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Abstract: Sb2Se3 is a typical V2VI3 binary chalcogenide compound characterized by a single crys-
talline phase and a fixed composition. Sb2Se3 displays a narrow energy gap ranging from 1.1 to
1.3 eV, which are quite optimal values for single-junction solar cells. Earth-abundant and non-toxic
components make this material a good candidate for low-cost thin-film solar cells. In substrate
configuration, a world record efficiency of 9.2% was recently obtained. Sb2Se3 thin films exhibit
an accentuated predisposition to form (Sb4Se6)n ribbons along the [001] direction. This anisotropy
heavily influences the charge transport of the photogenerated carriers. In this work, structural char-
acterization of the Sb2Se3 films showed that the crystalline quality and preferential orientation are
strongly dependent on the window layer used. To better understand the growth mechanism, Sb2Se3

thin films were deposited by close-spaced sublimation on five different window layers, such as CdS,
CdS:F, CdSe, As2S3, and ZnCdS. Sb2Se3-based solar cells, realized in superstrate configuration on
these different substrates, evidently demonstrate the influence of the Sb2Se3 preferential orientation
on the photovoltaic parameters.

Keywords: solar cells; thin film; Sb2Se3; CdS; ZnCdS; texture coefficient

1. Introduction

Antimony selenide (Sb2Se3) is a very promising material for developing innova-
tive high-efficiency thin film solar cells, since it is based on abundant and less toxic ele-
ments on the Earth’s crust than other materials suitable for the same application, such as
CdTe and CIGS [1]. Moreover, it presents a good absorption coefficient (α > 105 cm−1)
for the visible part of the solar spectrum [2], acceptable room temperature (RT) carrier
mobility (µe ≈ 15 cm2V−1 s−1 and µh ≈ 5.1 cm2V−1 s−1) [3–5], and a suitable band gap
(Eg ≈ 1.17 eV) [6] that falls near the maximum of the Schottky-Quiesser limit [7]. This
material crystallizes in the orthorhombic structure, and it presents a unique quasi-one-
dimensional structure, formed by ((Sb4 − Se6)n) chains (ribbons) along the c-axis that are
bounded by weak van der Walls forces [8].

The identification of a good window layer as an n-type partner coupled with a p-
type Sb2Se3, plays a crucial role to obtain high efficiency solar cells. In the last few years,
different candidates have been checked to fill the gap; for example, Zinc oxide (ZnO) [9]
and Titanium dioxide (TiO2) [10] window layers were tested in Sb2Se3-based solar devices,
reaching 5.93% and 5.5% power conversion efficiency (PCE), respectively. A world record
PCE of 9.2% was achieved using cadmium sulphide (CdS) as the window layer in a
substrate configuration solar cell, while a 7.6% record PCE was obtained in a superstrate
configuration [11,12].

An optimal window layer should maximize the growth of the antimony selenide
grains orthogonally to the substrate plane, such that the growth is oriented along the
c-axis of the Sb2Se3 unit cell. This preferential spatial arrangement reduces the carrier
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recombination at the interface between two ribbons [13,14] during the normal operation of
the final photovoltaic device. This requirement is due to the peculiar structure of Sb2Se3:
since (Sb4 − Se6)n ribbons interact with a strong covalent bond along [001], this guarantees
a good carrier transport in that direction, while opposite behaviors are true for [100] or
[010] directions, along which ribbons are bound by weak Van der Waals forces [13].

As far as we know from the literature, the Close-Spaced Sublimation (CSS) technique
has already been widely used to deposit Sb2Se3 films in superstrate configuration thin-film
solar cells. Despite this, a systematic study of how Sb2Se3 grows on different window
layers has not yet been performed. For this reason, to study the effect of high-temperature
deposition on the physical properties of Sb2Se3 films, the substrate has been varied as a
CSS deposition parameter.

In this framework, five candidates used as window layers for Sb2Se3-based thin film
solar cell in superstrate configuration (Figure 1a) were studied: cadmium sulphide (CdS),
fluorine-cadmium sulphide (CdS:F), cadmium selenide (CdSe), zinc-cadmium sulphide
(Zn0.15Cd0.85S) and arsenic sulphide (As2S3).
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Figure 1. (a) The superstrate structure of the solar cells; (b) Sketch of CSS system; (c) van der Pauw
measurement configuration.

Cadmium sulphide was considered because it has been successfully used for the same
application in other thin-film solar cell technologies (CdTe and CIGS). Moreover, the actual
world record PCE for Sb2Se3-based solar cells has been achieved using CdS as window
layer. For this reason, solar cells realized with CdS represent a good reference for all the
other devices based on the different investigated window layers [12,15,16].

