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Abstract: As semiconductor devices become miniaturized, the importance of the molecular-level
understanding of the fabrication processes is growing. Titanium nitride (TiN) is an important material
utilized in various architectural components of semiconductor devices requiring precise control over
size and shape. A reported process for atomic layer etching (ALE) of TiN involves surface oxidation
into titanium oxide (TiO2) and selective oxidized layer removal by hydrogen fluoride (HF). However,
the chemical selectivity of these Ti-based materials in the etching process by HF remains unclear. In
this study, computational chemistry methods utilizing density functional theory (DFT) calculations
were applied to the fluorination reactions of TiN, TiO2, and SiO2 to identify and compare the surface
chemical reactivity of these substrates toward etching processes. It is shown that the materials can
be etched using HF, leaving TiF4 and SiF4 as the byproducts. However, while such a TiN reaction is
thermodynamically hindered, the etching of TiO2 and SiO2 is suggested to be favorable. Our study
provides theoretical insights into the fluorination reactivity of TiN, which has not been reported
previously regardless of technological importance. Furthermore, we explore the etching selectivity
between TiN, TiO2, and SiO2, which is a crucial factor in the ALE process conditions of TiN.

Keywords: fluorination; etching; titanium nitride; titanium dioxide; silicon dioxide; computational
chemistry

1. Introduction

Titanium nitride (TiN) is an important industrial material with various widespread
applications because of its excellent mechanical stability and good electrical and thermal
conductivity. In the semiconductor industry, it is used as a diffusion barrier between
interconnect metals such as copper (Cu) with dielectric layers. In addition, it is employed as
metal gate electrodes due to its chemical stability and good adhesion to the substrates [1–5].
TiN is also highly resistant to corrosion and can withstand high temperatures, making
it suitable for use in the aerospace and automotive industries, such as in wear-resistant
coating and other high-stress applications [6–8]. Despite the excellent chemical resistance
of the bulk TiN material, its surface can be oxidized under exposure to an oxidative
atmosphere [9].

Atomic layer etching (ALE) is a technique used in microfabrication and nanofabri-
cation to precisely etch thin layers of material from a substrate [10–14]. One of the key
advantages of ALE over other etching techniques is its ability to achieve high precision
levels and control over the etch depth. The thickness of the material removed in each cycle
of the ideal ALE process is a constant value, thus the etched material’s total thickness can
be precisely controlled by adjusting the number of ALE cycles performed. In addition, the
highly conformal nature of ALE makes it possible to etch inside features with high aspect
ratios [15]. ALE involves sequential substrate exposure to a series of gases, reacting with
the surface to remove a material layer [16]. Such a process mainly consists of two chemical
reactions. First, a converted layer is formed by the reaction between the first etchant and
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the substrate. As the reaction between the second etchant and the converted layer proceeds,
volatile byproducts are generated, thereby etching the surface.

The ALE process of TiN has been developed following the miniaturization of semicon-
ductor devices. In a reported ALE process of TiN [17], the first conversion reaction forms a
TiO2 layer using oxidizing agents such as O3 or H2O2, whose thickness is quasi-limited
by slow O diffusion into TiO2. Then, hydrogen fluoride (HF) etchant reacts with TiO2 in
the second reaction to produce the volatile byproducts H2O and TiF4. However, because
HF does not etch TiN, the etch process effectively stops when TiO2 is completely removed
and TiN becomes exposed. Therefore, a constant etching rate, often called etch per cycle
(EPC), can be achieved, which is a requirement for ALE. In other words, the difference in
etching tendency between TiN and TiO2 by HF plays a decisive role in the ALE process
of TiN. A few other alternatives that reported the ALE processes of TiN also involve the
liberation of Ti via halogenation either by F or Cl [18–20]. In addition, SiO2 is ubiquitously
used in the semiconductor industry, which is known to be etched through a fluorination
reaction with HF [21,22]. However, in the aforementioned report on thermal ALE of TiN,
an optimized TiN ALE process showed high selectivity against SiO2, so that the etching
rate was significantly higher for TiN than SiO2 [17].

