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Abstract: There has been an increase in interest in developing functional polymer composites based
on green chemistry principles. The purpose of this study was to investigate the preparation of
functional epoxy/carbon nanotube nanocomposites using ball milling methods. In contrast to
mechanical mixing, ball milling promoted good dispersion of CNTs within the epoxy matrix, thereby
improving their mechanical properties and electrical conductivity. In epoxy nanocomposites with ball
milling, Young’s modulus and tensile strength were increased by 653% and 150%, respectively, when
CNT loading was 1.0 vol%. Additionally, the ball milling of CNTs improves their dispersion, resulting
in a low percolation threshold at 0.67 vol%. The epoxy/CNT film sensor that was produced using
the ball milling approach not only exhibited high reliability and sensitivity to mechanical strains
and impact loads, but also possessed the ability to self-detect damage, such as cracks, and accurately
locate them. This study marks a notable milestone in the advancement of functional epoxy/CNT
composites through the ball milling approach.

Keywords: epoxy; carbon nanotube; dispersion; ball milling

1. Introduction

Epoxy resins, a crucial type of thermosetting polymers [1], are becoming increasingly
popular for various applications such as in-surface coating [2], painting, and laminates,
due to their desirable properties, including high strength, low creep, minimal curing
shrinkage, excellent chemical and corrosion resistance, good workability, cost-effectiveness,
and compatibility with a wide range of substrates [3–5]. Epoxy resin is an intrinsically
non-conductive material with a conductivity of approximately 10−13 S/cm. However, there
is a significant need for electrically conductive epoxy composites in the aerospace and
electronics industries [6], primarily materials that are electrically anti-static. To meet this
demand, conductive nanofillers such as metal-based particles and carbon-based materials
are added to the epoxy matrix to improve its electrical conductivity. Self-sensing refers
to the ability of a structural material to sense its own condition, such as strain, damage,
and temperature. Structural materials possess intrinsic properties that can be leveraged
to achieve self-sensing. Accurate detection and measurement of damage in structural
components are critical, as they provide valuable information for maintenance and re-pair,
particularly in the field of civil engineering [7].

With the increasing demand for flexible and multifunctional materials that possess
enhanced mechanical and electrical properties, especially for specific applications such as
modern electronics, aerospace, and automotive structures [8–11], the development of ad-
vanced epoxy composites has received significant attention. However, the poor mechanical

Coatings 2023, 13, 649. https://doi.org/10.3390/coatings13030649 https://www.mdpi.com/journal/coatings

https://doi.org/10.3390/coatings13030649
https://doi.org/10.3390/coatings13030649
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/coatings
https://www.mdpi.com
https://doi.org/10.3390/coatings13030649
https://www.mdpi.com/journal/coatings
https://www.mdpi.com/article/10.3390/coatings13030649?type=check_update&version=1


Coatings 2023, 13, 649 2 of 12

and functional properties of epoxy resins significantly limit their wide-ranging applica-
tions. To address this challenge, the incorporation of nanofillers into epoxy resins through
nanocomposite technology has been shown to be a promising approach to improving their
functional, electrical, and structural properties [12–15]. The enhanced properties of these
composites could lead to their potential application in signal sensing, depending on their
attained features [16–18].

A variety of conductive materials, such as gold nanoparticles, gold and silver
nanowires [19], graphene [20–22], and carbon nanotubes (CNTs) [23], were investigated for
the development of multifunctional polymer-based composite films. Due to their high den-
sity, metal-based sensors are usually heavy and have poor stretchability. When compared
to metallic nanoparticles, polymeric composite films and sensors developed using carbon
nanotubes and graphene are light, flexible, and stretchable.

CNTs are one-dimensional (1D) tubes with exceptional mechanical properties and
aspect ratios ranging from 30 to thousands. CNTs and CNT-based derivatives [24–26]
have seen a significant increase in interest in recent years due to their high chemical
stability, unique morphology, and electronic and mechanical properties. Adding CNTs or
CNT derivatives to polymers at extremely low loading enhances their electrical, thermal,
and mechanical properties [27]. Several studies have investigated the structure-property
relations of polymer/graphene and CNT nanocomposites. The dispersion and interfacial
adhesion of carbon-based nanomaterials within an epoxy matrix are critical factors affecting
the performance enhancement of epoxy nanocomposites [28–32]. In addition, it is important
to note that polymer properties, nanofiller conductivity, structural characteristics, and
dispersion quality are key factors affecting composite-based sensor performance.