One of the main problems of using the CdS as a window layer for Sb2Se3 remains
the lattice mismatch with the absorber that could be minimized with the introduction of a
double buffer layer [17].

In the literature, it has also been reported that the presence of CdF2 into the grain
boundaries of CdS promotes the chemical stability of the material [18]. For exploiting this
advantage, cadmium sulphide in an atmosphere of Ar + CHF3 as sputtering process gas
was deposited.

Selenium vacancies are generated during the Sb2Se3 deposition at substrate tempera-
ture of 360 ◦C. These vacancies could act as deep donor levels, lowering the photovoltaic
parameters [19,20]. To verify the possible filling of selenium vacancies, CdSe was tested to
encourage the interaction with the growing Sb2Se3 film, which could be effective for the
diffusion of Se atoms.

Arsenic sulphide was used to exploit the quasi-rheotaxy growth of the film [21,22]. In
the quasi-rheotaxy approach, atoms constituting the surface layers of any material move
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as if they were in a liquid state at temperatures up to 30% lower than the melting point.
The material therefore does not melt, but the surface layers appear to be melted. This can
give a high surface mobility to the adsorbed atoms and to the forming clusters. The high
cluster mobility facilitates both coalescence and orientation, favoring large crystalline grain
growth [23,24], and this is even more true in the case of a glassy system such as As2S3 [25].
Quasi-rheotaxy preserves the advantages of rheotaxy, which consists of growing thin films
on liquid surfaces, but it avoids its main disadvantage, the formation of droplets.

By introducing an appropriate percentage of zinc inside the CdS lattice, the trans-
parency of the window layer in the visible region is increased. At the same time, Zn changes
both the band alignment with antimony selenide and the resistivity that is increased [26].
A 15 at% of Zn has been estimated to be an optimal value to maximize transparency and
make the resistivity of the window layer suitable for photovoltaic applications.

Starting from the collected data on the effects of the different compounds tested, the
final goal of this work is to describe the preferential growth orientation of the Sb2Se3
crystalline grains along the (002) plane (perpendicular to the ribbons axis) driven by the
interaction with the window layers.

The obtained results show which are the best substrate for the Sb2Se3 growing, since
there is a strict correlation between the photovoltaic parameters of the cells and the direc-
tions along which the ribbons grow. Probably, any improvement that the solar cell will
exhibit in the future will be achieved by taking these results into account.

From this point of view, the strategy used is not limited to photosensitive devices but
can be effective whenever one material is deposited on top of another. If the deposited
material is strongly anisotropic, such as structures with reduced dimensions (1D and 2D),
the method used in this work can give interesting results in the analysis of crystallinity and
preferential orientations. This methodology can be used for the structural characterization
of nanostructure-based devices such as nanoplateled LEDs [27], nanostructured solar
cells [28], and more generally semiconductor nanodevices [29–34].

2. Materials & Methods

All the window layers were grown by low-temperature radiofrequency (r.f.) mag-
netron sputtering (MS) in a working Ar gas pressure of 5 × 10−1 Pa except for sample B,
for which a CHF3 partial pressure of 5 × 10−3 Pa was also introduced.

Samples with different window layers are indexed with capital letters, and the deposi-
tion parameters are described in Table 1.

Table 1. The main sputtering parameters related to the deposition of the window layers.

Material
(Working

Atmosphere)

Substrate
Temperature

[◦C]

Power
Density
[W/cm2]

Deposition
Rate
[Å/s]

Thickness
[Å] Sample

- 250 0.7 4 3000 A
CdS (Ar + CHF3) 250 0.9 4 3000 B
CdS + CdSe (Ar) 250 (0.7) (0.6) (4) (4.4) 3000 + 500 C
CdS + As2S3 (Ar) 220 (0.7) (0.6) (4) (2.4) 3000 + 500 D
CdS + ZnCdS (Ar) 220 (0.7) (0.8) (4) (4) 600 + 300 E

Sample A: CdS film, 300 nm thick, deposited by sputtering at a temperature of 200 ◦C
is characterized by a direct energy gap of 2.42 eV with a hexagonal crystal structure, which
becomes cubic if annealed over 400 ◦C [35].

Sample B: CdS:F film, 300 nm thick, is deposited by sputtering at 200 ◦C in an Ar +
CHF3 starting with a CdS target. The CdS:F film is characterized by a direct energy gap of
2.85 eV and a hexagonal crystal structure [36].

