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Abstract: In this study, we describe the synthesis of zinc oxide nanoparticles (ZnO NPs) and evaluate
the impact of alginate-based ZnO NPs (Alg–ZnO NPs) on microbiological activity, storage behavior,
and physico-chemical properties of ‘Kiett’ mango fruit. The fruits were coated with alginate and
Alg–ZnO NPs and then stored at 13 ◦C; uncoated mango fruits were used as controls. ZnO NPs
were synthesized and characterized, confirming the formation of spherically shaped particles with
sizes ranging from 12 to 15.1 nm and a zeta potential equal to 31 mV. Alg–ZnO NPs exhibited the
same inhibition capacities against the growth of E. coli and S. aureus bacteria. The cold-stored fruits
showed an increase in weight loss, respiration rate, total soluble solids (TSS), total sugars, and total
carotenoids over the storage period. However, this increase was comparatively less significant in
coated fruits than in uncoated ones. Alg–ZnO NP treatment maintained better fruit quality, controlled
the decay incidence, and increased the shelf life of the mango fruits. Firmness and titratable acidity
(TA) significantly decreased during storage, but this decrease was reduced in coated fruits. We
conclude that Alg–ZnO NP treatment could be a promising safe alternative for maintaining fruit
quality, extending the storage period, and increasing the shelf life of mango fruits ‘cv. Kiett’.

Keywords: Mangifera indica; edible coating; alginate; ZnO NPs; nanoparticle characterization;
cold storage

1. Introduction

Mangoes (Mangifera indica L. Family: Anacardiaceae) are one of the most popular and
economically important fruit crops in the tropical and subtropical regions for production
and international trade [1]. Mango fruits are characterized by their attractive appearance,
delicious taste and flavor, and high nutritional value [2]. Mango pulp is rich in several bioac-
tive compounds, i.e., fiber, amino acids, carbohydrates, minerals, organic acids, vitamins,
carotenoids, and polyphenolics [3] whose amount is highly influenced by cultivar, maturity
stage, postharvest handling, and storage [4]. The worldwide production of mangoes is
54.73 million tons; India ranks as the top mango producer, contributing to 45.22% of the
total mango production, followed by Indonesia (6.61%), Mexico (4.34%), China (4.33%),
and Pakistan (4.28%).

Mango is a popular fruit crop in Egypt and is grown in several places. The most
popular Egyptian mango cultivars are Alphonso, Ewais Mabroka, Hindi Besennara, Succary,
and Zebda [5]. Kiett is a mango cultivar introduced to Egypt from Florida; Kiett is a late-
season cultivar with large fruits (600–800 g). The Kiett cultivar has a green peel color and
orange-yellow pulp with high TSS and no fibers at the fully mature stage [6]. Mango
production and international trade are expanding rapidly; however, poor handling, high
susceptibility to chilling injury, postharvest disease infection, and short storage life seriously
reduce mangoes’ commercial value and limit international marketing [1,7]. Mangoes are a
tropical fruit that is traditionally harvested when it is hard and green and ripens quickly
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at room temperature [8]. As a respiratory climacteric fruit, mangoes undergo various
biochemical changes that are initiated by the autocatalytic production of ethylene; these
changes include increased respiration, weight loss, softening, and changes in carbohydrates,
organic acids, and volatile compounds [3,8–10].

Because mango fruits are highly perishable, significant postharvest losses may occur
during the harvesting, transporting, and marketing stages [11]. Many scholars have found
that mango fruit losses after harvest can be as high as 50% in developing countries where
handling and storage methods are not ideal [3,12]. Harvesting at an improper maturity
stage, poor fruit handling, mechanical damage, improper packaging, inadequate storage
facilities, and sensitivity to chilling injuries, disease, and pest damage are significant causes
of postharvest losses [13,14]. Hence, the appropriate postharvest technologies play a pivotal
role in reducing mango fruit losses, maintaining mango fruit quality, and extending mango
postharvest shelf life [3].

Coatings are one of the promising techniques for extending the storage shelf life of
mango fruits; they can enhance the appearance, improve fruit quality, delay ripening, and
prolong shelf life [7,15]. The application of edible coatings offers an attractive, safe, and
eco-friendly approach to fruit preservation [16–18]. The edible coating acts as a barrier to
gas diffusion, depresses respiration rate, retards water loss, maintains sensory attributes,
retards fruit ripening, and extends storage life [19,20]. Edible coatings of natural origin
are considered a safe, non-toxic approach for fruit preservation [19]. Sodium alginate (SA),
a natural polysaccharide obtained from brown seaweeds [21], has been widely used as
an edible coating; SA is generally recognized as a safe polysaccharide with excellent film-
forming properties, selective gas permeabilities, low cost, biodegradability, and non-toxicity
characteristics [22,23].