Using atomistic computational chemistry simulations, the pathways of each reaction
in the etching processes can be explored, and volatile byproducts can be inferred [23,24].
However, since the thermal ALE processes present various theoretical challenges, such as
self-limiting reactions and the generation of volatile reaction products, only limited studies
have been conducted to identify the reaction mechanisms [25–32]. In particular, while
the process conditions for fluorination and removal of Ti atoms from TiO2 by HF were
previously molecularly elucidated [33,34], its selectivity against TiN or SiO2 substrates is
yet to be known.

In this study, the reactivity toward the etching of TiN, TiO2, and SiO2 substrates by
HF is comparatively investigated using density functional theory (DFT) calculations. The
molecular adsorption mechanism of HF and possible etching products, such as TiF4, NH3,
H2O, and SiF4, were identified. It was observed that the dissociative HF adsorption and
the subsequent TiF4 desorption are preferable on TiO2 but not on TiN. The etching of SiO2
by HF was also found to be possible.

2. Computational Methods

DFT calculations were performed using the Vienna ab initio simulation package
version 5.4.4. The PBE exchange-correlation functional and D3BJ dispersion correction
were applied with projector-augmented wave methods. Surface models of rocksalt cubic
TiN (001), anatase TiO2 (101), and quartz SiO2 (0001), which are known to be the most stable
crystalline orientations of each material, were constructed (Figure 1). The top layers close to
the surface were optimized, while the bottom layers were fixed at their ideal crystalline posi-
tions. Cut-off energy values of (450, 450, 500 eV), and slab sizes in (length×width× height)
of (4.21 × 4.21 × 10.94), (10.46 × 7.61 × 10.30), and (4.93 × 4.93 × 11.86) Å3 were used for
TiN, TiO2, and SiO2, respectively. The vacuum space between the slabs was 15 Å to prevent
unphysical interlayer interactions. All calculations applied Monkhorst-Pack k-point mesh
settings of 5 × 5 × 1.

Calculations were performed to compare the reaction pathways and energies of HF
for the three substrates. For the TiN and the SiO2 substrates, 1 to 4 HF molecules were
added. In the case of the TiO2 substrate with a larger size, the calculation was performed
by adding 4, 8, 12, and 16 HF, respectively, according to the size ratio. Each energy was
divided by the number of HF to confirm the reaction tendency for each substrate.

The electronic energies of adsorption and desorption reactions (Eads) are expressed by
the following equation:

Eads =
(

Eadsorption + Ebyproduct

)
− (Eslab + EHF)

Here, Eads =
(

Eadsorption + Ebyproduct

)
−

(
Eslab + Eprecursor

) (1)



Coatings 2023, 13, 387 3 of 11
Coatings 2023, 13, x FOR PEER REVIEW 3 of 12 
 

 

 
Figure 1. Slab models of cubic TiN(001) (a,b), anatase TiO2(101) (c,d), and quartz SiO2(0001) (e,f) 
surfaces, showing side view (a,c,e) and top view (b,d,f). Ti = gray, Si = brown, O = red, N = blue, and 
H = white. 
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Figure 1. Slab models of cubic TiN(001) (a,b), anatase TiO2(101) (c,d), and quartz SiO2(0001)
(e,f) surfaces, showing side view (a,c,e) and top view (b,d,f). Ti = gray, Si = brown, O = red, N = blue,
and H = white.

Here, Eadsorption is the energy of the substrate after adsorption of HF molecules;
Ebyproduct is the sum of the energy of the gaseous byproducts; Eslab is the energy of the
initial substrate without HF; and EHF is the sum of the energy of HF molecules. For Gibbs
free energy (G) calculations, pressure and volume terms are ignored for the solid substrates
and only considered for the gaseous molecules, using the following equations.

U(T) = U(0) + ZPE + ∆U(0→ T) (2)

H(T) = U(T) + PV (3)

G(T) = H(T)− TS = U(0) + ZPE + ∆U(0→ T) + PV − TS (4)

U(0), zero-temperature internal energy, can be approximated as electronic energy; ZPE
is zero-point vibrational energy; ∆U(0→ T) is internal energy change at finite temperature
T; H(T) is enthalpy; and S is entropy. For the calculation of entropy of the surface structures,
the rotational and translational degrees of freedom are neglected.