For compounding nanofillers with epoxy, there are several traditional methods, includ-
ing in-situ polymerization, solution mixing, and melt compounding, that cause pollution
to the environment and do not adhere to sustainable development and green chemistry
concepts. In the present study, a green, cost-effective method is presented for the manu-
facture of high-performance epoxy nanocomposites containing homogeneously dispersed
nanofillers. Low-cost, environmentally friendly, large production scale, and versatile ball
mills have been widely used in industrial production for many years. A growing focus
has been placed on eco-friendly polymer composite synthesis in recent years. For example,
Deng et al. describes how wet ball milling was used to uniformly disperse and reduce the
size of clusters of halloysite particles in an epoxy matrix [33], whereas planetary mechanical
milling was used to fabricate a UV-curable epoxy/OMMT nanocomposite [34].

Using ball-milled carbon nanotubes (CNTs) may improve their dispersion within the
epoxy matrix, resulting in enhanced mechanical and functional properties. In this study,
we examine the morphology, mechanical properties, and functional properties of epoxy
nanocomposites. Electrical and thermal conductivity, as well as self-sensing properties,
have been demonstrated in epoxy/CNT nanocomposites. Ball milling is a low-cost, eco-
friendly, and practical method for dispersing CNTs and producing high-performance epoxy
nanocomposites, according to the study.

2. Experiment
2.1. Materials

Chengdu Organic Chemicals Pty Ltd., Chinese Academy of Sciences, provided mul-
tiwalled CNTs with diameters ranging from 8–15 nanometers, lengths of approximately
50 µm, and 98% purity with intrinsic electrical conductivity > 100 S/cm. We purchased
184–200 g of diglycidyl ether of bisphenol A (E-51) from Nantong Xingchen Synthetic Mate-
rial. Huntsman, China supplied Hardener, Jeffaimne D 2000 (J2000). The other chemicals
used were analytical grade and were used as received.

2.2. Preparation

Unwound carbon nanotubes: The unwinding of carbon nanotubes (CNTs) is based
on wall breaker crushing and ball milling combined, as shown in Figure 1. Briefly, 0.1 g
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of multi-walled CNTs were dispersed in 200 mL of deionized water in a wall breaker for
30 min, with a 1 min break every 1 min, to avoid overheating. After blending, the 100 mL
CNTs suspension was poured into a ball mill jar containing zirconia balls 4 mm in diameter.
A rotation speed of 400 rpm was used and the grinding process was programmed to run for
30 h, with a 10 min break every 30 min to avoid overheating. The mixture was separated
by centrifugation, washed with deionized water, and freeze-dried.
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Figure 1. Illustration for the preparation of epoxy/CNT nanocomposites.

Epoxy/CNT nanocomposites: A predetermined weight of CNTs were dispersed in
epoxy resin (E-51) using magnetic stirring for 30 min at 80 ◦C. It was then subjected to
ball milling at 400 rpm for 12 h in a zirconia ball-milling container. In a glass container,
epoxy/CNT mixtures were transferred to jeffamine-D2000 (hardener) at a weight ratio of
19:50 (E-51: D2000). The mixtures were then degassed for ten minutes at room temperature.
The entire mixture was poured into a PTFE mold. We left the mold at 120 ◦C for 12 h. CNTs
were present in different fractions (0.25, 0.5, and 1.0 vol%) in the prepared nanocomposites.
Parallel to this, epoxy/CNT nanocomposites were produced by mechanical mixing in
a similar manner. As a result of the apparent density of the CNTs (2.26 g/cm3) and
the matrix density (1.1 g/cm3), the weight fractions (wt.%) were converted into volume
percentages (vol%).

2.3. Characterization

The microstructure of CNTs and epoxy nanocomposites was studied by transmission
electron microscopy (TEM) under a Philips CM200 microscope. TEM is operated at 200 KV
acceleration voltage. Carbon nanotubes were suspended in organic solvent -methyl-2-
pyrrolidone (NMP) at a concentration of 0.0004 wt.% and subjected to ultrasonic treatment
at 30 °C for 30 min. The mixture is dripped onto a copper grid and dried in a 90 °C fan oven.
Ultra-thin slices of 50 nm thickness were micro-cut from the prepared nanocomposites with
a Leica Ultracut S-microtome diamond knife.