The application of nanoparticles is a new technique for extending the shelf life of fresh
fruits [24]. Nanoparticles have unique physical and chemical characteristics in addition to
their antioxidant and antimicrobial activity [25–27]. Among the metal oxides, ZnO NPs
are considered the most promising nanoparticles due to their unique physicochemical
properties, biocompatibility, low production costs, and excellent bioactivity [28,29]. ZnO
NPs have been recognized as a safe coating material by the Food and Drug Administration
of the United States with no potential threat to human health [29,30].

Recently, coating materials loaded with nanoparticles emerged as a promising and safe
postharvest technique that maintains quality properties with less penetration of nanoparti-
cles into the treated product [31,32]. Therefore, the present investigation aimed to evaluate
the applicability of alginate-based ZnO NPs as a coating on microbial activity, storage
behavior, and physicochemical properties of mango fruits.

2. Materials and Methods
2.1. Preparation of Zinc Oxide Nanoparticles

Zinc oxide nanoparticles (ZnO NPs) were synthesized using a solvothermal synthesis
process [33,34]. Briefly, a zinc acetate solution was prepared by dissolving 1.48 g of zinc
acetate (LOBA Chemie PVT. LTD., Mumbai, India) in 63 mL of absolute ethanol (Chem-Lab.,
Zedelgem, Belgium) with constant stirring at 60 ◦C; 0.74 g of KOH (Merck Darmstadt,
Germany) was dissolved in 33 mL of absolute ethanol under the same conditions. KOH
was added dropwise into the zinc acetate solution with vigorous stirring and heating to
60 ◦C. The mixture was heated to 60 ◦C and stirred for three hours until the reaction was
complete. A white precipitate (ZnO NPs) was formed and collected by centrifugation at
4000 rpm for 10 min, then washed with acetone and ultrapure water to remove all the
impurities. The ZnO NPs were dried overnight in an oven at 60 ◦C.

2.2. Characterization of ZnO NPs
2.2.1. Particle Size and Zeta Potential

The particle size and zeta potential of the nanoparticles were measured by photon cor-
relation spectroscopy and laser Doppler anemometry, respectively, using a Zetasizer® 3000
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(Malvern Instruments, Malvern, UK) in the central lab of the Faculty of Pharmacy, Cairo
University, Egypt. Briefly, the size measurement was performed three times at 25 ◦C/90◦

scattering angle, and each measurement was recorded for 3 min. The mean hydrodynamic
diameter was generated by cumulative analysis. The zeta potential measurements were
performed using an aqueous dip cell in the automatic mode.

2.2.2. Transmission Electron Microscopy (TEM)

The morphological examination of the synthesized nanoparticles was performed by
transmission electron microscopy (JEOL JEM-1400, Peabody, MA, USA). A drop (2 µL) of
water containing dissolved synthesized nanoparticles was placed on a carbon grid. The
images were obtained at a bias voltage of 40–120 kV and used to analyze samples at the
Cairo University Research Park (CURP), Egypt. The size was obtained by measuring the
diameter of particles in the TEM images.

2.2.3. Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray
Spectroscopy (EDX)

Zinc oxide nanoparticles (ZnO NPs) were coated with gold using a S150A Sputter
Coater (Edwards, England); then, the morphology and topography of the prepared nanopar-
ticles were analyzed by field emission scanning electron microscopy (FE-SEM; Quanta FEG
250, Netherland, Holland) at the Electron Microscopy Unit of the National Research Centre,
Egypt. The elemental composition of the sample was determined by energy-dispersive
X-ray spectroscopy using the software (TEAM) built into the scanning electron microscope.

2.2.4. Fourier Transform Infrared Spectroscopy

The association level between the materials during ZnO NPs synthesis was evaluated.
The ZnO NPs powder was prepared by milling to form a very fine powder that was then
placed on the device grid for measurement. The infrared spectra were recorded with a
Fourier-transform infrared (FTIR) spectroscopy analyzer (VERTEX 80v, BRUKER, Ettlingen,
Germany) at the Central Lab of the National Research Centre, Egypt within the scanning
range of 4000–400 cm−1. The spectra were smoothed using 3 or 5 points and the baseline
of the spectra was corrected using the previously recorded spectra of the sample. As
a reference, the background spectrum of air was collected before the acquisition of the
sample spectrum.