3. Results and Discussions

The chemical reactivity of oxide or nitride surfaces can be strongly affected by the
presence and coverage of OH (hydroxyl) or NH (amino) groups on the surfaces [35–41]. At



Coatings 2023, 13, 387 4 of 11

process-relevant temperatures (ca. 400–600 K) and under vacuum environments, a low OH
group density is expected for TiO2 surfaces [41,42], thus an OH-free bare surface model
of TiO2 is considered. In contrast, SiO2 surfaces are expected to possess relatively high
OH group coverage even at high temperatures and under vacuum [43], and thus were
modeled as fully hydroxylated. In the TiN surface case, to the best of our knowledge,
there has not been conclusive experimental observation or a thermodynamic model for
the coverage of NH or NH2 groups under fabrication process conditions other than that
reporting (100) as the most stable surface orientation [44]. In the kinetic analysis of chemical
vapor deposition of TiN, it is often assumed that some NH2 and NH groups are present on
the substrate’s surface [45]. Still, it can be suspected that H adatoms on TiN surfaces may
easily desorb as H2, considering the low stability and small diffusion barrier of H adatoms
on TiN surfaces [46–48]. In addition, most previous theoretical studies on various surface re-
actions of TiN assumed bare surface models without terminating functional groups [49–53].
Therefore, a bare TiN(100) surface is assumed as the model for the TiN fluorination.

Figure 2 presents the surface structures of the TiN, TiO2, and SiO2 substrates according
to the number of HF molecules reacted. Adsorption of HF is assumed to initially occur
dissociatively so that F and H adatoms form on the (Ti, Si) and (N, O) atoms of the sub-
strate surfaces, respectively. Then, additional adsorption of HF leads to the formation
and desorption of TiF4 or SiF4, which creates a vacancy on the surface. It was assumed
that the reaction of multiple HF molecules would proceed step-by-step so that the sub-
sequent surface structure from additional HF adsorption originates from the previous
reaction’s product.

First, when one HF molecule reacts per one Ti atom on the TiN surface, Ti-F(*) and
N-H(*) are formed by dissociative HF adsorption, where (*) denotes the surface-adsorbed
species. For the adsorption of the second HF per Ti atom, we assumed two F and H form
bonds with each surface Ti and N atoms so that Ti-F2(*) and N-H2(*) are formed. Afterward,
the formation and dissociation of one NH3 are assumed to occur upon exposure to the
third HF per Ti atom, leaving N vacancy and Ti-F3(*) on the surface. In this structure, some
portion of the F atoms is in a bridging configuration between multiple Ti atoms, partially
occupying the N vacancy formed by the NH3 desorption. Thereafter, the formation and
dissociation of one TiF4 occur in the step of reacting four HF molecules per Ti atom, creating
another N-H(*) on the surface. The gaseous NH3 and TiF4 molecules do not participate
in the reaction after being generated as volatile reactants. The considered reactions are
summarized in Table 1.

Table 1. The sequential and overall surface reactions of each substate material with HF.

TiN

TiN(s) + HF(g)→ TiF(∗) + NH(∗) (reaction 1)
TiF(∗) + NH(∗) + HF(g)→ TiF2(∗) + NH2(∗) (reaction 2)
TiF2(∗) + NH2(∗) + HF(g)→ TiF3(∗) + NH3(g) (reaction 3)
TiF3(∗) + HF(g)→ TiF4(g) + NH(∗) (reaction 4)
Overall : 2TiN(s) + 4HF(g)→ TiF4(g) + NH3(g) + NH(∗) (reaction 5)

TiO2

TiO2(s) + HF(g)→ TiF(∗) + OH(∗) (reaction 6)
TiF(∗) + OH(∗) + HF(g)→ 1

2 Ti− F(∗) + 1
2 TiF3(∗) + OH(∗) + 1

2 H2O(g) (reaction 7)
1
2 TiF(∗) + OH(∗) + HF(g)→ 1

2 TiF3(∗) + H2O(g) (reaction 8)
TiF3(∗) + HF(g)→ 1

2 TiF4(g) + 1
2 TiF(∗) + 1

2 H2O(g) (reaction 9)
Overall : TiO2(s) + 4HF(g)→ 1

2 TiF4(g) + 1
2 TiF(∗) + 1

2 TiF3(∗) + 2H2O(g) (reaction 10)

SiO2

SiO2(s) + 2 OH(∗) + HF(g)→ SiF(∗) + OH(∗) + H2O(g) (reaction 11)
SiF(∗) + OH(∗) + HF(g)→ SiF2(∗) + H2O(g) (reaction 12)
SiF2(∗) + HF(g)→ SiF3(∗) + OH(∗) (reaction 13)
SiF2(∗) + OH(∗) + HF(g)→ SiF4(g) + 2OH(∗) (reaction 14)
Overall : SiO2(s) + 4HF(g)→ SiF4(g) + 2H2O(g) (reaction 15)