Sample C: CdSe film, 50 nm thick, deposited by sputtering at 200 ◦C in pure Ar, is
characterized by a direct energy gap of 1.74 eV with a hexagonal crystal structure [37].
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Sample D: As2S3 film, 50 nm thick, deposited by sputtering at 200 ◦C in pure Ar, is
characterized by a direct energy gap of 2.35 eV with a monoclinic crystal structure [38].

Sample E: CdS + Zn0.15Cd0.85S (ZnCdS) films, in which the CdS film is the same as in
sample A and the ZnCdS film, 50 nm thick, is deposited by sputtering at 200 ◦C in pure Ar.
ZnCdS film with a direct energy gap of 2.64 eV with a hexagonal crystal structure [39].

The thicknesses of all these films were optimized to avoid a significant blue light
absorption (e.g., EgCdS ∼ 2.42 eV) and to prevent pinhole formation, which would affect
the p-n junction behaviour [40–42].

Antimony selenide films were deposited by the close-spaced-sublimation (CSS) tech-
nique (Figure 1b) [43] using an argon partial pressure in the range 10–20 Pa. The crucible
was heated at a temperature of Tc = 550 ◦C, and the substrate, even though not directly
heated by an external source, reached a temperature of Ts = 360 ◦C due to convection and
irradiation heating from the facing crucible. The typical distance between the crucible and
substrate in CSS is (2–4)× 10−3 m. Since this distance is less than the mean free path of the
sublimated particles, they do not experience scattering with the inert gas (Argon), and this
condition grants fast, uniform thin film growth and high crystalline quality.

A substantial modification, which consists in the use of a compact block of Sb2Se3,
previously melted and resolidified, instead of Sb2Se3 granules, was implemented. The
use of a compact block of Sb2Se3 is effective in getting a uniform heating of the material,
avoiding any burst of microparticles from the source to the substrate. By using this CSS
system, in 5 min deposition an Sb2Se3 film with a thickness of ∼ 4µm is obtained.

XRD measurements were performed using a linear detector LYNXEYE (Bruker, Karl-
sruhe, Germany) and the crystalline phase identification was carried out by the PDF4 +
database (ICDD, Newtown Square, PA, USA).

Raman analyses were performed using a He-Ne laser with line emission at 632.8 nm.
Laser is focused on samples, (similar to a finished cell in which only the layer that consti-
tutes the back contact is missing) in a nearly backscattered geometry with a HORIBA-Jobin
Yvon LabRam confocal micro-spectrometer (300 mm focal length spectrograph) equipped
with an integrated Olympus BX40 microscope, with 4×, 10×, 50× Ultra Long Working Dis-
tance (ULWD) and 100× objectives. In order to perform a correct measurement, the set-up
was calibrated using the 520.6 cm−1 Raman peak of silicon. Experimental data were manip-
ulated by using LabSpec5 built-in software. The Sb2Se3 film are illuminated in confocal
configuration, which means that only this layer is interested in the Raman measurement.

From the electrical point of view, on Sb2Se3 films, a four-point resistivity measurement
was performed. In this case, Sb2Se3 was grown on an insulating material, such as sputtered
zinc oxide, and the electrical contacts, formed by a 200 nm-thick Sb2Te3 film covered by
a 100 nm-thick Pt film, were fabricated by a radiofrequency magnetron sputtering in the
van der Pauw configuration [44] on the four corners of square-shaped samples having area
∼ 1 mm2 (Figure 1c). The measurement was performed by injecting and extracting current
into a pair of contacts using a Keithley 220 programmable current source instrument, while
the electrical potential between the other pair of contacts was read by means of a Keithley
617 programmable electrometer.

The complete Sb2Se3-based solar cell with 1 cm2 of active area, realized in superstrate
configuration, starting from a low-iron soda lime glass as a substrate, is made by the
following layers:

1. n-type part (all these films are MS deposited)

a. Transparent Conducting Oxide (TCO) made up of an 800 nm thick ITO film
b. high resistivity transparent (HRT) ZnO layer, 150 nm thick
c. CdS, CdS:F, CdS + CdSe, CdS + As2S3, CdS + ZnCdS films representing the

different window layers used for testing, whose thicknesses are described in
Table 1.