2.3. Antimicrobial Properties of Alg–ZnO NPs

The antimicrobial activity of the Alg–ZnO NPs was evaluated against Gram-positive
Escherichia coli (O157:H7 wild type strain 93,111), obtained from the Cairo University
Research Park (CURP), Egypt, and Gram-negative Staphylococcus aureus (ATCC25923)
bacteria using the well diffusion method [35]. One mL of bacterial culture was transferred
into a sterilized petri dish filled with Mueller Hinton agar medium. After the culture
medium was completely solidified, three wells with a 10 mm diameter were punched.
A total of 100 µL of 1% Alg–ZnO NP solution (w/v) was dispensed into the small wells,
and the plates were incubated at 37 ◦C for 24–48 h; polymyxin at the same volume and
concentration was used in the control group. The antibacterial properties of the samples
were quantitated by measuring the diameter of inhibition zone in millimeters (mm).

2.4. Preparation of Alginate Coatings

For the preparation of a 1.5% sodium alginate (SA) solution, SA powder (15 g/L)
(LOBA Chemie PVT. LTD., Mumbai, India) was stirred at 50 ◦C until the sodium algi-
nate powder was completely dissolved [36]. Glycerol (3 g/L) (LOBA Chemie PVT. LTD.,
Mumbai, India) was added to the solutions as a plasticizer [37]. Calcium chloride was
prepared to induce the cross-linking reaction; CaCl2 (30 g/L) (Merck Darmstadt, Germany)
was dissolved in distilled water at room temperature until the mixture became clear. To
prepare the 0.5% alginate-based ZnO NPs (Alg–ZnO NPs), 5 g of white ZnO NP powder
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was slowly added into the above-prepared alginate solution under magnetic stirring at
ambient temperature to form a uniform suspension.

2.5. Fruits Material

Freshly harvested mango (cv. Kiett) fruits were obtained from a commercial mango
orchard located in Ismailia governorate, Egypt, with well-managed conditions. Mango
fruits that were mature, homogeneously sized (~750 g), and free of mechanical injury were
picked early in the morning and transported to the postharvest laboratory of the Pomology
Department, Faculty of Agriculture, Cairo University. The fruits were carefully washed in
tap water and kept at ambient temperature to dry.

2.6. Coating Application and Storage Conditions

For coating treatment, mango fruits were divided into three groups, each containing
60 fruits. The fruits were completely immersed for one minute in the coating solutions.
Fruits in the first group were immersed in 1.5% SA and fruits in the second group were
immersed in Alg–ZnO NPs, and the excess coating solution allowed to drip off. After that,
the fruits were dipped in a 3% calcium chloride solution for 3 min and left to dry for one
hour at room temperature (25 ◦C). Fruits in the third group were left without coating as a
control. All mango fruits were packed in carton boxes, eight fruits/box, and stored in a
cold chamber at 13 ◦C with 85%–90% RH for 28 days, followed by 7 days of shelf life at
22 ◦C and 85%–90% RH.

The fruit quality assessment of each treatment was evaluated regularly after 0, 7, 14,
21, and 28 days. Then, the fruit quality assessment was also conducted after the additional
7 days at 22 ◦C (shelf life).

2.7. Fruit Quality Assessment
2.7.1. Respiration Rate

Three mango fruits from each treatment were placed separately in an airtight jar
(18 cm diameter × 25 cm height) for 24 h at 13 ◦C (cold storage conditions) or 22 ◦C
(shelf life conditions) to measure the respiration rate. A gas sample was measured for
oxygen and carbon dioxide analysis using a YesAir (8-channel IAQ monitor, Critical-
Environment Technologies, Delta, BC, Canada) supplemented with O2 and CO2 gas sensors.
The respiration rate was calculated according to Pristijono et al. [38] and expressed as nmol
CO2 kg−1 s−1.

2.7.2. Weight Loss

The initial mango fruit weight (n = 10) of each treatment was determined at the
beginning of storage (Wi) and was periodically weighted at each sampling date (Ws);
weight loss (%) was calculated according to Shah and Hashmi [20] by the following equation
(Equation (1)):

Weight loss (%) = (Wi − Ws)/Wi × 100 (1)

2.7.3. Fruit Pulp Firmness

Fruit pulp firmness (n = 6) of fruits from each treatment was measured using a fruit
hardness tester (Lutron FR-5120, Electronic Enterprise, Taipei, Taiwan) equipped with a
5 mm-diameter cylindrical probe. The entire fruit was placed on a flat surface, and firmness
was measured on the palled fruit surface in the equatorial zone. The results were expressed
in Newtons (N) [39].

2.7.4. Total Soluble Solids (TSS), Titratable Acidity (TA) and TSS/TA Ratio

Mango fruit juice for each treatment was used to determine TSS and TA according
to the method of Islam et al. [40]. TSS concentration was measured using a digital re-
fractometer (Atago, Model PAL-1, Tokyo, Japan), and the data were expressed as ◦Brix.
The TA (%) of the fruit pulp was measured by titrating 10 mL of aliquoted juice (1 mL
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juice + 9 mL distilled water) with 0.1 mol NaOH (Merck Darmstadt, Darmstadt, Germany)
using a phenolphthalein indicator until a permanent pink color appeared; total acidity was
expressed as a percentage of citric acid equivalent based on fresh weight. By dividing the
TSS percent with the corresponding acidity percentage, the TSS/TA ratio was calculated.