(*) denotes the surface-adsorbed species.
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number of HF molecules (1–4) reacted; (a) the side view and (b) the top view. The removed surface Ti
and Si atomic sites are marked with yellow. Ti = gray, Si = brown, F = green, O = red, N = blue, and
H = white. A part of the sub-surface atoms is hidden for presentation clarity.
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TiO2 was also considered as a substrate for the HF adsorption and etching of Ti.
Because there are four Ti atoms exposed on the TiO2 surface model, 4, 8, 12, and 16 HF
molecules were sequentially considered to react with the TiO2 substrate. Similar to TiN, Ti-
F(*) and O-H(*) are formed by dissociative adsorption of the first HF molecule per Ti atom.
Then, the second HF molecule per Ti (8 HF molecules on the calculation cell) is assumed to
undergo a disproportionation reaction so that Ti-F(*) and Ti-F3(*) are formed, and 1/2 H2O
molecule per surface Ti form from the O-H(*) and desorbs at this stage. Here, F atoms
bridging between Ti atoms are observable, especially for those in Ti-F3(*) configurations.
After exposure to the third HF per Ti atom (12 HF molecules on the calculation cell), the
Ti-F(*) is converted to Ti-F3(*), leaving one H2O molecule per Ti. Finally, adsorption of
the fourth HF per surface Ti atom would produce TiF4 and H2O as gaseous byproducts,
leaving Ti and O vacancies and Ti-F(*) and Ti-F3(*) on the surface. Therefore, we observe the
TiO2 surface becoming rougher at the atomic level upon initial exposure to HF. However,
such a locally roughened substrate region can be expected to have a higher chemical
etching rate upon further exposure to an additional etchant [54,55], eventually creating a
smoother surface.

In the SiO2 case, the substrate is assumed to be fully hydroxylated, so there are two
OH groups per surface Si atom before exposure to HF. Thus, for the first two HF molecules
per Si atom, dissociative adsorption of each HF molecule results in the desorption of one
H2O molecule and adsorption of one F on the surface Si atom, first to Si-F(*) and then to
Si-F2(*). Then, the third HF is assumed to break the bond between the surface Si and O,
thus a Si-OH is formed below Si-F3(*). Finally, adsorption of the fourth HF per surface Si
atom would produce SiF4 and H2O as gaseous byproducts, re-generating two OH groups
per now-exposed Si atom.

The reaction energies of TiN, TiO2, and SiO2 with HF were calculated and compared
(Figure 3a) to compare the tendency toward surface fluorination reactions of various
substrates. The energy per HF was calculated by dividing the reaction energy by the
number of HFs to compare the reactivity of the three substrates. TiN and SiO2 substrates
reacted with 1, 2, 3, and 4 HF molecules, while TiO2 reacted with 4, 8, 12, and 16 HF
molecules. The calculated energy change values were divided into the respective number
of HF molecules, as shown in Figure 3a.

First, in the case of TiN, the adsorption of the first HF into H and F adatoms is
exothermic and can be expected to occur. However, because subsequent adsorption of
additional HF, resulting in TiF2(*) and NH2(*), is highly endothermic (2.0 eV above the
initial coverage), it can be predicted that the adsorption of two HF molecules per surface Ti
atom would be difficult. Such sudden destabilization by adsorption of additional HF may
originate from lateral steric hindrance between the TiF2(*) and NH2(*) moieties (Figure 2b).
Although the overall energy is stabilized by the adsorption of the third and fourth HF per
surface Ti atom to form gaseous NH3 and TiF4, respectively, these steps would need to
undergo sequential addition of H and F atoms to the N and Ti atoms on the surface. Thus,
it can be predicted that the formation of NH3 and TiF4 volatile byproducts will be difficult
through the fluorination reaction of TiN. Furthermore, the etching of the TiN substrate
through fluorination is expected to be difficult to occur.

