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Abstract: Constitutive engineering by adding halide anions is one effective way to improve the
performance of photodetectors by adjusting the bandgap. In this study, a mixed-anion perovskite
thin film was facile fabricated by post-processing of a pure FAPbI3 film with a formamidinium
bromide (FABr) solution. In addition, the manufactured thin film was used as the light absorption
layer, SnO,-SDBS as the electron transport layer, and spiro-OMeTAD as the hole injection layer to
fabricate a deep ultraviolet(UV) photodetector. The device exhibited a response of 43.8 mA/W~1, a
detectability of 3.56 x 10'3 Jones, and an external quantum efficiency of 38%. Therefore, this study is
promising for various applications in the deep-UV wavelength region.

Keywords: deep-ultraviolet(UV) photodetector; mixed-anion perovskite; perovskite device

1. Introduction

Ultraviolet (UV) photodetectors (PDs) convert UV energy into electrical signals and
are devices that can detect weak UV energy due to their high detection rate [1,2]. These PDs
have received considerable attention in the industry due to their diverse applications such
as safety and precision control, and smoke and temperature sensing [3-6]. In the past, UV
PDs were mainly manufactured using semiconductor materials such as ZnGa;O,, MoS,,
MgZnO, or diamond. However, fabricating and manufacturing of UV PDs using these
materials are complicated and expensive using epitaxy, RF magnetron sputtering, chemical
vapor deposition, and the like, so it is an obstacle to commercialization [7-10]. Therefore,
the development of inexpensive and simple UV PD is required.

In general, the wavelength range of ultraviolet rays is 100 to 400 nm, and it is classified
into three areas of UVA (320 to 400 nm), UVB (280 to 320 nm), and UVC (100 to 280 nm)
according to the effect on the biosphere. Ultraviolet rays have fatal effects on humans,
such as skin aging, wrinkles, and skin cancer [11,12]. Earlier, UVC was mainly completely
absorbed in the stratospheric ozone layer. It was generated only from artificial device
sources such as sterilizers and arc xenon lamps for disinfecting air and water. Therefore,
most PD research has been focused on UVA and UVB PD [13-15]. However, due to the
destruction of the ozone layer by environmental pollution, UVC began to reach the earth’s
surface [16]. Therefore, it is essential to study deep-UV PDs to detect light in the UVC
range, which has high energy and destroys the genetic material in human cells and viruses,
and has a more fatal effect on humans than UVA and UVB.

Organic-inorganic lead halide-based perovskite materials have excellent optoelectronic
properties such as low photocurrent loss, bandgap tuning, high light absorption ability, and
carrier mobility [17-19]. In addition, the fabrication of photonic devices using perovskite
materials is relatively simple and economical [20]. Therefore, their use in the field of optical
devices, such as solar cells and PDs, is continuously progressing [21,22]. A lot of structural
engineering studies have been conducted to analyze the properties by adding br ions
to Methylammonium lead iodide (MAPbI3), a commonly used perovskite material [23].
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However, studies on the effect of br ions on the performance of formamidanium lead iodide
(FAPDI3) are relatively lacking. FAPbI; is more suitable for use in photodetectors because it
has better light absorption in the deep ultraviolet region than MAPbI; [24]. When the br ion
is added, the lattice constant decreases, and the bond length of the atoms decreases because
the Pb-br bond is shorter than the Pb-I bond. This reduction in bond length contributes to
performance improvement in photodetector fabrication by improving light generation and
carrier transport characteristics [25,26]. In addition, the addition of an appropriate amount
of br ions improves the quality of the film due to the high bonding density of perovskite,
helping to improve the optoelectronic performance of the device [27].

One of the important factors in deep-UV PD fabrication is the transmittance of the
electron transport layer in the UVC (100 to 280 nm) region. Typically, titanium dioxide
(TiOy) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) are used as electron transport
layers in perovskite-based devices [28]. However, TiO, and PCBM do not transmit light
in the deep-UV wavelength range [29]. Therefore, TiO, and PCBM are not suitable as
electron transport layers for deep-UV PD. Therefore, using SnO; as an electron transport
layer having high transmittance in the deep ultraviolet wavelength region is essential for
fabricating a deep-UV PD.

In this study, the aim was to fabricate a PD with higher characteristics in the deep-UV
region than the existing pure FAPbl3-based PDs. It was achieved by injecting Br~ ions
into formamidanium bromide (FABr) using a post-processing process. The performance
of the fabricated deep-UV PD improved device characteristics such as external quantum
efficiency (EQE), detectability, and responsiveness owing to the amelioration of thin film
characteristics that result from electron mobility and crystal grain growth under the in-
fluence of injected Br™. These results indicate that the mixed-anionic halide perovskite
FAPb(I/Br); is a promising candidate for improving deep-ultraviolet PD performance.

