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Abstract: The flexibility of the bonds between the adjacent layers of multi-layered systems and their
degradation or the presence of delaminations strongly affect mechanical response and final collapse.
The formulation of accurate and efficient models able to capture the complex local distributions of
stresses and displacements, which arise due to the layered structure and imperfect bonding, is of
great importance for the design and verification of the systems. In this paper a novel and effective
“single-variable zigzag” theory is formulated to analyze beams with homogeneous layers made of the
same material and imperfect interfaces, which allow sliding between the layers. The primal variable
is a fictitious bending displacement, which is derived in order to define all other kinematic and
static quantities in terms of it. The “zigzag” technique describes multilayer systems with imperfect
interfaces as equivalent single-layers, so that the problem is governed by equations similar to those of
the classical theories for homogeneous beams; the “single-variable” formulation facilitates the imple-
mentation into numerical schemes and eliminates well-known numerical problems. Explicit solutions
are straightforwardly derived for simply supported beams subjected to uniform and sinusoidal
transverse loads. The results for some exemplary structural elements confirm the accuracy and effi-
ciency of the approach. The study is preliminary to the single-variable reformulation and numerical
implementation of the zigzag models for laminates with elastic mismatch between the layers.

Keywords: layered beams; zigzag theories; single-variable formulation; interfaces; delaminations

1. Introduction

Layered systems, laminated and sandwich composites are used in various applica-
tions requiring high strength/stiffness to weight ratios, such as in structures for sustaina-ble
marine, aerial and land mobility. They also find application in other classical and emerging
fields, from civil engineering to electronics. The layered architecture and the presence
of deformable or damaged interfaces, and delaminations, have important effects on the
local stress and displacement fields which cannot be predicted using classical beam/plate
theories for homogeneous structures or equivalent single layer theories [1–4]. The analysis
of such systems is not straightforward but of fundamental importance to control excessive
reductions of global stiffness or ultimate loads and failure by delamination [2,3]. They are
typically studied using discrete-layer structural theories [4,5], or through homogenized
models, such as the zigzag model used in this work [6–13].

Single-variable approaches to the analysis of structural problems characterized by
more than one variable are more convenient than standard approaches since they facilitate
the derivation of analytical solutions and allow us to overcome problems exhibited by
the numerical solution schemes [14,15]. In numerical finite element methods, for instance,
the discretization of the kinematic unknowns is usually performed using the same shape
functions, independently of the physical dimensions of the unknowns (displacements
and/or rotations) and of the consistency of the related discrete spaces. As a result, the
problem of shear locking may arise [16].

Coatings 2023, 13, 445. https://doi.org/10.3390/coatings13020445 https://www.mdpi.com/journal/coatings

https://doi.org/10.3390/coatings13020445
https://doi.org/10.3390/coatings13020445
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/coatings
https://www.mdpi.com
https://orcid.org/0000-0002-5682-9315
https://orcid.org/0000-0002-9746-1801
https://doi.org/10.3390/coatings13020445
https://www.mdpi.com/journal/coatings
https://www.mdpi.com/article/10.3390/coatings13020445?type=check_update&version=2


Coatings 2023, 13, 445 2 of 14

In single-variable approaches the system of coupled differential equations, that com-
monly governs any mechanical problem, is reduced to a single equation in one unknown
variable, called primal variable. The primal variable is chosen among the effective variables
or as a new fictitious variable, which is defined ad hoc so that all other variables can be
explicitly expressed in terms of the primal one. It is evident that such approaches exclude
a priori locking problems [17], because only one variable needs discretization.

Efficient single-variable approaches were recently proposed in [18,19] for the solution
of homogeneous Timoshenko beams (two variables in the classical approach), where differ-
ent choices for the primal variable were considered and discussed. These works inspired the
derivation of novel single-variable formulations for the analysis of laminated beams, which
were presented in [20,21] for perfectly bonded interfaces in the framework of both classical
first-order shear deformation laminate and zigzag theories (three variables in the classical
approach). The attention was focused on the effects of the elastic mismatch between the
layers of composite beams, which is responsible for complex zigzag distributions of stresses
and displacements in the thickness direction, and on the development and implementation
of isogeometric collocation schemes (see, e.g., [18,19,22]), useful to solve numerically more
complex problems. Some promising preliminary results were obtained and confirmed the
validity of the method and the feasibility of its extension to the analysis of multi-layered
systems with imperfect interfaces.