In contrast, for TiO2 and SiO2, each step in the surface reactions with HF is generally
exothermic. Furthermore, although some F atoms are suggested to remain after exposure of
the computational unit cell to 16 HF molecules, adsorption of more than 16 HF molecules
accompanying TiF4 desorption was found to be continuously exothermic (not shown).
Therefore, it is predicted that the chemical etching of TiO2 and SiO2 through fluorination
by HF is a preferred reaction.

However, it is notable that a fully hydroxylated surface was assumed for SiO2, allowing
for easier H2O byproduct formation and facilitating the SiF4 removal; zero OH coverage
was assumed on TiO2. As the etching of SiO2 by gaseous HF is known to be significantly
enhanced by forming a mixture with H2O [56], similar enhancements may occur for TiO2
as well. In such a case, the H2O generated by the HF reaction may further self-catalytically
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facilitate the etching reaction of TiO2. In contrast, the less-than-full actual OH coverage on
SiO2 may result in lower reactivity toward the HF etching in reality.
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(a) electronic energy of TiN, TiO2, and SiO2, and (b) Gibbs free energy changes of TiN at 250 ◦C and
400 ◦C.

The Gibbs energy difference for each reaction temperature between the substrate and
HF was calculated (Figure 3b) to more accurately identify the reaction preference according
to temperature. The temperature was compared from 250 to 400 ◦C, and the partial HF
pressure was calculated as 80 mTorr, similar to the conditions in the previous experimental
study on TiN ALE [17]. A negative value of the Gibbs free energy change predicts a
spontaneous reaction, while a positive value predicts the opposite. The Gibbs free energy
change value had a positive value in all reaction steps of TiN and HF. Therefore, it can be
predicted that the reaction is nonspontaneous. As the reaction involves the adsorption
of multiple gaseous molecules onto a surface of solid material, translation entropy loss
of the HF molecules results in nonspontaneous adsorption even for the lowest coverage
considered; such an effect is more significant at higher temperatures.

The current observation of preference toward fluorination etching partially agrees with
the previous experimental report on the TiN ALE process [17]. For the self-limiting etching
conditions to hold so that a constant EPC value can be achieved in such an oxidation-
fluorination sequence, the HF pulse should selectively etch only TiO2 layers on top of the
TiN surface but not the bulk of the TiN materials. Therefore, our theoretical observation
of selectivity toward initial fluorination showed that HF readily etches TiO2, but TiN is
resistant toward HF adsorption, which explains the core nature of the material properties
of TiN versus TiO2 that govern the ALE process.

The projected density of states (PDOS) of TiN(100) surfaces upon sequential reactions
with HF are obtained in order to guide future experimental studies. The PDOS of the bare
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TiN(100) surface (Figure 4a) shows good correspondence with the reported properties of
the bulk rocksalt TiN in the literature, exhibiting the characteristic metallic nature of which
the EF (Fermi level) is dominated by the Ti atomic orbitals [47,57]. Adsorption of F and H
adatoms results in characteristic valence level states, which are F2p at ca. −4 eV and H1s at
−7.0 eV below the EF, respectively (Figure 4b–d). In contrast, the creation of Ti vacancy
after removal of TiF4 (Figure 4e) does not significantly alter the PDOS compared to the
initial TiN(100) surface.
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Figure 2.

4. Conclusions

The fluorination and etching reactions of TiN, TiO2, and SiO2 surfaces by HF were
investigated using DFT calculations. In the case of TiN, it was confirmed that as the
adsorption and etching reactions progressed, the reaction was not favored. It was observed
that in the TiO2 and SiO2 cases, energy was stabilized as volatile byproducts such as TiF4,
SiF4, and H2O were produced. Therefore, it was found that TiO2 and SiO2 can be selectively
etched by HF, while TiN is resistant to etching in exposure to HF. Therefore, this study
clarified the initial surface reaction mechanism of the ALE process on TiN. Future studies on
elucidating the surface chemistry of the emerging ALE processes will further help develop
unit semiconductor fabrication processes.
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