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Abstract: A simple and convenient method is demonstrated in this work by continuously applying
uniaxial tensile strains to tune the high-frequency properties of flexible magnetic films. The magne-
tostriction effect causes the uniaxial magnetic anisotropy in the Ti/Fe/Ni81Fe19/Fe/Ti multilayer
film when the flexible substrate transitions from the convex state to the planar state after preparation.
In addition, the microstructure, magnetic domain morphology, and the high-frequency magnetic
performance of the pre-strained Ti/Fe/Ni81Fe19/Fe/Ti multilayer films are investigated. The results
show that the flexible Ti/Fe/Ni81Fe19/Fe/Ti multilayer films’ initial permeability can be monotoni-
cally varied over a hundred units, and the resonant frequency can be adjusted around 1.5 GHz. The
flexible Ti/Fe/Ni81Fe19/Fe/Ti films, with their elastic-tunable magnetic performance, are promising
candidate materials for flexible microwave devices.

Keywords: flexible magnetic films; high-frequency properties; magnetic domains; tunable resonance
frequency

1. Introduction

Microwave magnetic devices are indispensable components in satellite and mobile
communications systems [1–6]. The demand for microwave devices such as higher integra-
tion, higher operating frequency, and smaller size is an important reflection of the rapid
development of the electronic communication industry [7–9]. There is a significant demand
to improve the performance of magnetoelectronic units, which are the core components of
microwave devices. Further study of the relationship between the magnetic domain struc-
ture and the microscopic results of soft magnetic films in the origin of magnetic behavior is
an important prerequisite for optimizing magnetic properties [10–13]. In previous studies,
most of the magnetic films used in microwave devices were prepared using traditional rigid
substrates such as silicon and glass [14–16]. High-frequency microwave magnetic devices
are applied to reconfigurable electromagnetic interference shielding and wearable wire-
less transmission systems, and have been used in the development of flexible substrates.
These are the embodiment of the popularity of flexible electronic technology in recent
years [17,18]. The flexible high-frequency devices usually show good mechanical strain
adjustability [19–22]. Recently, Tang et al. reported amorphous CoFeB films deposited on
flexible polyethylene terephthalate (PET) substrates and the magneto-mechanical coupling
effect was studied [23]. Liu et al. fabricated flexible CoFeB films grown on pre-strained
polydimethylsiloxane, and the high-frequency characteristics of the film were adjusted by
changing the applied pre-strain [24]. Flexible magnetic thin films and spintronic devices
grown on plastic substrates are conformable, attracting extensive attention. However, the
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external strain caused by mechanical deformation can significantly change the magnetic
anisotropy due to the magnetostriction effect for magnetic thin films deposited on flexible
substrates, [25]. Previous works have shown that strain deposition is one of the simplest
and most effective methods to adjust the resonance frequency (f r) of magnetic films [25].
Thin films deposited on flexible substrates are useful in stretchable magnetoelectronics
and high-frequency electromagnetic devices due to their strain sensitivity. For practical
applications, such as microwave filters and inductors, the f r is related to strain-induced
magnetic anisotropy [26]. In addition, the ability to generate adjustable anisotropy through
pre-strain from the flexible substrate bending can eliminate the complex in situ annealing
process and clamping effect of the rigid substrate. Therefore, the magnetostrictive thin
films deposited on flexible substrates are suitable for studying the relationship between
magnetism and external strain. The high-frequency characteristics of magnetic thin films’
can be easily tuned by pre-stretching strain.

In this study, we prepared flexible soft magnetic films on PET using a self-made bend-
ing die and pre-stretching elastic substrate. The permalloys for changing the anisotropic
field Hk is preferred. Fe and Ni81Fe19 thin films were deposited on pre-stretched elastomeric
substrates by electron beam evaporation. The evolution of magnetic anisotropy with mi-
crostructure was studied. It is important to establish the relationship between magnetic
anisotropy, texture formation, magnetization reversal, and external strains. The continuous
tunability of magnetic films’ f r may pave the way for creating devices with mechanically
adjustable resonance frequencies suitable for various frequency-based applications.