In this paper we propose the extension of the single-variable approach in [20,21] to
the zigzag model in [23] for beams with homogeneous layers and imperfect interfaces.
The model in [23] was built on the multiscale model originally formulated in [24] for
laminated plates and later applied to the solution of a wide class of problems: plane-strain
problems [25]; propagation of plane–strain harmonic waves [26]; brittle delamination
fracture under mode II dominant conditions [27,28]. The limitation to laminates consisting
of layers made of the same material excludes the influence of the elastic mismatch between
the layers and allows us to highlight and discuss the capabilities of the model, which is
able to accurately describe, with just one variable, the effects of the relative displacements
occurring at partially bonded layer interfaces. The goal of the paper is then to assess
the performance and accuracy of the single-variable approach when applied to a zigzag
theory including imperfect interfaces. This is preliminary to the future extension of the
approach to the analysis of laminates with elastic mismatch between the layers and to the
numerical implementation.

In Section 2 we first review the original zigzag theory and then show how the gov-
erning equations can be decoupled and reduced to a single equation in only one variable.
The equation coefficients evaluated for beams consisting of two and three layers with equal
thicknesses are listed in Appendix A, whereas the explicit solution for the single-variable
equation is reported in Appendix B for the two loading conditions of uniform and sinu-
soidal transverse loads. In Section 3 our formulation is verified through the analysis of the
local response of two- and three-layered simply supported beams. The effects of partially
bonded interfaces are widely discussed. The conclusions are presented in Section 4.

2. Materials and Methods

The layered beam considered in the present model is shown in Figure 1. A system
of Cartesian coordinates x1, x2, x3 is introduced with the axis x3 normal to the reference
surface of the beam, which can be chosen arbitrarily.

The beam has thickness h and length L and consists of n layers having constant cross
section and made of the same homogeneous, linearly elastic and orthotropic material, with prin-
cipal material axes parallel to the geometrical axes. The layer k (with k = 1, . . . , n numbered
from bottom to top) has thickness (k)h.
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Figure 1. Layered beam geometry.

The n − 1 interfaces joining the layers were treated as continuous zero-thickness
mathematical surfaces, where only relative sliding displacements may occur, and relative
transverse displacements are not allowed. This assumption neglected the presence of transi-
tion zones between the adjacent layers, which may occur in practice, due to manufacturing
processes, and require to be suitably modelled [29]. The assumption of sharp interface
was adequate when the thickness of such transition zones was small compared to the
layer thickness. Future extension of the single variable approach, accounting for the elastic
mismatch between the adjacent layers, will allow to analyze also the effects of interlayers
modelled as weak layers [30].

The sliding displacements at the interfaces were controlled by interfacial shear tractions
through linear interfacial constitutive laws. The interface k (with k = 1, . . . , n − 1 numbered
from bottom to top) has coordinate xk

3 and interfacial tangential stiffness Kk
S. For fully

bonded adjacent layers 1/Kk
S → 0 (perfect interface), so that no relative displacement

occurred. Partial bonding between the adjacent layers is characterized by Kk
S > 0 (imperfect

interface). In this case relative sliding occurred and proportional interfacial shear tractions
were transmitted across the interface. For a fully de-bonded interface Kk

S = 0 (delamination)
and no interfacial shear tractions were transmitted across the interface.

The beam was subjected to transverse mechanical loads applied on the upper, lower
and lateral bounding surfaces, so that the beam was under plane strain conditions parallel
to the plane x2 − x3. Residual stresses due to manufacturing or production processes,
and thermal stresses induced by thermal gradients under extreme environment conditions
were not considered. However, their contributions could be straightforwardly taken into
account, following the extension of the original zigzag model presented in [23].

The equilibrium problem for the layered beam is analyzed under the assumptions of:

• Small displacements, rotations and strains;
• Transverse normal stresses negligibly small compared to the other components and

set equal to zero (σ33 = 0).

A zigzag kinematic approximation was assumed, according to which the global dis-
placement field of standard first-order shear deformation theory, which was continuous
with continuous derivatives in the thickness direction, was locally enriched in order to
reproduce the zigzag patterns and the jumps at the interfaces. The enrichment functions
were derived on imposing continuity conditions on the transverse shear stresses and the
relationship between interfacial tractions and jumps at the interfaces. All details of the
derivations can be found in [23], where a general formulation including the effects of elastic
mismatch between the adjacent layers is proposed.