2.7.5. Total Sugars Content

Total sugar content was determined by the phenol–sulfuric acid method [41]. Fruit
pulp samples (0.25 g) were homogenized in 20 mL 70% ethanol (Chem-Lab., Zedelgem,
Belgium); 1 mL of the ethanolic extract was treated with 1 mL of 5% phenol (w/v) (LOBA
Chemie PVT. Ltd., Mumbai, India) and 5 mL of 98% sulfuric acid (Adwic Pharmaceutical
Co., Cairo, Egypt). The absorbance of the developed color was measured at a wavelength
of 490 nm using a spectrophotometer (JENWAY, Model 6300, Staffordshire, UK). A standard
curve was generated using a pure glucose solution, and total sugar content was expressed
as mg glucose equivalent per g of pulp fresh weight.

2.7.6. Reducing Sugar Content

Reducing sugar content was determined by the dinitrosalicylic acid (DNS) method [42].
The dinitrosalicylic acid (DNS) reagent was prepared by dissolving 1.0 g of DNS (LOBA
Chemie PVT. Ltd., Mumbai, India), 200 mg of crystalline phenol (LOBA Chemie PVT. Ltd.,
Mumbai, India), and 50 mg of sodium sulphate (LOBA Chemie PVT. Ltd., Mumbai, India)
in 100 mL of 1% NaOH (Merck Darmstadt, Germany) by stirring at room temperature. One
mL of the alcohol extract, 3 mL distilled water, 3 mL of DNS reagent were mixed and heated
in a boiling water bath for 5 min. A total of 1 mL of 40% Rochelle salt (sodium–potassium
tartrate salt) (ADVENT CHEMBIO PVT LTD, Mumbai, India) solution was added after the
color had developed. The final absorbance of the set color was measured at 575 nm using a
spectrophotometer (JENWAY, Model 6300, Staffordshire, UK). The reducing sugar content
results were expressed as mg glucose equivalent per g of fresh weight.

2.7.7. Total Carotenoid Content

Fruit pulp samples (0.5 g) were homogenized in 20 mL of 80% acetone (LOBA Chemie
PVT. Ltd., Mumbai, India) in a dark glass bottle at room temperature. The absorbance was
measured using a UV–visible spectrophotometer (JENWAY, Model 6300, Staffordshire, UK)
at the wavelengths of 480 and 510 nm. Total carotenoid content was calculated according
to Hmmam [32] as µg g−1 of fresh weight.

2.7.8. Total Phenol Content

Total phenol concentration was determined spectrophotometrically using the Folin–
Ciocalteu colorimetric method [43] with a slight modification. To do this, 0.5 g of mango
fruit pulp was homogenized with 20 mL of a methanol (Chem-Lab., Zedelgem, Belgium)
solution in a dark glass bottle at room temperature. One mL of Folin–Ciocalteu’s reagent
(LOBA Chemie PVT. Ltd., Mumbai, India) was mixed with 1 mL of the methanolic extract
and reacted for 6 min at room temperature. Then, 4 mL of 1 M sodium carbonate (LOBA
Chemie PVT. Ltd., Mumbai, India) and 3 mL water were added to the mixture. The
samples were incubated for 90 min at room temperature in darkness, and the absorbance
of the mixture was measured at 760 nm using a spectrophotometer (JENWAY, Model 6300,
Staffordshire, UK). Total phenolic content was expressed as mg of gallic acid equivalent per
g of fruit fresh weight.

2.7.9. Decay Percentage

Coated and uncontrol mango fruits were examined visually for decay symptoms.
Fruits with any signs of microbial infection, i.e., brown spot, spoilage, or softened area,
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was considered as decayed; the following equation (Equation (2)) calculated the decay
percentage:

Decay percentage = (number of decayed fruits/total number of fruits) × 100 (2)

2.8. Statistical Analysis

The experiment was carried out in a complete randomized design (CRD) with three
replicates. The experimental data were subjected to analysis of variance (ANOVA) to
determine the effect of coating treatments on fruit quality parameters at each sampling time
during storage. The statistical analysis was performed using R software, version 4.0.5, R
Core Team, Vienna, Austria [44]. Significant differences among treatments (p ≤ 0.05) were
assessed by means of multiple Duncan range tests.