2. p-type part

a. Absorber layer–Sb2Se3 film, 4–5 µm thick (CSS-deposited)
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b. Back contact–Sb2Te3 film, 200 nm thick covered by Pt film, 100 nm thick (both
films are MS deposited)

The I-V characteristics of complete-solar cells were obtained by using a continuous
LOT-Oriel solar simulator (Oriel, Irvine, CA, USA), equipped with an air mass AM1.5
filter and with a 1 KW/m2 light power density supplied by a 600 W Xenon lamp (Oriel,
Irvine, CA, USA). A calibrated pyranometer was used as a reference, and the measurements
were made at the standard temperature of 298 K. Short-circuit current density (Jsc) values,
non-corrected for the spectral mismatch, were measured over a calibrated shunt resistor
supplied by a Keithley 4200-SCS instrument (Tektronix, Solon, OH, USA).

3. Results and Discussion
3.1. Structural Characterization

The reference card used to analyse the experimental XRD pattern of Sb2Se3 thin film
is JCPDS 15-0861, which refers to Pbnm Sb2Se3 space group, as shown in Figure 2 by using
the VESTA tool [45].
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space group.

To evaluate the preferential orientation of the Sb2Se3 crystalline grains, the most repre-
sentative planes in the XRD patterns reported in Figure 3 ((221), (301), (211), (002), (310),
(212), (041), and (141)) were selected to estimate the texture coefficient (TChkl) associated
with the (hkl) plane (following [46]])

TChkl =
Ihkl/I0hkl

∑n
i=0 Ihiki li /I0hiki li

· 100%

where Ihkl is the experimental peak intensity related to the selected plane, I0hkl is the
intensity of the same plane reported in the reference card and n is the total number of
chosen planes.

By comparing these XRD patterns with the reference card JCPDS 15-0861, it is evident
that in the analysed Sb2Se3 films there aren’t secondary phases, in agreement with the
Raman spectra reported in Figure 4. RT Raman analysis shows that three peaks exist
in all samples at 155 , 192 and 212 cm−1 that corresponds to Bxg, and Ag Raman active
vibrational modes [47].
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By imposing a threshold of 10% as the minimum TC for every plane taken into
consideration from the XRD [48], it is evidenced in Figure 5a that the investigated samples
show diffraction peaks corresponding to the (301), (221), (002), and (211) planes.

In particular, the analysis of texture coefficient values shows that there are preferential
reflections from different planes, namely (301) for samples A (CdS) and C (CdSe), while for
samples B (CdS:F) and E (ZnCdS) it is (002).

Since this material crystallizes in the orthorhombic phase, with (Sb4Se6)n ribbons
stacked in parallel in the [001] direction [6], this is believed to be the direction in which
charge transport is favoured [47,49]. Sample D (As2S3), in which Sb2Se3 was grown by
exploiting the quasi-rheotaxia phenomenon, conversely shows a very high TC310, almost
negligible in other samples, except for sample C. As depicted in Figure 5b, the growth along
the [001] direction is strongly window layer dependent, and it seems favoured by window
layers containing zinc, reaching the maximum value of 27% for the texture coefficient of
sample E.
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Figure 5. (a) Texture coefficient for different crystalline planes; histograms under the 10% line have
to be considered as negative values with respect to 10%; (b) Trend of the texture coefficient of the
(002) plane as a function of different window layers.

3.2. Electrical Characterization

To estimate the RT resistivity of the Sb2Se3 films, grown on an insulating ZnO layer, a
4-point measurement in the van der Pauw configuration was performed.
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Referring to Figure 1c and permuting the pairs of contacts, it is possible to determine
the resistivity from the following equation [44]:

exp
(
−πdR12,34

ρ

)
+ exp

(
−πdR23,41

ρ

)
= 1

where:

• d is the sample thickness
• ρ is the resistivity
• R12,34 is the average resistance over the possible pairs combinations of contacts

R12,34, R21,34, R34,21 and R43,12. The same is true for R23,41.

The resistivity resulted to be 5 × 103 Ω · cm in dark conditions with an uncertainty of
about 10%.

The J-V characteristics related to the complete devices with different window layers
are reported in Figure 6a. From the J-V characteristics, it is possible to know the main pho-
tovoltaic parameters: the photocurrent Jsc and the shunt resistance RSh, the photovoltage
Voc and the series resistance Rs, are all estimated from the J-V curve.
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Figure 6. (a) J-V characteristics of the solar cells fabricated with different window layers; (b–f) Dark
J-V curves in log10 scale. The fit (solid lines) was performed to extract the Trap Filling Limit Voltage
(VTFL) value (see text). (b) ZnCdS; (c) CdS:F; (d) CdS; (e) CdSe; (f) As2S3.