The local displacement field in the generic layer k was then written as follows

(k)v2(x2, x3) = v02(x2) + x3 ϕ2(x2) + [ϕ2(x2) + w0,2(x2)]Rk
S22(x3)

(k)v3(x2, x3) = w0(x2)
, (1)

with
Rk

S22(x3) = ∑k−1
i=1

C44

Ki
S

, (2)
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where: (k)vi with i = 2,3 is the local displacement in the layer k along the direction xi,
whereas (k)v1 = 0 for the assumed plane–strain conditions; v02, w0 and ϕ2 denote the
global degrees of freedom, which were continuous with continuous derivatives in the
thickness direction; C44 is the stiffness coefficient relating local shear stresses and strains for
the layer material through (k)σ23 = C442 (k)ε23 with 2 (k)ε23 = (k)v2,3 +

(k)v3,2. Equation (2)
represents the enrichment applied to the global longitudinal displacement field (linear
through the thickness) to account for the effects of the jumps at the imperfect interfaces.

The local stress field in the generic layer k was obtained from Equation (1) through 2D
compatibility and constitutive equations

(k)σ22(x2, x3) = C22

{
v02,2(x2) + x3 ϕ2,2(x2) + [ϕ2,2(x2) + w0,22(x2)]Rk

S22(x3)
}

(k)σ22(x2, x3) = C44[ϕ2(x2) + w0,2(x2)]
, (3)

where a comma followed by a subscript denotes derivation with respect to x2 ;
C22 = (C22 − C23C32/C33) relates local longitudinal normal stresses and strains through
(k)σ22 = C22

(k)ε22 for the assumed plane–strain conditions, where C22, C23, C32 and C33 are
the coefficients of the 6x6 stiffness matrix of the layer material.

The interfacial tractions at the interface k are common to the layers k and k + 1 and
were related to the interfacial displacements by

(k)σ23(x2, x3 = xk
3) =

(k+1)σ23(x2, x3 = xk
3) = Kk

S[
(k+1)v2(x2, x3 = xk

3)− (k)v2(x2, x3 = xk
3)]. (4)

The homogenized equilibrium equations governing the problem were derived using
the Principle of Virtual Work and taking into account Equations (1)–(4). In terms of the
global displacements, they are given by

A22v02,22 + B22 ϕ2,22 + C0S
22 (ϕ2 + w0,2) ,22 = 0

(B22 + C0S
22 )v02,22 + (D22 + C1S

22 )ϕ2,22 + (C1S
22 + CS2

22 )(ϕ2 + w0,2) ,22 − A44(ϕ2 + w0,2) = 0
C0S

22 v02,222 + C1S
22 ϕ2,222 + CS2

22 (ϕ2 + w0,2) ,222 − A44(ϕ2 + w0,2), 2− f3 = 0
, (5)

with coefficients

(A22, B22, D22) = ∑n
k=1 C22

∫ xk
3

xk−1
3

(1, x3, x2
3)dx3, CS2

22 = ∑n
k=1 C22(Rk

S22)
2 (k)h,

(C0S
22 , C1S

22 ) = ∑n
k=1 C22Rk

S22

∫ xk
3

xk−1
3

(1, x3)dx3, A44 = k44C44h + ∑n−1
k=1

(C44)
2

Kk
s

,
(6)

where f 3 denotes the distributed transverse global load (positive if upward). The coefficients
A22 and D22 are the extensional and bending laminate stiffnesses; B22 is the coupling
stiffness of the laminate and relates bending strain with normal force and vice-versa. Note
that, for the homogeneous laminates under consideration, B22 = 0 when the reference
surface x3 = 0 was chosen at the mid-thickness plane; however, the membrane and bending
equilibrium problems remained coupled due to the presence of the coefficient C0S

22 , which
was related to the imperfect interfaces. The shear correction factor k44 introduced in
A44 allowed us to improve the treatment of shear, given the limitations of the first-order
shear deformation theory used to describe the global kinematics [3]. The coefficients for
homogeneous laminates consisting of two and three layers having equal thickness are listed
in Appendix A.