As part of the tensile test, dumbbell-shaped samples were prepared in accordance
with ASTM D-638 (XIANGMIN, Shenzhen, China); the strain rate was set to 0.5 mm/min,
and the tension machine was equipped with two 2 KN load components. The Young’s
modulus of epoxy samples was determined between 0.05% and 0.15% strain. We tested
each fraction at least five times in order to determine its average and standard deviation in
terms of tensile properties.

The thermal stability was determined by TA Q-50 (USA) curves at 20 ◦C/min from
room temperature to 800 ◦C under N2.

The electrical conductivity of the nanocomposites was measured with a Keisley 6517B
high resistivity meter (Tektronix, Inc, Shanghai, China), resistivity model 8009. Samples
with a thickness of 2 ± 0.5 mm and a diameter of 50 mm were tested at room temper-
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ature. Three measurements were made to obtain the average thermal conductivity. An
epoxy/CNT thin film sensor was measured with a FLUKE 2638A multimeter (Fluke Cali-
bration, Beijing China) using a two-point method. During testing, two copper electrical
contacts were placed on the film at a spacing of 30 mm using silver paint rings.

3. Result and Discussion
3.1. Analysis of Carbon Nanotube

Thermogravimetric analysis (TGA) was employed to investigate the thermal stability
of carbon nanotubes (CNTs) under N2 atmosphere, with heating ranging from 50 to 800 °C,
as depicted in Figure 2a. The TGA results revealed that the CNTs did not exhibit any signifi-
cant weight loss at 800 °C, indicating their high thermal stability. After, the as-received CNT
product is unwound using the wall breaker and ball mill where the length of the CNTs will
be reduced. Under the shear force of the action, the intertwined CNTs will separate from
each other, resulting in a decrease in size. The transmission electron microscopy (TEM)
image of CNTs dropped from an aqueous solution is presented in Figure 2b, revealing
the individual existence of CNTs and confirming their well-dispersed and disentangled
characteristics. The homogeneous dispersion of CNTs is crucial for the development of
electrically conductive nanocomposites with high mechanical performance [35,36].
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3.2. Morphologies of the Nanocomposite

In order to investigate the dispersion of CNTs in the epoxy matrix, TEM images of
epoxy/CNT nanocomposites with different preparation methods were obtained at a volume
fraction of 0.50 and are presented in Figure 3. The mechanical mixing method resulted in
obvious CNT agglomeration in the epoxy matrix, likely due to uneven dispersion caused
by strong van der Waals interactions between the large number of CNTs in the matrix, as
shown in Figure 3(a1). Selected areas were further magnified in Figure 3(a2), revealing
entangled CNTs. In contrast, ball milling led to better CNT dispersion in the matrix, as seen
in Figure 3(b1). The shear force during ball milling mildly damaged the CNT end-caps,
leaving the ends open and transforming the long tubes into short fragments, as shown
in Figure 3(b2). The disordered edges at the ends of the CNTs in Figure 3(b2) suggested
that the ends were created after violently breaking the original CNTs, as opposed to the
ordered ends observed in Figure 3(a2). The high aspect ratio of CNTs, which can reach
up to 1000, enables them to form a global, rigid, and strong network inside the matrix,
resisting applied loads and exhibiting high Young’s moduli.
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3.3. Mechanical Properties of the Nanocomposites

Mechanical properties are an essential evaluation index for polymers in various ap-
plications. However, the incorporation of carbon nanomaterials significantly alters the
mechanical behavior of polymers. The mechanical properties of epoxy/CNT nanocom-
posites prepared by different methods was investigated, as presented in Figure 4. The
incorporation of CNTs into the epoxy via ball milling resulted in a more substantial im-
provement than the mechanical mixing method.
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The Young’s modulus and the tensile strength of the epoxy/CNT nanocomposites
increased by 653% and 150%, respectively, upon the addition of 1.00 vol% CNTs through ball
milling, which was higher than the values obtained for the mechanical mixing method, i.e.,
480% and 114%. The greater improvement in the mechanical properties of the epoxy/CNT
systems prepared by ball milling may be attributed to the superior dispersion of CNTs in
the epoxy compared to the mechanical mixing process (see Figure 3). Ball milling mildly
damaged the CNT end-caps, leaving the ends open and transforming the long tubes into
short fragments, which achieved a relatively uniform dispersion of CNTs in the matrix in
Figure 3. The well-dispersed CNTs in the matrix resulted in the formation of more uniform
stress concentration centers in the matrix and reduced the failure strength of the samples
prepared by mechanical mixing. Furthermore, due to the excellent physical and chemical
properties of CNTs, stress can be effectively transferred from the matrix to the nano-filler,
thereby improving the mechanical strength of the epoxy.