In order to determine the trap density of Sb2Se3 near to the top of the valence band
and to the bottom of the conduction band [50], we have used the Space-Charge-Limited
Current method. This method consists of measuring the J-V curve of the solar cell in dark
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conditions with symmetric ohmic contacts [51,52]. The intermediate voltage region, where
the slope of the curve is higher than 2, is the trap-filled limit region, suitable to determine
the number of traps [53,54]. From Figure 6b–f, the value of the Trap Filling Limit Voltage
(VTFL) was evaluated by using the following equation [55].

Ntrap =
2εε0VTFL

qL2

where εo is the vacuum dielectric constant, ε is the Sb2Se3 relative dielectric constant (esti-
mated to be 15.1) [54], q is the electron charge and L is the antimony selenide film thickness.

The measured photovoltaic parameters given in Table 2 are in agreement with the
literature for this type of solar cell [56,57], except for sample D, which is characterized by a
very high photovoltage and very poor photocurrent with high series resistance and a con-
sequently low fill factor. This result has been considered a direct consequence of the crystal-
lization of Sb2Se3 grown on arsenic sulphide well evidenced by the low texture coefficient.

Table 2. Main photovoltaic parameters of solar cells realized with different window layers. The
experimental errors are lower than 2%.

- Sample A Sample B Sample C Sample D Sample E

RSh
[
Ω · cm2] 139 107 98 124 86

Rs
[
Ω · cm2] 15 9 16 49 8

Jsc
[
mA/cm2] 10.5 18.9 13.6 5.2 22.4

Voc [mV] 435 478 433 593 469
Fill f actor 0.45 0.46 0.43 0.34 0.43

PCE 2.1% 4.2% 2.6% 1.3% 4.5%
Ntrap

[
cm−3] 3.0 × 1013 1.2 × 1013 2.3 × 1013 5.0 × 1013 3.6 × 1013

From the equation
σ = ρ−1 = epµ

it is possible to determine the hole density p in dark conditions, using the obtained resistiv-
ity value of about 5 · 103 Ω · cm and, for the mobility µ a value of 5.1 cm2 V−1 s−1 [3].

The obtained value for p is about 2 × 1014 cm−3, about one order of magnitude higher
than the estimated trap concentration. It is therefore necessary to reduce the number of
traps and increase the hole spatial density to improve the solar cell behavior.

A connection between the texture coefficient TC and the photovoltaic parameters
is inferred by plotting Jsc versus the TC(002) corresponding to the [001] growth direction
(Figure 7a). For samples B and E, where the preferential growth is along the [001] direction,
the current increases with the texture coefficient referred to as plane (002), while for the
other samples Jsc is lower due to a more pronounced random arrangement of the grains. In
fact, even if the TC(002) for the CdS window is higher than for CdSe, the photocurrent Jsc is
lower, because its flow depends also on the other planes, in particular (301) (preferential
for both) and (221). The last consideration suggests that for obtaining a good Jsc, it is
not sufficient that the Sb2Se3 film grows preferentially with the (002) plane parallel to
the substrate ([001] is the growth direction) but also that the occurrence of other growth
directions is limited in favor of the [001]. Fill factor and Voc do not exhibit such dependence
because they are more strongly dependent on the high number of defects (traps) in the
Sb2Se3 film.
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4. Conclusions

A systematic study of the interaction between different window layers (CdS, CdS:F,
CdSe, Zn0.15Cd0.85S and As2 S3) deposited by sputtering and CSS-deposited Sb2Se3 was
carried out. For the first time, the coupling between the materials of the window and
absorber layers, deposited by the chosen techniques, was correlated.

Sb2Se3 films, grown on different window materials, show similar compositional and
morphological properties but different preferential grain orientations, as evidenced by XRD
and Raman measurements.

The combination of these techniques reveals that Sb2Se3 thin films do not present sec-
ondary crystalline phases. Through the texture coefficient evaluation, a trend between the
TC(002) and the window layers on which the Sb2Se3 films were grown has been evidenced.
In particular, the preferential Sb2Se3 growth direction is the [001] if CdS : F and ZnCdS are
used as window layers.

From the J-V characteristics, the main photovoltaic parameters were extrapolated, and
a trend of Jsc vs. TC(002) was observed; in particular, Jsc increases with the TC value for
the (002) plane. For the other samples, a strong contribution from the other planes was
observed. The other photovoltaic parameters, such as Voc and FF, are also strongly affected
by the high number of traps in the antimony selenide film. Due to this fact, it is not possible
to evaluate a substantial trend between the TC(002) and these parameters.

Although, for a further increase in the efficiencies on those devices, more studies are
needed regarding window layers aiming to reduce Ntrap by adjusting the lattice mismatch
at the heterojunction interface.
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