Equation (5) is a system of three coupled differential equations in the three unknowns
v02, w0 and ϕ2 with boundary conditions prescribed at the ends x2 = 0,L with outward
normals n = {0,∓1,0}T on the kinematic and/or static energetically consistent quantities.

v02 or N22n2 =
[

A22v02,2 + B22 ϕ2,2 + C0S
22 (ϕ2 + w0,2),2

]
n2

w0 or Q22n2 =
[
−C0S

22 v02,22 − C1S
22 ϕ2,22 − CS2

22 (ϕ2 + w0,2),22 + A44(ϕ2 + w0,2)
]
n2

ϕ2 or M22n2 =
[(

B22 + C0S
22
)
v02,2 +

(
D22 + C1S

22
)

ϕ2,2 +
(
C1S

22 + CS2
22
)
(ϕ2 + w0,2),2

]
n2

w0,2 or MZS
22 n2 =

[
C0S

22 v02,2 + C1S
22 ϕ2,2 + CS2

22 (ϕ2 + w0,2),2

]
n2

. (7)
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When the layers were perfectly bonded (1/Kk
S → 0 for all k = 1, . . . , n − 1), all

coefficients with upperscript S vanish and Equations (5)–(7) coincided with those of first-
order shear deformation theory.

The system of coupled differential Equations (5)–(7) were here decoupled and a single
equation in only one unknown variable was obtained. In order to do this, we followed the
approach proposed in [18] and split the global transverse displacement w0 into a bending
part, w0b, and a shear part, w0s, which are defined as follows

w0 = w0b + w0s, ϕ2 = −w0b,2, ϕ2 + w0,2 = w0s,2. (8)

The bending part w0b was then selected as primal variable. This special choice of a
fictitious bending displacement as primal variable allowed us to express all kinematic and
static variables in terms of the new primal variable and its derivatives and was shown to
be particularly efficient for future implementation in numerical solution schemes.

Substituting Equation (8) into Equation (5) yielded

A22v02,22 − B22w0b,222 + C0S
22 w0s,222 = 0

(B22 + C0S
22 )v02,22 − (D22 + C1S

22 )w0b,222 + (C1S
22 + CS2

22 )w0s,222 − A44w0s,2 = 0
C0S

22 v02,222 − C1S
22 w0b,2222 + CS2

22 w0s,2222 − A44w0s,22 − f3 = 0
; (9)

whereas deriving once with respect to x2 the first and second of Equation (9) gave

A22v02,222 − B22w0b,2222 + C0S
22 w0s,2222 = 0

(B22 + C0S
22 )v02,222 − (D22 + C1S

22 )w0b,2222 + (C1S
22 + CS2

22 )w0s,2222 − A44w0s,22 = 0
. (10)

Combining Equation (10) with the third of Equation (9), v02,222 and w0s,22 were ex-
pressed in terms of w0b and its derivatives. Introducing such results into the third of
Equation (9), a sixth-order differential equation in the unknown w0b was finally obtained

w0b,222222 + Ω4w0b,2222 = Ω3 f3 + Ω2 f3,22, (11)

where
Ω4 = A44D−1

[
A22D22 − (B22)

2
]

Ω3 = A44D−1 A22

Ω2 = D−1
[

B22C0S
22 + (C0S

22 )
2 − A22(C1S

22 + CS2
22 )
] (12)

with
D = (B22)

2CS2
22 + (C0S

22 )
2
D22 + A22

[
(C1S

22 )
2 − CS2

22 D22

]
− 2B22C0S

22 C1S
22 . (13)

When w0b was determined as solution of the differential Equation (11), which con-
tained six arbitrary constants ci with i = 1, . . . , 6, the global rotation ϕ2 followed directly
from the second of Equation (8); the global transverse displacement w0 followed from the
first of Equation (8).

w0 = w0b + w0s with w0s = W4w0b,2222 + W2w0b,22 + W f f3, (14)

where

W4 = D
[

B22C0S
22 + (C0S

22 )
2 − A22(C1S

22 + CS2
22 )
]
/
[

A22(A44)
2(A22C1S

22 − B22C0S
22 )
]

W2 =
[
(B22)

2 + B22C0S
22 − A22(C1S

22 + D22)
]
/(A22 A44)

W f =
[

B22C0S
22 + (C0S

22 )
2 − A22(C1S

22 + CS2
22 )
]2

/
[

A22(A44)
2(B22C0S

22 − A22C1S
22

] . (15)
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The global longitudinal displacement v02 followed from the integration of the first
of Equation (9), also using the second of Equation (14), and required the introduction of
two additional arbitrary constants c7 and c8, as follows

v02 = V3w0b,222 + V1w0b,2 + Vf

∫
f3dx2 + c7x2 + c8, (16)

with

V3 = DC0S
22 /
[
A22 A44(A22C1S

22 − B22C0S
22 )
]