3. Results and Discussion
3.1. Particle Size and Zeta Potential

The Dynamic Light Scattering (DLS) results were obtained for ZnO NPs with an
average size of 245.2 nm (Figure 1A), indicating particle aggregation in the solutions.
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The stability of the suspension can be monitored by measuring the zeta potential of
the ZnO NPs, which was 31 mV (Figure 1B). A zeta potential value of ±30 mV is generally
chosen to deduce particle stability, with an absolute value greater than 30 mV designated
as a stable condition [45,46].

3.2. Transmission Electron Microscopy (TEM) of ZnO NPs

Transmission electron microscopy (TEM) analysis was carried out on the ZnO NPs to
obtain high accuracy images of the actual particle size and shape. The morphology of the
ZnO NPs showed a spherical shape with some agglomerated particles (Figure 2). It can
be seen from the image that the ZnO NP sizes ranged from 12 to 15.1 nm. Rasha et al. [47]
documented similar observations.



Coatings 2023, 13, 362 7 of 21

Coatings 2023, 13, 362 7 of 23 
 

 

The stability of the suspension can be monitored by measuring the zeta potential of 
the ZnO NPs, which was 31 mV (Figure 1B). A zeta potential value of ±30 mV is generally 
chosen to deduce particle stability, with an absolute value greater than 30 mV designated 
as a stable condition [45,46]. 

3.2. Transmission Electron Microscopy (TEM) of ZnO NPs 
Transmission electron microscopy (TEM) analysis was carried out on the ZnO NPs 

to obtain high accuracy images of the actual particle size and shape. The morphology of 
the ZnO NPs showed a spherical shape with some agglomerated particles (Figure 2). It 
can be seen from the image that the ZnO NP sizes ranged from 12 to 15.1 nm. Rasha et al. 
[47] documented similar observations.  

 
Figure 2. Transmission electron microscopy (TEM) micrograph of ZnO NPs. 

3.3. Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray Spectroscopy (EDX) of 
ZnO NPs 

The Scanning Electron Microscopy (SEM) analyses determined the surface morphol-
ogy of ZnO NPs (Figure 3). The micrographs of the synthesized ZnO NPs display many 
agglomerated particles with irregular spherical shapes. This agglomeration is due to the 
polarity and electrostatic attraction of ZnO NPs nanoparticles. These results were con-
firmed by Fakhari et al. [48] and Umar et al. [49].  

Figure 2. Transmission electron microscopy (TEM) micrograph of ZnO NPs.

3.3. Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray Spectroscopy (EDX) of
ZnO NPs

The Scanning Electron Microscopy (SEM) analyses determined the surface morphology
of ZnO NPs (Figure 3). The micrographs of the synthesized ZnO NPs display many
agglomerated particles with irregular spherical shapes. This agglomeration is due to the
polarity and electrostatic attraction of ZnO NPs nanoparticles. These results were confirmed
by Fakhari et al. [48] and Umar et al. [49].
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The elemental composition of the ZnO NPs was determined via energy-dispersive
X-ray spectroscopy (EDX) analysis (Figure 4). The EDX spectrum revealed that the nanopar-
ticles were composed of two elements, Zn and O, with mass percentages of 82.48% and
17.52%, respectively (Table 1). This result confirmed the high purity for the synthesized
ZnO NPs. A similar finding was also found in previous studies by Rasha et al. [47], Fakhari
et al. [48], and Hasnidawani et al. [50].
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Table 1. Elemental analysis of energy-dispersive X-ray spectroscopy (EDX).

Element Weight % Atomic %

O K 17.52 46.46
Zn K 82.48 53.54

3.4. Fourier-Transform Infrared Spectroscopy

Figure 5 shows the FTIR spectra of the zinc acetate and ZnO NPs. The characteristic
absorbance bands observed at 1548 and 1434 cm−1 can be assigned to the COO− stretching
vibrations in the FTIR spectrum of zinc acetate and the peaks at 1057 and 1016 cm−1 indicate
the lattice vibration of carbonate-generated absorption (Figure 5A), which disappeared in
the FTIR spectrum of the ZnO NPs [51–53]. A sharp peak was observed at 3073 cm−1 due
to the bending vibration and the stretching vibration of O–H, corresponding to dehydration
of zinc acetate. This band was reduced, and a wide band was formed in the ZnO NP
spectrum at 3357 cm−1 (Figure 5B). The peaks at 529, 432, and 415 cm−1 are attributed to
Zn-O stretching and deformation vibrations, which confirmed the formation of ZnO NPs
(Figure 5B). Metal oxides generally give absorption peaks between 600 and 400 cm−1 [54,55].

