 16.47 9.59%

Surface roughness (nm) 245.87 263.71 6.77%

According to Table 8, the relative error between the optimization results and the experi-
mental results is within 10%, which verifies the accuracy of the established optimization model.

5. Conclusions

1. The orthogonal experiments of cutting parameters and micro-texture parameters
are designed, and an experimental platform for milling titanium alloy with micro-
texture coated ball end milling cutters is established. The results show that the cutting
parameters affect the milling force, tool wear and workpiece surface roughness more
significantly, and the micro-texture parameters are in the second response level. It
is found that micro-texture parameters limit the effect of micro-texture by changing
its distribution in the insertion region, thereby affecting milling performance and
workpiece surface quality. The effect of micro-texture on anti-wear, friction reduction,
heat dissipation and chip storage has been demonstrated.
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2. Based on the empirical regression method, multiple linear regression method and
BP neural network method, the prediction models of milling force, tool wear and
workpiece surface roughness are established. The root mean square error is used to
describe the fitting degree, and it is found that the multiple linear regression method
has the highest fitting degree.

3. Taking milling force, tool wear and workpiece surface roughness as evaluation in-
dexes, the cutting parameters and micro-texture parameters are optimized based on
the artificial bee colony algorithm. The optimization results are: v = 159.4232 (m/min),
ap = 0.211 (mm), f = 0.06 (mm/r), D = 62.3429 (µm), L = 121.5184 (µm), and
L1 = 235.6443 (µm).
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