2. Experimental Details

The TFNFT magnetic film consists of Ti/Fe/Ni81Fe19/Fe/Ti films having a thickness
of 2 nm /4 nm/100 nm/4 nm/2 nm, respectively, deposited on the PET flexible substrates
using the electron beam evaporation (EB-500). The magnetic anisotropy was controlled
by regulating the radius of curvature during the deposition. Figure 1 shows a schematic
diagram of the strain induced by bending the flexible PET substrate. Six bases with different
curvature were prepared to produce different compressive and tensile strains (ε = −0.26%,
ε = −0.52%, ε = −0.78%, ε = 0.26%, ε = 0.52%, ε = 0.78%). Then, different flexible substrates
were pasted on the convex mold and the concave mold so that different bending stresses
were introduced into the film sample through the flexible substrate. The induced stress
on the TFNFT films can be calculated by Hooke’s law, which describes the strain–stress
relationship in the film.
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The surface morphology, surface roughness, and average grain size of the PET/TFNFT
multilayer films were investigated and calculated by atomic force microscopy (AFM, Bruker
MultiMode8, Bruker, Billerica, MA, USA), and its scanning area was 2 × 2 µm2. The
hysteresis loop, coercivity distribution, and magnetic film interaction of the samples were
measured by using a vibrating sample magnetometer (VSM, Lake Shore 8604, Lake Shore
Cryotronics, Inc., Westerville, OH, USA). Magneto-optical Kerr microscopy (MOKE, Evico
Magnetics GmbH, Em-Kerr-Highres, Dresden, Germany) was used to study the domain
wall displacement and magnetic domain morphology of the samples. The longitudinal
Kerr effect was used to observe the magnetic domain structure. The permeability spectra
were obtained using the one port short-circuit microstrip transmission line perturbation
method and an Agilent network analyzer (PNA, N5227A, Keysight, Santa Rosa, CA, USA)
in the frequency range of 0.1–4 GHz [27].

3. Results and Discussion
3.1. Surface Morphology Analysis

The AFM images of the TFNFT multilayer films deposited on PET substrates at various
external strains are shown in Figure 2. The surface morphology’s evolution reflects the
growth mode change under different strains. Figure 2d shows the surface topography for
the TFNFT multilayer films without external strain, which has excellent uniformity and a
relatively smooth surface. When the strain is relatively small, as shown in Figure 2c,e, the
grain grows vertically, improving the densification and uniformity. When the compressive
strain increases, as shown in Figure 2d–g, the film’s surface morphology changes from a
flat needle to a valley pile shape. Due to the tensile stress and compressive stress, different
surface morphologies are formed. The magnetic moment distribution in the film varies
with the surface morphology. The Ra and D of the film are calculated from the AFM images,
as shown in Figure 3. When the compressive strain is changed from ε = 0 to ε = −0.78%,
the D increases from 66 nm to 88 nm. However, when the tensile strain is changed from
ε = 0 to ε = 0.78%, the D increases, and large particles appear on the film surface. It is
clear that the Ra of the TFNFT multilayer films first decreases and then increases with
strain. With the strain from ε = −0.78% to ε = 0.78%, the Ra of TFNFT multilayer films are
1.79 nm, 1.91 nm, 1.34 nm, 0.78 nm, 1.66 nm, 1.58 nm, and 2.41 nm. The reason may be
that with increasing strain, the Ra decreases slightly at the beginning of growth due to the
difference in growth mode, where the film is smooth in the absence of strain. When the
tensile and compressive strains increase, the microdefects increase, increasing Ra and D.
The difference in average grain size and surface morphology is caused by the restoration of
the flexible substrate from the arc surface with a different radius of curvature. Therefore,
the microscopic morphology of TFNFT multilayer films may change due to the diffusion
mechanism or local overheating, which is not surprising for a polymer substrate, because
of its low thermal conductivity [28].
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3.2. Static Magnetic Property