2. Materials and Methods
2.1. Reagents and Materials

Pb(II) iodide (Pbly, 99.999%, Sigma Aldrich, St. Louis, MO, USA), 1-butyl alcohol
(99%, Sigma Aldrich, St. Louis, MO, USA), sodium dodecylbenzenesulfonate (SDBS, Sigma
Aldrich, St. Louis, MO, USA), acetonitrile (99.93%, Sigma Aldrich, St. Louis, MO, USA),
ethyl alcohol (>99.5%, Sigma Aldrich, St. Louis, MO, USA), dimethyl sulfoxide (DMSO,
>99.9%, Sigma Aldrich, St. Louis, MO, USA), N,N-dimethylformamide (DMF, 99.8%,
Sigma Aldrich, St. Louis, MO, USA), 2,2,7,7-tetrakis[N,N-di(4-methoxyphenyl)amino]-9,9-
spirobifluorene (spiro-OMeTAD, 99%, Sigma Aldrich, St. Louis, MO, USA), 2-propanol
(IPA; 75 wt%, Sigma Aldrich, St. Louis, MO, USA), bis(trifluoromethane)sulfonimide
lithium salt (Li-TSFL; >99.0%, Sigma Aldrich, St. Louis, MO, USA), toluene (99.9%, Sigma
Aldrich, St. Louis, MO, USA), and 4-tertbutylpyridine (98%, Sigma Aldrich, St. Louis,
MO, USA). Formamidinium iodide (FAI, GreatCell SolarKorea, Seohyun, Republic of
Korea), Formamidanium bromide (Fabr, GreatCell SolarKorea, Seohyun, Republic of Korea),
and methylammonium hydrochloride(MACI, GreatCell SolarKorea, Seohyun, Republic
of Korea). Indium tin oxide(ITO) is deposited on a quartz-glass substrate (TMA, Seoul,
Republic of Korea). A SnO; colloidal solution (15 wt% in water, Alfa Aesar, Haveril, MA,
USA). All materials were used without further purification.

2.2. Fabrication of Mixed Anion Perovskite Photodetector Based on FAPb(I/Br)3

ITO-coated quartz substrates (8 (2 m/sq) were sequentially cleaned with neutral
detergent, isopropanol, acetone, ethanol, and deionized water using an ultrasonic bath.
Thereafter, the substrate was dried using a drying oven and treated with UV ozone for
10 min to complete the cleaning process. After diluting 2.4 mL of a SnO, colloidal solution
(15% by weight) with 9.2 mL of deionized water, 2 mg of SDBS was dissolved using the
diluted SnO, solution to prepare a SnO,-SDBS mixed solution. The SnO,-SDBS mixed
solution was spin-coated at 3000 rpm for 25 s on the cleaned substrate and then annealed
at 150 °C for 30 min to be used as the electron transport layer of the device. Substrates
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were then treated with UV ozone for 20 min before perovskite deposition. The perovskite
FAPDI; precursor solution was prepared by mixing Pbl, (1.4 mol) and FAI (1.0 mol) in
a DMSO:DMF (10:1, v/v) solvent system. After stirring for 1 h, MACl was added to the
prepared precursor solution and further stirred for 30 min. Immediately prior to coating, the
solution was filtered through a 0.45-um syringe filter. Solutions for FABr post-processing
were stirred for 2 h with IPA and FABr (5, 10, 15, 20, and 25 mg). The precursor solution
was deposited by spin coating at 4500 rpm for 25 s, and then an anti-solvent process was
performed with toluene for the last 10 s. After that, the post-processing solution was
spin-coated at 4500 rpm for 25 s and annealed for 20 min. After cooling at 25 °C for 10 min,
a spiro-OMeTAD solution [1 mL chlorobenzene consisting of 72.3 mg spiro-OMeTAD,
28.8 uL 4-tert-butyl pyridine and 17.5 pL Li-TFSI solution (ACN in 1 mL of 520 mg Li-
TSFI)] was deposited onto the perovskite film at 3000 rpm for 20 s. Finally, 85 nm Au
was thermally evaporated through an electrode in a high vacuum (2 x 10° Torr) using
an e-beam evaporator. A schematic diagram of the fabrication method and device for
perovskite thin films is shown in Figure 1a.
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Figure 1. (a) Manufacturing process of mixed anionic perovskite FAPb(I/Br)s; (b) Schematic diagram
of Deep-UV PD.