3.4. Thermal Stability

Thermogravimetric analysis (TGA) was carried out to assess the thermal stability of
epoxy and epoxy/CNT nanocomposites under N2 atmospheres. Epoxy/CNT nanocom-
posites possess a one-stage degradation process under N2 in Figure 5a, exhibiting similar
decomposition behaviors to neat epoxy, where the first stage is mainly due to the thermal
degradation of epoxy chain networks. Tonset and Tmax respectively refer to the temperatures
where the 5% weight loss and the maximum weight loss rate occur. From Figure 5a,b,
Tonset and Tmax of epoxy/CNT nanocomposites are higher than a neat epoxy system,
which is expected as the introduction of CNTs improves the thermal stability of epoxy.
When compared to the epoxy/CNT prepared by the mechanical stirring (MS) method, the
epoxy/CNT systems prepared by ball milling (BM) exhibit higher Tonset and Tmax, which
could be attributed to the fact that the relatively uniformly dispersion of CNTs in the matrix
was improved by ball milling. The nanotubes of relatively uniform dispersion are more
likely to form a three-dimensional thermal barrier in the matrix.
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3.5. Electrical and Thermal Conductivity

Epoxy resin is an intrinsically non-conductive material with a conductivity of approx-
imately 10−13 S/cm. However, there is a strong need for electrically conductive epoxy
composites in the aerospace and electronics industries, primarily as materials that are
electrically anti-static. To meet this demand, conductive nanofillers such as metal-based
particles and carbon-based materials are added to the epoxy matrix to improve its electrical
conductivity. The formation of electrically conductive paths is dependent not only on the
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electrical conductivity of the nanofiller, but also on the geometry, volume fractions, and
level of dispersion of the nanofiller within the matrix. A conductivity level of approximately
~10−8 S/cm is adequate for anti-static applications.

Figure 6 depicts the electrical conductivity of the epoxy/CNT nanocomposites with
different preparation methods. It can be observed that the electrical conductivity of the
neat epoxy is ~3 × 10−13 S/cm, which falls within the range (10−12~10−14 S/cm) reported
in previous studies on epoxy [37–39]. The addition of CNTs using both hand stirring and
ball milling methods led to an increase in the electrical conductivity of the epoxy/CNT
nanocomposites. As the volume fraction of CNTs increased, the inter-filler distance reduced,
and at a certain threshold (percolation threshold), a network of conductive paths was
formed by the fillers, thereby rendering the insulative nature of the epoxy ineffective. The
experimental data were fitted into a power law equation to carry out further analysis:

σc = σf (ϕ − ϕt)
t (1)

where σc is the nanocomposite conductivity, σf is the conductivity of the CNT, ϕ is the CNT
vol%, ϕt is the percolation vol%, and t is the critical exponent. The epoxy/CNT systems
that used the ball milling method showed a higher increment in electrical conductivity
and a lower permeation threshold (0.67 vol%) compared to the mechanical mixing method
(0.93 vol%). Furthermore, it is worth noting that the critical exponent t = 2.89 for the ball
milling method is higher than the critical exponent t = 2.54 for the mechanical mixing
method, indicative of a CNT filler network closer to the 3D type architecture through ball
milling. These results suggest that ball milling can significantly improve the dispersion
of CNTs in the epoxy matrix, facilitating electron migration and creating continuous and
efficient conductive pathways. In summary, the high-energy ball milling process improved
the dispersion of the CNTs in the matrix, resulting in enhanced mechanical, electrical, and
functional properties.
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3.6. Piezoresistive Performance

In this section, 1.0 vol% epoxy/CNT nanocomposite film was selected to examine
its piezoresistive performance under various dynamic engineering applications. In the
discussion below, the resistance change refers to ∆R = R − R0 and the relative resistance
change is ∆R where R is the measured epoxy/CNT film resistance corresponding to the
stimulating signal and R0 is the film resistance at zero signal (zero strain for instance).

Sensitivity is one of the most critical parameters to characterize the performance of a
strain sensor, which is reflected as the slope of a sensitivity graph. The gauge factor of a
composite sensor can be described by a math function, in some cases, by taking the first
derivative of the polynomial regression function of a sensitivity graph [40]. By conducting
linear regression analysis for the testing data, a fitted function with R2 = 0.95 for the
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sensitivity graph in Figure 7a is found to be a two-order polynomial function, which can be
used to obtain a gauge factor. The gauge factor is calculated as:

GF =
d(∆R/ R0)

dε
(2)
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The gauge factor in Equation (2) is not a constant number but an algebraic function.
The equation was then used to draw a graph of gauge factor vs. strain in Figure 7a. By
substituting strain values of 0%–9.5%, the gauge factor was found to be in a range of 0–30 for
the epoxy/CNT composite sensor. At very low strain, the resistance of the nanocomposite
sensor changes little, and other environmental factors should cause fluctuations in the
gauge factor.