V1 = B22/A22

Vf = C0S
22

[
B22C0S

22 + (C0S
22 )

2 − A22(C1S
22 + CS2

22 )
]
/
[
A22 A44(B22C0S

22 − A22C1S
22 )
] . (17)

The single-variable boundary value problem governed by Equations (11)–(17) was
completed by eight boundary conditions, imposed at the beam ends x2 = 0,L on the global
displacements or on the force and moment resultants according to Equation (7).

It is worthwhile noting that the general solution of the sixth-order linear differential
Equation (11) in the primal variable w0b could be obtained quite straightforwardly and
could be written in different forms depending on the constant coefficients, which can either
vanish or be positive or negative for given thickness and material of the layers and stiffness
of the interfaces. As an example, in Appendix B the general solution of Equation (11) was
provided for laminate beams satisfying the condition Ω4 < 0, as in the case of layers having
equal thickness and with a mid-thickness reference surface.

Finally, once the boundary value problem had been solved, the local response for
each layer and interface was obtained straightforwardly through Equations (1)–(4), but
for the transverse shear stresses, which were calculated a posteriori by satisfying local
equilibrium (k)σ22,2 +

(k)σ
post
23,3 = 0. Local equilibrium also led to an equilibrium solution

for the transverse normal stresses, (k)σ23,2 +
(k)σ

post
33,3 = 0.

3. Results and Discussion

This section presents the application of the single-variable formulation developed
in the paper to the analysis of two classical problems shown in Figure 2. A laminated
beam was simply supported at the ends and subjected to two loading conditions: a sinu-
soidal transverse load f3(x2) = q0 sin(πx2/L) (Figure 2a) and a uniform transverse load
f3(x2) = q0 (Figure 2b).

Figure 2. Simply supported beams subjected to: (a) sinusoidal and (b) uniform transverse loads.

The former problem is a classical study case, which was solved exactly within 2D
elasticity for perfectly bonded interfaces by Pagano [31] and more recently for elastic
interfaces in [32]. Its 1D solution according to the model presented in Section 2 was
given by Equation (B1) and Equation (B2). The 1D solution of the problem in Figure 2b,
according to our model, was given by Equations (B1) and (B3). For both problems the
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arbitrary constants in Equation (B1) were determined by imposing the boundary conditions
corresponding to simply supported ends, that is

w0(x2 = 0) = w0(x2 = L) = 0, v02(x2 = 0) = 0, N22(x2 = L) = 0,
M22(x2 = 0) = M22(x2 = L) = 0, MZS

22 (x2 = 0) = MZS
22 (x2 = L) = 0.

(18)

The beam under consideration had length L = 5h and consisted of n layers of equal
thickness (t = h/n) connected through elastic interfaces. In the applications, two- and
three-layer beams (n = 2,3) with stacking sequences (0◦/0◦) and (0◦/0◦/0◦), respectively,
were considered. Each lamina was assumed to be orthotropic with elastic constants EL,
ET = EL/25, GLT = EL/50, GTT = EL/125, νLT = νTT = 0.25. In all cases a mid-thickness
reference surface was chosen.

All results shown in what follows have been obtained for k44 = 5/6. In Figures 3–8
the dimensionless through-the-thickness longitudinal displacement, and bending and
transverse shear stresses are shown for different values of the interfacial stiffness. Pagano’s
2D-model-based exact solutions are also shown for both imperfect (red solid lines) and
perfect (red dotted lines) interfaces.

Figure 3. 2D exact and 1D zigzag solutions for simply supported two-layer beam (0◦/0◦) with L/h = 5
subjected to sinusoidal transverse load: (a) local longitudinal displacements (at x2 = 0); (b) bending
stresses (at x2 = 0.5L); (c) transverse shear stresses (at x2 = 0) determined from local equilibrium. The
red dotted lines correspond to the 2D exact solution for perfectly bonded interface.
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Figure 4. 1D zigzag solutions for simply supported two-layer beam (0◦/0◦) with L/h = 5 subjected to
sinusoidal transverse load: (a) local longitudinal displacements (at x2 = 0); (b) bending stresses (at
x2 = 0.5L); (c) transverse shear stresses (at x2 = 0) determined from local equilibrium.