3.5. Antimicrobial Properties of Alg–ZnO NPs

The Gram-negative bacteria E. coli and Gram-positive bacteria S. aureus were used to
investigate the antibacterial activities of alginate-based ZnO NPs (Alg–ZnO NPs) compared
to the polymyxin antibiotic (control). The antibacterial activity was investigated using
Mueller–Hinton agar medium and the agar well diffusion assay. The difference between
the inhibition zones is illustrated in Figure 6. Alg–ZnO NPs showed similar antibacterial
activity against both E. coli and S. aureus. However, the control had a significantly larger
inhibition zone against S. aureus compared to that against E. coli. The differences in sensi-
tivity to Gram-positive bacteria compared to Gram-negative bacteria have been reported
previously [56,57].
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Previous work has documented the antibacterial activity of ZnO NPs against various
bacteria including E. coli [58] and S. aureus [59]. The potential mechanism involved in the
antibacterial activity may be related to the generation of reactive oxygen species (ROS),
which can damage bacterial proteins, DNA, and lipids, disturb the cellular systems, and
consequently result in growth inhibition and cell death [29,60,61]. Moreover, ZnO NPs can
inhibit the metabolism of amino acids and disrupt enzyme activity [28].

3.6. Fruit Quality Assessment
3.6.1. Respiration Rate

The change in the respiration rate of mango fruits during the storage period is repre-
sented in Figure 7. A significant increase in respiration rate (p ≤ 0.05) was recorded during
the storage period of both coated and uncoated fruits. However, the lowest respiration
rate was observed in Alg–ZnO NP-coated fruits, followed by the fruit coated with alginate,
while the highest respiration rate was recorded with uncoated fruits (control). The respi-
ration rates of the control and coated fruits were low during the first 14 days of storage;
afterwards, they exhibited a sharp increase (Figure 7). The respiration rate in the controls
was significantly (p ≤ 0.05) and consistently more remarkable than the coated fruits across
the entirety of the storage period.
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The ripening of climacteric fruits such as mango is characterized by a significant
and rapid increase in respiration rate accompanied by intensive metabolic changes [62].
The coating materials operate as a semi-permeable barrier to the exchange of gases and
movement of solvents and moisture, thus decelerating the rate of respiration [63]; hence,
uncoated fruits showed faster perishable behavior than coated fruits. ZnO NPs significantly
improved the water vapor barrier and mechanical properties of the edible coatings [64,65],
enriching carboxymethyl cellulose with ZnO NPs reduced the respiration rate during
tomato fruit storage [66]. Moreover, chitosan coatings incorporating ZnO NPs restricted
fresh-cut kiwifruit gas exchange [67].
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3.6.2. Weight Loss

It was clearly observed that the mango fruit weight loss (WL) progressively increased
in all treatments over the storage period, as shown in Figure 8.
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However, compared with the control treatment, the coatings efficiently slowed down
the weight loss rate during storage, particularly with Alg–ZnO NP and alginate coating
treatments. Mango fruits in the uncoated group displayed higher WL (5.75%) after 28 days
of storage at 13 ◦C, while on the same date, the weight loss values of the fruits coated with
Alg–ZnO NPs and alginate were 4.30% and 4.56%, respectively. Water loss during storage
results in reduced fruit weight, shrinkage, and decreased postharvest quality value of fresh
fruits [68]. The reduction in weight loss in the coated samples with biopolymer-based
edible coatings was reported previously in a wide range of fruit crops [13,32,36,69,70].
Climacteric mature fruit undergoes a series of metabolic changes when detached from
the tree, and these metabolic processes eventually result in fruit weight loss during the
postharvest and storage period [62,71]. The coating material can mitigate the loss of
water and reduce these deleterious effects; coating acts as a semi-permeable barrier for
moisture, oxygen, and carbon dioxide, thereby reducing respiration and water loss and
maintaining the turgescence of cell walls [72]. Wu et al. [73] found that adding ZnO NPs
to polysaccharide-based biopolymers significantly improved their mechanical properties
and reduced water vapor permeability. According to Emamifar and Bavaisi [74], ZnO
NPs significantly increased the moisture barrier of alginate films, therefore reducing fruit
weight loss.