The magnetization (M)-magnetic field (H) hysteresis loops are measured along both
the easy axis (EA) and the hard axis (HA) in the plane of the TFNFT multilayer films grown
on flexible PET substrates, to investigate their magnetic properties. Figure 4 shows the in-
plane magnetic hysteresis loops of the TFNFT multilayer films at various strains. In-plane
measurements are mainly the characteristic of the in-plane uniaxial magnetic anisotropy.
As shown in Figure 4, the magnetic hysteresis loops along the EA are rectangular in
shape, while those along the HA are sheared. The coercivity (Hc) and the remanence
ratio Mr/Ms along the EA and HA obtained from Figure 4 are shown in Figure 5. The
remanence ratio Mr/Ms of the hysteresis loop measured along the EA increases from 0.69
to 0.92 as the tensile strain increases from ε = 0 to ε = 0.78%, while the remanence ratio
Mr/Ms of the hysteresis loop measured along the EA increases from 0.69 to 0.89 as the
compressive strain changes from ε = 0 to ε = −0.78%, indicating that the magnetic moments
are transversely aligned under both tensile and compressive strains. Due to the enhanced
uniaxial anisotropy, the coercivity field Hc measured along the EA increases from 5 Oe to
9 Oe, while the coercivity field Hc for the tensile strain increases correspondingly from
6.83 to 7.38. For the hysteresis loop measured along the HA, the value of Mr/Ms decreases
sharply from 0.49 to 0.20 and Hc increases from 7 Oe to 12 Oe with increasing compressive
strain from ε = 0% to ε = −0.78%. In contrast, the value of Mr/Ms decreases sharply from
0.49 to 0.15 and Hc increases from 7 Oe to 8 Oe with increasing tensile strain from ε = 0%
to ε = 0.78%. It follows that the EA of the film can be tuned to the HA by applying tensile
strain in the hard magnetization direction or compressive strain in the easy magnetization
direction of the film. Conversely, the HA of the film can be tuned to the EA. Therefore,
the magnetic anisotropy of the film can be effectively regulated by strain. The distinctive
features of uniaxial magnetic anisotropy are most likely generated by residual stresses
caused by the deformation of the PET substrate. The strain-induced uniaxial magnetic
anisotropy HK is closely related to the field corresponding to the intersection of the HA
and EA hysteresis loops [29]. It is obvious from Figure 4 that HK increases gradually with
increasing tensile strain, while HK decreases gradually with increasing compressive strain.
The stress has an obvious regulatory effect on the rectangular ratio and the corrective force
of the magnetization curve. In the direction of the easy magnetization axis of the TFNFT
film, the correction force increases with the enhancement of the stress-induced anisotropy.
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This is mainly because the enhancement of the magnetic anisotropy will hinder the rotation
of the magnetic domain, thus forming hysteresis, which increases the correction force of the
TFNFT film. However, when the magnetic field is perpendicular to the easily magnetized
axis, the control of compressive stress on the coercivity is not obvious.
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Figure 6 shows the FORC diagrams of TFNFT multilayer films at various external
strains. In Figure 6, the coercivity field distributions exhibit closed profiles, indicating that
the samples are in a single-domain state [30,31]. The coercivity distribution of the tensile
and the compressive strain in the HA and the EA are distributed wider in the transverse
axis direction, compared to the coercivity distribution in the absence of external strain, due
to greater coercivity. The vertical axis of the 2-D FORC diagram shows different magnetic
interaction, with the strain being ε = −0.78%, ε = 0, and ε = 0.78%. A broader distribution
along the Hu axis can be seen in Figure 6b,e, indicating the existence of strong magnetic
interaction. From Figure 6d, it can be seen that the coercivity distribution is relatively wide,
which is due to the appearance of aligned peaks in the surface morphology (as shown
in Figure 2f). It affects the distribution of coercivity and magnetic interactions when the
surface micromorphology clusters into packets (as shown in Figure 2a). Therefore, the
changes in surface micromorphology are closely related to the distribution of coercivity.
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3.3. Magnetic Domain Analysis

MOKE measurements of the TFNFT multilayer films are performed, and the images
are shown in Figure 7. The dark and light colors represent the two different states of
magnetization with the magnetic moment perpendicular to the film face downward and
upward, respectively. The MOKE images in the sample when the compression strain is
ε = −0.78% is shown in Figure 7(a1–f1). When the external magnetic field is applied, all
magnetic moments appear upward (as shown in Figure 7(a1)). In Figure 7(b1), the external
magnetic field gradually increases to −1.10 mT, and the domain wall is displaced. When
the external magnetic field is increased to −1.59 mT, the magnetic moment is completely
reversed in the first step, as shown in Figure 7(d1). The external magnetic field c reverses
and increases to 1.21 mT, and the domain wall shifts, as shown in Figure 7(e1). When
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the external magnetic field increases to 1.51 mT, the magnetization state of the magnetic
moment becomes completely perpendicular to the film surface (Figure 7(f1)). The whole
process of flipping the magnetic domains in the sample is achieved by changing the
magnitude of the external magnetic field perpendicular to the film surface.
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Figure 7. MOKE images of Ti/Fe/Ni81Fe19/Fe/Ti multilayer films. ((a1)–(f1)) indicate variations
in the magnetic domain under an external strain of ε = −0.78%: (a1) −0.94 mT, (b1) −1.10 mT,
(c1) −1.20 mT, (d1) −1.59 mT, (e1) 1.21 mT, and (f1) 1.51 mT; ((a2)–(f2)) indicate variations in the mag-
netic domain under no external strain: (a2) −1.42 mT, (b2) −2.58 mT, (c2) −2.72 mT, (d2) −4.01 mT,
(e2) 2.66 mT, and (f2) 4.03 mT; ((a3)–(f3)) indicate variations in the magnetic domain under an external
strain of ε = 0.78%: (a3) −0.68 mT, (b3) −0.88 mT, (c3) −1.57 mT, (d3) −0.82 mT, (e3) 0.93 mT, and
(f3) 1.76 mT.