Figure 5. 1D zigzag solutions for simply supported two-layer beam (0◦/0◦) with L/h = 5 subjected
to uniform transverse load: (a) local longitudinal displacements (at x2 = 0); (b) bending stresses (at
x2 = 0.5L); (c) transverse shear stresses (at x2 = 0) determined from local equilibrium.
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Figure 6. 2D exact and 1D zigzag solutions for simply supported three-layer beam (0◦/0◦/0◦) with
L/h = 5 having interfaces of equal stiffness and subjected to sinusoidal transverse load: (a) local
longitudinal displacements (at x2 = 0); (b) bending stresses (at x2 = 0.5L); (c) transverse shear stresses
(at x2 = 0) determined from local equilibrium. The red dotted lines correspond to the 2D exact solution
for perfectly bonded interfaces.

Figure 7. 1D zigzag solutions for simply supported three-layer beam (0◦/0◦/0◦) with L/h = 5
having interfaces of equal stiffness and subjected to sinusoidal transverse load: (a) local longitudinal
displacements (at x2 = 0); (b) bending stresses (at x2 = 0.5L); (c) transverse shear stresses (at x2 = 0)
determined from local equilibrium.
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Figure 8. 1D zigzag solutions for simply supported three-layer beam (0◦/0◦/0◦) with L/h = 5
having interfaces of different stiffness (K2

Sh/ET = 0.25) and subjected to sinusoidal transverse load:
(a) local longitudinal displacements (at x2 = 0); (b) bending stresses (at x2 = 0.5L); (c) transverse
shear stresses (at x2 = 0) determined from local equilibrium. The dotted lines correspond to the
solutions for both interfaces having equal stiffness K1

Sh/ET = K2
Sh/ET = 0.75 (red dotted lines) and

1.5 (blue dotted lines).

Figure 3 shows the local response for a simply supported two-layer beam with stacking
sequence (0◦/0◦) subjected to sinusoidal transverse load (Figure 2a) and having the elastic
interface of stiffness K1

Sh/ET =KSh/ET = 0.75. In these diagrams the 1D zigzag-kinematic-based
analytical results (black solid lines) are compared with Pagano’s 2D exact solution (red solid lines).
The comparison highlights the accuracy of the 1D zigzag-kinematic-based results. Slight differences
in the interfacial jumps of longitudinal displacement and bending stress, as well as in the peak values
of transverse shear stress, were due to the kinematic assumptions of the approximate zigzag model,
which assumed the longitudinal displacement as a piece-wise linear function of the through-thickness
coordinate with jumps at the interfaces. As shown in Figure 3a, the displacements of the more
accurate elasticity solution were nonlinear within each layer.

Pagano’s 2D exact solution for the perfectly bonded interface is also shown (red dotted lines) in
order to highlight how strongly the interfacial compliance affected the local response. Significant
jumps occurred at the interfaces and the absolute values of local displacements and stresses increased.

Figure 4 shows the results for varying interfacial stiffnesses K1
Sh/ET =KSh/ET = 0.25 (black

dash-dotted lines), 0.75 (black solid lines), 2.5 (black dashed lines) and 10 (black dotted lines). Very
low interfacial stiffnesses are indicative of weak bonds between the adjacent layers. The global
response tends to that of separate layers. Very high interfacial stiffnesses are indicative of strong
bonds between the adjacent layers. The global response tends to that of perfectly bonded layers.
From the results in Figure 4 the following conclusions can also be drawn. The more compliant the
interface, the higher the local displacements and stresses in the layers. As expected, the response
tends to that for a perfect interface on increasing the interfacial stiffness, and for KSh/ET = 10 the
solution nearly overlapped to that for perfectly bonded interface.

Analogous considerations can be drawn from Figure 5, where the local response for the same
beam subjected to uniform transverse load (Figure 2b) is shown. The loading condition appeared to
play a secondary role in comparison to that of the interfacial stiffness. A verification of the accuracy
of the zigzag model for the systems in Figures 3 and 4 was presented in [24].