3.6.3. Fruit Pulp Firmness

Fruit pulp firmness was found to be gradually decrease for all treatments over the
storage period (Figure 9). Notably, the coating treatments maintained higher firmness and
postponed the loss of fruit texture; the maximum loss of firmness was found at the end
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of the storage period in the control fruits, while the firmness of mango fruits coated with
Alg–ZnO NPs was significantly (p ≤ 0.05) higher than those of the control group during the
whole storage period; at the end of the storage period, the firmness of non-coated, alginate-
and Alg–ZnO NP-coated fruits declined to 14.17 N, 17.53 N, and 22.65 N, respectively.
Fruit pulp firmness is a vital aspect of fresh fruit quality, and maintenance of mango fruit
firmness is fundamental for fruit handling, transport, and storage [75]. Firmness loss is
explained as a loss of cellular turgidity and degradation of the middle lamella between cells
by enzyme activity including the hydrolysis of polysaccharides within the fruit cells during
ripening [9,76]. Starch, pectin, and hemicelluloses are major cell wall polysaccharides that
decrease during fruit ripening [9]. The maintenance of the pulp firmness of the coated
fruits may be attributed to reduced respiration and other ripening processes during storage.
This could be explained by the fact that coating restricted gas exchange, reducing enzyme
activity and leading to textural softening. The coating material effectively slowed down
the metabolic and enzymatic activities in the fruits, resulting in the slower degradation of
pulp tissues [67].
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Figure 9. Effect of Alg–ZnO NPs on pulp firmness of “Kiett” mango fruits during cold storage and
shelf life; vertical bars represent the standard error (SE). Bars marked with the same letter in each
sampling date are not significantly different with 95% confidence according to Duncan’s multiple
range test.

3.6.4. Total Soluble Solids (TSS), Titratable Acidity (TA), and TSS/TA Ratio

The results showed that the total soluble solid content of mango pulp underwent a
gradual increase during the storage period in all treatments (Figure 10).
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Figure 10. Effect of Alg–ZnO NPs on total soluble solids (TSS) of “Kiett” mango fruits during cold
storage and shelf life; vertical bars represent the standard error (SE). Bar marked with the same letter
in each sampling date are not significantly different with 95% confidence according to Duncan’s
multiple range test.

Statistically significant variations were observed in the TSS content between the coating
treatments at different sampling times during storage. The increase was significantly
(p ≤ 0.05) lower in coated fruits than in control. Fruits coated with Alg–ZnO NPs had lower
TSS values than alginate coatings during storage. The maximum TSS after 28 days of storage
was recorded as 16.80 0 Brix in the controls, whereas it was recorded as 15.90 and 14.53
in the alginate and Alg–ZnO NP treatments, respectively (Figure 10). During the storage
period, the variations in TSS could be due to the hydrolysis of complex carbohydrates
by the activities of hydrolytic enzymes [70]. In previous studies on coated fruits, similar
findings were also observed regarding the effect of coatings in decelerating the increase
in TSS [32,72,77]. Gol et al. [78] suggested that the low TSS for coated fruits presumably
occurred because of the barrier effect of the coating against respiration, thus decelerating
the metabolic activities of the fruits.

The result of the different coating treatments on titratable acidity (TA) values of the
mango fruits during the storage period is shown in Figure 11. A general gradual decline
was detected in the TA for all treatments over the storage period. The results of the TA
illustrated that the coatings reduced the trend for TA decline in mango fruits compared
to the control during the storage period. The results indicated that the TA of all samples
significantly (p ≤ 0.05) declined from (10.35 to 11.31%) at the beginning of the storage period
to 2.56, 3.79, and 4.48 for uncoated, alginate, and Alg–ZnO NP treatments, respectively. The
decline in fruit acidity during fruit ripening is associated with a reduction in organic acids,
which are the primary substrates for the respiration process of climatic fruits [79]. In other
words, as mentioned earlier, the application of coatings decelerates the rate of respiration
and metabolic processes, thus limiting the excess intake of organic acids in respiration
reactions [19,20]. Compared with the uncoated fruit samples, the edible coating has been
proven to efficiently slow the fruit respiration rate, thus inhibiting the consumption of
titratable acids [80].
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The TSS/TA ratio was significantly affected by the coating treatments during the
storage period. The TSS/TA ratio values for the coated fruits were lower than those of the
uncoated fruits (Figure 12).
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Figure 12. Effect of Alg–ZnO NPs on TSS/TA ratio of “Kiett” mango fruits during cold storage and
shelf life; vertical bars represent the standard error (SE). Bars marked with the same letter in each
sampling date are not significantly different with 95% confidence according to Duncan’s multiple
range test.

A non-significant difference was observed between alginate and Alg–ZnO NP coatings
during the storage period up to 21 days. The TSS/TA ratio showed a rapid increase in
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uncoated fruits, indicating increased fruit ripening rate. The ratio of TSS/TA is known
to be an indicator of fruit quality; the sweet taste is the result of increased hydrolysis of
polysaccharides (mainly starch), decreased acidity, and accumulation of sugars, which
results in an excellent sugar/acid ratio [9].