In Figure 7b, the flexible film sensor could respond to external strain within 120 ms
and recover to standby in 0.08 s. It is likely that its ultra-fast response-ability is related
to the rapid recovery from the epoxy deformation, in addition to the performance of
CNT materials.

Figure 7c depicts the resistance-impact energy response of the flexible film sensor.
Different impact energies are simulated by controlling the falling height of a steel ball.
The relative resistance increases linearly from 0 to 78% within an impact energy range
of 0–1 J. This indicates that the epoxy/CNT flexible film may work as a multi-stimulus,
high-sensitivity sensor for structural health monitoring.

High-mechanical durability is required for maintaining a stable input-output rela-
tionship in flexible sensors under long-term or cyclic loading. In Figure 7d, the flexible
sensor was tested under repetitive cycles of 3% strain at 1 Hz. To further demonstrate the
hysteresis characteristic of the flexible sensor, a typical loading-unloading cycle is inset in
Figure 7d. As can be seen in the magnified view insets, there is no obvious degradation in
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current amplitude during the whole process of loading/unloading test cycles. The excellent
durability is attributed to the intrinsic stability of the CNT and the strong attachment
between the CNT and the epoxy in the nanocomposite film.

3.7. Self-Sensing Performance

Self-sensing refers to the ability of a structural material to sense its own condition,
such as strain, damage, and temperature [41–44]. One key advantage of this approach is the
ability to monitor the entire volume of a component, in contrast to traditional strain gauges,
which provide localized measurements. Structural materials possess intrinsic properties
that can be leveraged to achieve self-sensing. Accurate detection and measurement of
damage in structural components are critical, as they provide valuable information for
maintenance and repair, particularly in the field of civil engineering [45–47].

Detecting and localizing damage in structural components is crucial for efficient
maintenance and repair. To achieve this goal, a flexible sensor is placed on a horizontal
table and a practical impact simulation is conducted. Figure 8a illustrates that the lower left
corner and center parts were hit. The resistance change rate of the film sensor varies under
external strain. Based on this principle, a strain contour cloud map can be generated to
identify the damage location. The map also indicates the areas with higher force, displayed
as red, and the regions with lower force, shown as blue.
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The monitoring of crack propagation is a crucial aspect of structural health monitoring.
For this purpose, a four-channel film sensor was employed to detect the location of the
damage by comparing the electrical resistivity measurements from different sensors. The
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sensor channels were selected to enable accurate identification of the damage location. To
monitor the crack growth over time, scissors were used to successively cut the channel
sensors 1–4, resulting in different electrical responses at different times in Figure 8b. It was
observed that the resistance change rate of the cut part increased with the length of cutting.
CNTs with relatively uniform dispersion tend to form three-dimensional interconnected
network structures in the matrix, which can transfer stress and electrons more effectively.
Therefore, the prepared epoxy/CNTs have high mechanical and electrical conductivity and
self-sensing performance, which greatly broadens their application fields.

4. Conclusions

A cost-effective and environmentally friendly mechanochemical approach was uti-
lized to synthesize high-performance epoxy nanocomposites with excellent mechanical
and functional properties. The effect of various preparation methods on the mechanical
properties of epoxy/CNT nanocomposites was investigated. Ball milling was found to
significantly enhance the dispersion of CNTs within the epoxy matrix, leading to a 653%
increase in Young’s modulus and a 150% increase in tensile strength for epoxy/CNTs at
1.0 vol%, compared to the respective values of 480% and 114% for the mechanical mixing
method. The electrical conductivity of the epoxy/CNT nanocomposites was also examined,
revealing that ball milling resulted in a lower percolation threshold of 0.67 vol%, compared
to 0.93 vol% for the mechanical mixing method. Moreover, the developed epoxy/CNT film
sensor exhibited remarkable strain sensitivity under tensile strain and impact loading and
demonstrated excellent self-sensing ability to damage evolution and position. This study
presents a novel approach for developing highly functional epoxy nanocomposites with
outstanding performance characteristics.
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