Figure 6 shows the local response for a simply supported three-layer beam with stacking
sequence (0◦/0◦/0◦), interfaces of equal stiffness and subjected to sinusoidal transverse load. The 1D
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zigzag-kinematics-based analytical results are presented for interfacial stiffness K1
Sh/ET = K2

Sh/ET =
KSh/ET = 0.25 (black solid lines). The results confirmed that the zigzag model is able to reproduce
the results according to Pagano’s 2D exact solution (red solid lines).

Figure 7 shows the results for varying interfacial stiffnesses K1
Sh/ET = K2

Sh/ET = KSh/ET = 0.25
(black solid lines), 0.75 (black dashed lines) and 5 (black dotted lines). The presence of compliant
interfaces induced an increase in absolute values of local displacements and bending stresses, in
addition to quite large jumps at the very compliant interfaces. The limit value for the interfacial
stiffness for which the 1D solution virtually overlapped to the 2D solution was KSh/ET = 5, which is
half of the value for the two-layer beam. A verification of the accuracy of the zigzag model for the
systems in Figures 6 and 7 was presented in [25].

Figure 8 shows the local response for the same beam, but with the two interfaces of different
stiffness. The upper interfacial stiffness was assumed to be constant and quite low K2

Sh/ET = 0.25,
whereas that of the lower interface was varied: K1

S/K2
S = 3 (K1

Sh/ET = 0.75, red solid lines), 6
(K1

Sh/ET = 1.5, blue solid lines) and 10 (K1
Sh/ET = 2.5, green solid lines). The results obtained in the

case of identical interfaces with stiffnesses K1
Sh/ET = K2

Sh/ET = 0.75 (red dotted lines) and 1.5 (blue
dotted lines) are also shown.

In order to understand how the interface asymmetry affected the beam response, it is worth
comparing the red dotted and solid lines, as an example, that is the results related to interfaces with
K1

Sh/ET = K2
Sh/ET = 0.75 (equal interfacial stiffnesses) and those for K1

Sh/ET = 0.75 and K2
Sh/ET =

0.25 (different interfacial stiffnesses so that K1
S/K2

S = 3). A redistribution of the displacements
and stresses in the layers and across the interfaces was evident. The jumps of the longitudinal
displacements and bending stresses decreased at the lower stiffer interface, whereas significative
increases were experienced by the upper, more compliant interface. Interfacial tractions increased
noticeably at the lower interface, whereas they vanished at the upper interface. On the contrary,
increasing further the stiffness of the lower interfaces did not affect significatively the local responses.

4. Conclusions
The paper refers to the structural model in [23] which uses a zigzag kinematic approximation

and a multiscale approach to analyze layered beams with imperfect interfaces. The model depends
on only three displacement variables for any arbitrary number of layers and interfaces and is then
more efficient than layer-wise theories where the number of degrees of freedom is proportional to the
number of layers. The model is specialized here to mechanical transverse loadings and laminates
consisting of layers made of the same material and finds application in the analysis of unidirectional
laminated composites, where degradation and delamination of the interfaces are the main failure
mechanisms.

A single-variable formulation of the model is derived in order to reduce from three to one the
displacement unknowns and the equations governing the problem. The main advantages of this
novel formulation are the simplification of the analytical solutions and the numerical implementation
of the model, which can use efficient isogeometric schemes. The numerical solution fully avoids the
problem of shear-locking.

The application to two- and three-layered beams and the comparison with 2D elasticity solutions
highlights the accuracy of the single-variable technique in predicting the important effects of the
imperfect interfaces on the local response.

The model reproduces the more or less significant stress and displacement jumps at the interfaces
which are controlled by the interfacial stiffnesses. When the stiffnesses of the interfaces are different,
noticeable redistributions of both displacements and stresses across the interfaces and in the layers
are predicted.

Future extensions of the single-variable model will consider systems with layers made of
different materials, which also allow us to describe thick interlayers or transition zones between the
adjacent layers, thermal loadings and residual stresses or misfit strains.
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Appendix A

In this Appendix all coefficients in the equations governing the model described in Section 2,
which are defined in Equations (6), (12), (13), (15) and (17) and used in the paper having chosen a
mid-thickness reference surface, are reported.