2.3. Characterization of the Fabricated PD and Device Measurement

X-ray diffraction (XRD, SmartLab, Rigaku, Tokyo, Japan) was performed using Cu
Ko radiation (A = 1.542 A), and the device used gracing incidence geometry. A field
emission scanning electron microscope (FE-SEM, Hitachi, S-4700, Tokyo, Japan) was used
to analyze the surface and cross-sectional morphology of the perovskite layer. The ab-
sorption characteristics of the perovskite films were recorded using an ultraviolet-visible
spectrophotometer (Agilent, 8453 UV-vis, Santa Clara, CA, USA). Electrical signals from the
photodetector were recorded using a Sourcemeter (Keithley, 2400, Cleveland, OH, USA). A
254-nm UV lamp (Vilber, VL6.LC, Seine-et-Marne, France) was used as the light source for
UV irradiation. The mobility, resistivity, and carrier concentration of the films were recorded
using a Hall effect measurement system (Ecopia, HMS-3000, Anyang, Republic of Korea).

3. Results and Discussion
Characteristics of the Prepared Mixed-Anion Perovskite Film

Fabricated perovskite thin films are defined as FABr-0, FABr-5, FABr-10, FABr-15,
FABr-20, and FABr-25 according to the concentration of FABr. To analyze the morphology
and microstructure of the perovskite film, the surface morphology of the perovskite film
post-treated with FABr observed by SEM is shown (Figure 2). The perovskite crystals on
the surface of FABr-0 showed non-uniform growth and small particle size. As the amount
of FABr gradually increased, the particle size of the perovskite thin film increased and the
surface of the thin film was densely improved, resulting in changes in the microstructure.
Average particle sizes for FABr-0, FABr-5, FABr-10, FABr-15, FABr-20 and FABr-25 were
measured to be ~150 nm, ~270 nm, ~410 nm, ~580 nm, ~560 nm and ~550 nm, respectively.
FABr-15 showed the most uniform grain growth and surface morphology without pinholes.
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These results indicate improved photoelectric properties such as higher extinction coef-
ficients and longer carrier lifetimes [30,31]. When the concentration of FABr was further
increased, the number of pinholes increased and non-uniform grain growth was observed.
This is due to the dewetting phenomenon caused by the high concentration of FA* [32,33].
This dewetting phenomenon shrinks crystal grains and creates gaps between crystal grains,
affecting the crystallinity of perovskite and adversely affecting the performance of optical
devices [34,35]. As a result, these morphological surface changes, uniformity, and grain
growth mean that intermediate engineering using the optimal amount of FABr addition
greatly affects the microstructure of the perovskite active layer [36].
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Figure 2. SEM images of mixed-anion perovskite according to FABr concentration (a) FABr-0, (b) FABr-
5, (¢) FABr-10, (d) FABr-15, (e) FABr-20, (f) FABr-25, (g) Cross-section of a device with individual
layers shown in different colors.

To investigate the effect of FABr post-processing on the final crystal formation of the
mixed anion perovskite film, XRD patterns of the crystalline properties of the film are
shown (Figure 3a). First, it shows that the main peak of perovskite around 14° increases
with the Br concentration. The crystallinity of the FABr-15 film has been improved to
show the highest peak intensity, and the post-processing film using FABr-15 has a 2.5-fold
increase in peak intensity compared to FABr-0. The decrease in peak intensity above the
concentration of FABr in FABr-15 demonstrates that excessive FA™ causes grain shrinkage,
which adversely affects the crystallinity during the crystallization of the film. Also, show
that excessive doping of Br in FAPbI; reduces the stability of the perovskite phase [26].
This significant improvement in film crystallinity after FABr treatment is fully consistent
with the structural evolution of previously studied results [37].

The UV-vis absorption spectra in Figure 3b were used to characterize the photophysical
properties of mixed anion perovskite films prepared by post-processing with different
concentrations of FABr. The results show a relative improvement in the absorption spectra,
with films post-treated with FABr exhibiting stronger absorption than FABr-0 films. The
extinction coefficient increased as the concentration of FABr increased and was strongest in
FABr-15. This is because the grains grew after the FABr treatment, increasing the extinction
coefficient [38]. It also indicates that the addition of an appropriate amount of br ions
increased the bonding density and thus improved the quality of the film, which affected
the absorbance [27].