The MOKE images of the magnetic domain change in the sample when there is no
external strain, as shown in Figure 7(a2–f2). As shown in Figure 7(a2–d2), when the external
magnetic field is −1.42 mT, the magnetization state of the magnetic moments in the film
surface is perpendicular to the film surface. Gradually increasing the external magnetic
field to −2.58 mT, the domain wall nucleation appears. As the external magnetic field
increases to −4.01 mT, the growth, expansion, and overturning process occurs sequentially.
The MOKE images of the magnetic domain change in the sample when the tensile strain
is ε = 0.78%, as shown in Figure 7(a3–f3). When the sample is subjected to tensile and
compressive strain, the magnetic moment is reversed consistently over a large range. It
shows a dendritic expansion process, which finally achieves the reversal process of the
magnetic domain in the sample when the sample is not subject to external strain. It can
be seen that the strain has a strong influence on the magnetic domains of the film. As the
strain increases, the influence of the degenerate magnetic field in the sample decreases and
the in-plane anisotropy increases.

3.4. High-Frequency Properties

Based on the Kittle equation [26], the f r of magnetic films depends on the in-plane
uniaxial anisotropy field. According to Figure 4, the in-plane anisotropy field increases
with the strain. The complex permeability spectra of TFNFT multilayer films grown with
various pre-strains are shown in Figure 8, to evaluate the impact of strain on the dynamic
characteristics of TFNFT multilayer films. The LLG (Landau–Liftshitz–Gilbert) equation is
used to fit the experimental results [32]. It is clear from Figure 8 that the experimental data
is consistent with the fitted curve. With the compressive strain increasing from ε = 0% to
ε = −0.78%, µi decreases from 385 to 80, while f r increases from 1.9 to 3.4 GHz, as shown
in Figure 8a–d. The result reflects the positive correlation between the in-plane uniaxial
magnetic anisotropy and the f r of the TFNFT multilayer films. The initial susceptibility
decreases with increasing strain. The opposite features can be explained by Snoek–Archer’s
limit and are associated with an exchange behavior between f r and permeability [32,33].
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With the tensile strain increasing from ε = 0% to ε = 0.78%, µi decreases from 385 to 300,
while f r increases from 1.9 to 2.5 GHz, as shown in Figure 8d–g. For all samples, as the
frequency is increased, there is the displacement and split of the peaks. At the higher
frequencies, the Villary effect is mainly due to the resonance frequency effect [34]. It can be
seen that the compressive strain can effectively modulate the f r compared to the tensile
strain.
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4. Conclusions

In summary, we employed a pre-stretched and compressed surface structure on PET
to fabricate flexible TFNFT multilayer films. We reported the effects of the strain on the
microscopic morphology, magnetic domain morphology, and magnetic properties of TFNFT
multilayer films. They showed uniaxial magnetic anisotropy and displayed good high-
frequency performance, with µi varying from 80 to 385 and f r varying from 1.9 to 3.4 GHz
by varying the pre-strain. When pre-strained uniaxial tensile and compressive strains were
applied to the TFNFT film, the surface morphology of the sample exhibited different states.
Moreover, µi c varied continuously around a few hundred units, and f r varied in the range
of 1.5 GHz. These results demonstrate a simple and convenient method for continuously
tuning the high-frequency characteristics of flexible magnetic films by applying uniaxial
strain. Flexible magnetic films have a wide range of tunable resonance frequencies, which
paves a new way to develop flexible high-frequency devices with adjustable mechanical
strain. Moreover, it plays a vital role in magnetic-integrated device applications.
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