Appendix A.1. Laminates Consisting of Two Layers Having Equal Thickness

In what follows, posing K1
S = KS and (k)h = t (k = 1,2) so that h = 2t, we have:

A22 = C22h, B22 = 0, D22 =
1
12

C22h3, (A1)

C0S
22 =

C22C44t
KS

, C1S
22 =

C22C44t2

2KS
, CS2

22 =
C22C2

44t
K2

S
, A44 =

C2
44

KS
+ C44k44h, (A2)

Ω4 = −8KS(C44 + k44KSh)
C22C44t

, Ω3 = −12KS(C44 + k44KSh)

C2
22C44t4

, Ω2 =
3(2C44 + KSh)

C22C44t3
, (A3)

W4 =
C

2
22t3(2C44+KSh)

24KS(C44+k44KSh)2 , W2 = −C22t2(3C44+2KSh)
6C44(C44+k44KSh) ,

W f = −
C22(2C44+KSh)2

8C44KS(C44+k44KSh)2 ,
(A4)

V3 = − C22C44t2

12KS(C44 + k44KSh)
, V1 = 0, Vf =

2C44 + KSh
KSh(C44 + k44KSh)

. (A5)

Appendix A.2. Laminates Consisting of Three Layers Having Equal Thickness

In this case, coefficients A22, B22 and D22 can be written as in Equation (A1), but with h = 3t
having posed (k)h = t (k = 1, . . . , 3). The other coefficients are:

C0S
22 =

C22C44t(K1
S+2K2

S)

K1
SK2

S
, C1S

22 =
C22C44t2(K1

S+K2
S)

K1
SK2

S
,

CS2
22 =

C22C2
44t
[
(K1

S)
2
+2K1

SK2
S+2(K2

S)
2
]

(K1
SK2

S)
2 , A44 =

C2
44(K

1
S+K2

S)

K1
SK2

S
+ C44k44h,

(A6)

Ω4 = − 9K1
SK2

S[C44(K1
S+K2

S)+k44K1
SK2

Sh]
2C22C44t

[
(K1

S)
2−K1

SK2
S+(K2

S)
2
] , Ω3 = − 2K1

SK2
S[C44(K1

S+K2
S)+k44K1

SK2
Sh]

(C22)
2
C44t4

[
(K1

S)
2−K1

SK2
S+(K2

S)
2
] ,

Ω2 =
4C44

[
(K1

S)
2
+K1

SK2
S+(K2

S)
2
]
+6K1

SK2
St(K1

S+K2
S)

3C22C44t3
[
(K1

S)
2−K1

SK2
S+(K2

S)
2
] ,

(A7)

W4 =
(C22)

2
t3
[
(K1

S)
2−K1

SK2
S+(K2

S)
2
]{

2C44

[
(K1

S)
2
+K1

SK2
S+(K2

S)
2
]
+hK1

SK2
S(K

1
S+K2

S)
}

6K1
SK2

S(K
1
S+K2

S)[C44(K1
S+K2

S)+hk44K1
SK2

S]
2 ,

W2 = −C22t2[4C44(K1
S+K2

S)+3hK1
SK2

S]
4C44[C44(K1

S+K2
S)+hk44K1

SK2
S]

,

W f = −
C22

{
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2
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2 ,

(A8)

V3 = −
C22C44t2(K1

S+2K2
S)
[
(K1

S)
2−K1

SK2
S+(K2

S)
2
]

6K1
SK2

S(K
1
S+K2

S)[C44(K1
S+K2

S)+hk44K1
SK2

S]
, V1 = 0,

Vf =
(K1

S+2K2
S)
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2C44

[
(K1

S)
2
+K1
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2
]
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1
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S)
}
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S(K
1
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Appendix B

In this Appendix the general solution of Equation (11) for the primal variable w0b is provided
for laminates satisfying the condition Ω4 < 0.

In this case, the roots of the characteristic equation, associated with the homogeneous differential
Equation (11) with f 3 = 0, are = ±

√
−Ω4 and = 0 having multiplicity 4. The general solution of

Equation (11) is then given in the form

w0b = c1 cosh(λx2) + c2sinh(λx2) + c3
x3

2
6

+ c4
x2

2
2

+ c5x2 + c6 + w0b, (A10)

where λ =
√
−Ω4 and w0b is a particular solution of Equation (11) depending on the distributed

transverse load. For a sinusoidal transverse load f3(x2) = q0 sin(πx2/L), then

w0b(x2) = q0L4 sin(πx2/L)(π2Ω2 − L2Ω3)/[π4(π2 − L2Ω4)]. (A11)

For a uniform transverse load f3(x2) = q0, then

w0b(x2) = q0x4
2Ω3/(24Ω4). (A12)
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