Optoelectronic properties such as carrier concentration, resistivity, and mobility of
thin films are important parameters for semiconductor materials and power devices [38].
Therefore, the photoelectric properties of the thin film according to the FABr concentration
were analyzed using a Hall effect measurement system. All prepared films had high
carrier concentration values of greater than 3.0 x 10'3 cm 3. The mobility of the film that
was not treated with FABr was 17.59 cm?/V-s and FABr-15 had the highest mobility of
38.21 cm?/V-s. This increase in mobility is related to the Pb-X (where X = I and Br) structure
of perovskite. The bond length of atoms decreases as the Br concentration increases. This is
due to the smaller ionic radius of Br atoms. Also, the electron charge distribution is much
stronger around the Br atom due to its higher electronegativity value (2.96) compared to
I (2.66) [25,26]. In conclusion, heavy Pb atoms interact strongly with Br atoms due to their
high electronegativity difference, resulting in a decrease in bond length, and increasing
mobility. The decrease in mobilities of the FABr-20 and FABr-25 films is because excessive
amounts of FABr adversely affect the perovskite crystal formation. The photogenerated
current varies with mobility, and high mobility produces high photocurrent [39,40]. The
diffusion coefficient is calculated using the Einstein relation D = pKgT/q. (Boltzmann
constant K = 1.3806488 x 10-2% J/K, absolute temperature T of the sample, charge q)
Since the diffusion coefficient is proportional to the diffusion distance, high mobility has a
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significant effect on the diffusion distance [41]. Thus, the addition of a moderate amount of
FABr reduces the trap density due to the increase in diffusion distance. Table 1 details the
photoelectric properties of the films.
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Figure 3. Characteristics of films of mixed-anionic perovskites according to FABr concentration. (a) XRD
pattern, (b) UV-vis absorption spectrum in the deep-UV region, (c) photoelectric characteristics.

Table 1. Comparison of resistivity, mobility, and carrier concentration of thin films according to the
amount of FABr addition.

Sample Re(zgstivity Mo;)ility Carrier Con_c;entration
-cm) (cm*/V-s) (cm—3)
FABr-0 0.3832 17.59 3.506 x 1013
FABr-5 0.2962 25.54 4.065 x 1013
FABr-10 0.2723 27.12 5.353 x 1013
FABr-15 0.3297 38.21 5.430 x 1013
FABr-20 0.3567 17.37 4248 x 103
FABr-25 0.4635 10.17 3.8245 x 1013

The performance of the PD according to the FABr concentration was analyzed by
studying the current-voltage (I-V) curve from —2 to +2 V at a scan rate of 0.1 V with a 254
nm-light source with an output of 0.774 mW /cm? under dark conditions. A Schottky barrier
is formed in the fabricated PD due to contact between the electrodes and the current flow.

Figure 4a—f shows the amount of photoprogression produced by this device. FABr-0,
which was not post-treated with FABr, produced photocurrents of 52 and 50 pA at —2



Coatings 2023, 13, 341 7 of 11

and +2 V, respectively. However, FABr-15 post-treated with FABr produced the highest
photocurrents of 158 pA at —2 V and 175 pA at +2 V. This shows that the post-processing
of FABr increased the photocurrent generation by approximately three times.
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Figure 4. Current-voltage (I—-V) characteristics of mixed-anion perovskite PDs as a function of FABr
concentration. (a) FABr-0, (b) FABr-5, (c) FABr-10, (d) FABr-15, (e) FABr-20, (f) FABr-25.

The performance of the photodetector according to the change in FABr concentration is
shown in Figure 5a. In Figure 5b, the [V characteristics change rapidly as the voltage bias
increases. This I-V characteristic trend curve is consistent with the space-charge-limiting
current where the trapped charge exists [42]. At a low bias, the -V characteristic trend
follows an ohmic response. This proves that an ohmic contact is formed at the interface of
the fabricated deep-UV PD. After entering a high bias space charge limited current (SCLC)
region, the current is approximately proportional to V2", where n is the improvement
factor due to trap filling. In addition, a saturation of the photocurrent occurs due to the
Schottky contact formed between the electrodes [43].

Figure 5c shows the responsivity (R) and the specific detectability (D¥) of the device. R
is a parameter representing the efficient response of a PD to a light signal and is defined as

R = % [AW~! or VW] where Photocurrent (I,) = Irjgnt — Ipark, output Photovolt-
age (V) = V0ight — Vpark, and P€ is the incident power, and the output photovoltage or
photocurrent is divided by the input photo power of the active area of the PD. The R values
of the fabricated device for FABr-0, FABr-5, FABr-10, FABr-15, FABr-20, and FABr-are 24.1,
30.5,38.7 43.8, 33.2, and 20.8 mA W1, respectively.