3.6.5. Total and Reducing Sugar Content

The increase in soluble sugars during ripening provides a sweet taste to the mango
fruit; total and reducing sugar values for the different samples were initially recorded
at 91.55 and 44.94 mg g−1, respectively. The total and reducing sugar content of all
treatments increased consistently during the storage period (Figure 13A,B). Total sugar
content increased slower in coated fruits, while a sharp increase was observed in uncoated
fruits during the whole storage period. The soluble sugar content of the uncoated and
coated fruits differed slightly until 14 days, while Alg–ZnO NP-coated fruits recorded the
lowest total and reduced sugar content during the whole storage period. The accumulation
of sugars increased with fruit ripening due to the hydrolysis of polysaccharides leading to
the production of soluble sugars during storage [9,81]; soluble sugars in ripe fruits mainly
consist of glucose, fructose, and sucrose [82]. The coating inhibits the transition of complex
carbohydrates into simple sugars [32]. The rapid change in total sugars of the control
treatment can be explained by the mango fruit respiratory burst, which is distinguished
by significant changes in fruit biochemical activity leading to fruit ripening [83]. Silva
et al. [68] highlighted that the fruit coating treatments reduce respiratory activity and
ethylene production, which slow the ripening process, delay the climacteric peak, and
increase fruit storage life.
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the same letter in each sampling date are not significantly different with 95% confidence according to
Duncan’s multiple range test.
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3.6.6. Total Carotenoids Content

Color changes in mango fruits are due to the disappearance of chlorophyll and the
appearance of other pigments. As ripening progressed in all fruits, a steady increase in
carotenoid content was noted, but the rate was slower in coated fruits (Figure 14).
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Figure 14. Effect of Alg–ZnO NPs on total carotenoids of “Kiett” mango fruits during cold storage
and shelf life; vertical bars represent the standard error (SE). Bars marked with the same letter in each
sampling date are not significantly different with 95% confidence according to Duncan’s multiple
range test.

Statistical analysis showed that the differences (p ≤ 0.05) between the coating treat-
ments were slight and insignificant until day 21 of storage; afterwards, the carotenoid
content was significantly lower for fruits coated Alg–ZnO NPs. The Alg–ZnO NPs coating
seemed to delay the accumulation of carotenoids more than the alginate coating. The
control mangoes showed the highest carotenoid content (6.41 µg g−1) after five weeks of
storage. The delay in the ripening and internal color development of the coated fruit can be
attributable to the limited respiration rate of the coated fruit, which decreases chlorophyll
degradation and/or carotenoid biosynthesis [13]. Polysaccharide-based composite coat-
ings have synergistic effects on color retention by delaying the development of coloring
pigments in mango fruits [70].

3.6.7. Total Phenol Content

Phenolic compound contents declined in both coated and uncoated mango fruits dur-
ing the storage period and, subsequently, shelf life (Figure 15). Although the declining rate
was more evident in the control fruit, the total phenol reduced during five weeks from 7.22
to 0.71, 3.25, and 3.55 mg g−1 in the control, alginate-, and Alg–ZnO NP-coated fruits, re-
spectively. At the end of the experiment, coated fruits maintained higher phenolic contents
than the control. Previous studies showed a lower rate of phenolic compound degradation
in coated mango fruits [84]. Phenolic compounds affect fruit quality parameters, i.e., fruit
taste, flavor, and aroma, and capture reactive oxygen species that are produced during fruit
ripening [85]; the alginate coating preserved the phenolic content during the storage period
by delaying fruit ripening [69] since edible coatings decrease gas exchange and reduce the
degradation rates of phenols [16,63]. According to Emamifar and Bavaisi [74], adding ZnO
NPs to sodium alginate coatings decreases gas exchange and hence reduces enzymatic
oxidation of phenolic compounds.
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3.6.8. Decay Percentage

The data summarized in Figure 16 shows the values of decay incidence in both coated
and uncoated mango fruits (control); there were no visible signs of decay in the stored
mango fruits during the entire storage period (28 days).
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treatment was approximately three to four times higher than that of alginate- and Alg–
ZnO NP-coated fruits, respectively. The decrease in decay incidence was probably due
to the effect of the coating on delaying senescence, which results in lower pathogenic
infections [86]. Moreover, ZnO NPs have anti-microbial effects against the activity of
several postharvest microbial infections [56,57]. The obtained results confirm the anti-
microbial properties of Alg–ZnO NPs.

4. Conclusions

The Alg–ZnO NP coating treatment can effectively improve fruit quality parameters
such as reducing weight loss, respiration rate, maintaining firmness, and reducing microbial
decay of mango fruits ‘cv. Kiett‘. The increases in the rate of total soluble solids, total
sugars, and carotenoids in the coated fruits were controlled and slowed down. These
results suggest that coatings loaded with synthesized ZnO NPs can be efficiently used to
retard the ripening and prolong the postharvest life of mango fruits. The findings of this
research may be applied to improving the postharvest, storage, and marketing of mango
fruits, which should lead to a rise in exports.
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