Furthermore, D* is one of the important performance parameters that allows the
evaluation of performance changes caused by the changes in the material and structure
used when manufacturing a PD and represents the minimum level of light output that a
PD can detect. D* is primarily affected by the responsiveness and noise of the PD. The three
noises that contribute are the dark current, Johnson'’s shot noise, and thermal fluctuation
“flicker” noise [44]. The shot noise of the double dark current is assumed to have the

greatest effect and is defined as D* = \/ﬁ [Jones] where g is the charge and ], is the

dark current density. Further, because R and D* values are directly proportional, the higher
the R-value, the higher the D* value. The D* values of the fabricated device for FABr-0,
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(c)

Responsivity (mA W'1)

FABr-5, FABr-10, FABr-15, FABr-20, and FABr-25 are 1.71 x 10'3, 1.95 x 10'3, 2.51 x 10%3,
3.56 x 10'3,2.84 x 10'3, and 1.24 x 10'2 Jones, respectively.
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0.774 mW/cm?. (a) Current-voltage (I-V) characteristics of Deep-UV PD according to FABr concen-
tration, (b) Double logarithmic I-V curve of Deep-UV PD with the highest photosensitivity under
dark conditions, (c) Calculated R as a function of voltage and D*, (d) EQE, (e) Time—current (I—t)
curves as a function of FABr concentration, (f) Transient photoresponse of prepared Deep-UV PDs

during 180 ON/OFF switching cycles.
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EQE, which represents the conversion efficiency of the PD and is calculated as the ratio
of the number of collected charge carriers to the number of incident photons, is another
parameter that represents the performance of the fabricated PD. EQE = IZ—;‘C where F is
Planck’s constant, c is the speed of light, and A is the wavelength of the incident light. The
EQE values of the device for FABr-0, FABr-5, FABr-10, FABr-15, FABr-20, and FABr-25 are
16, 24, 33, 38, 27, and 13%, respectively.

Figure 5e shows the current-time (I—T) response characteristics of a far-UV PD mea-
sured at a bias voltage of 1 V and an output luminous intensity of 0.774 mW /cm?. Response
speed and response time are inversely proportional to each other and are parameters that
evaluate the performance of PDs. When the signal input to the PD changes over time, a
time delay occurs until the output of the device is reached, which is the response time. The
response speed indicates the rapid duration at which a PD responds to an optical signal and
is expressed in terms of the rise time and fall time. In general, the rise time is defined as the
time required for the response to increasing from 10 to 90% of its maximum value, whereas
fall time is defined as the opposite. The rise time (tyjse) and fall time (t¢,)) of the fabricated
device for FABr-0, FABr-5, FABr-10, FABr-15, FABr-20, and FABr-25 were 66 ms/68 ms,
72 ms/75 ms, 78 ms/79 ms, 78 ms/79 ms, 74 ms/76 ms, and 65 ms/67 ms, respectively.

Figure 5f shows the operational on/off characteristics of deep-UV PD with film post-
processing using FABr-15 as the light-absorbing layer. Testing of the device with more than
180 on/ off cycles showed stable reproducibility. The photocurrents were 11.12 pA in the
first iteration and 10.98 pA after 180 iterations. These results demonstrate the excellent
reproducibility of the fabricated PD.

The performance parameters for mixed-anion perovskite deep-UV PDs fabricated
with FABr-15 were similar or superior to those of PDs reported in previous studies (Table 2).

Table 2. Comparison of important parameters of various perovskite-based deep-UV PDs.

Light

Voltage Responsivity Detectivity EQE

Materials (am) Method W) (mA/W) (Jones) (%) Ref.
FAPb(I/Br); 254 Solution 2 43.8 3.56 x 1013 38 [this study]

MAPDbBr3 254 Solution -1 4.57 1.02 x 1013 222 [45]
MAPDCl3 255 Single crystals 5 450 - 219 [46]
MAPDbBr3; 255 Single crystals 5 300 - 146 [46]
MAPDI; 255 Single crystals 5 120 - 58 [46]
CsPbBr3-Cs,PbBry 254 Vapor 0 49.40 1.2 x 1012 31 [20]
(FAPbI3)097(MAPbBr3)g03 254 Solution 0 52.68 4.65 x 101! 28 [47]
CsCupl3 265 pulsed laser 2 37.7 8.1 x 1010 17.9 [48]

4. Conclusions

In summary, a mixed-anion perovskite PD fabricated through a post-processing pro-
cess was fabricated. The fabricated device showed excellent photoelectric properties for
a deep ultraviolet light source of 254 nm. In addition, the detectability of 3.56 x 103
Jones showed better characteristics than other perovskite-based PDs. Therefore, this study
demonstrated a PD with a high detection rate that can operate under the deep-UV region.
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