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Abstract: Y2O3-reinforced Al-Si alloy coatings were prepared on the surface of a Mg alloy by the
laser cladding technique. The microstructure, hardness, and wear resistance of the coatings were
analyzed using an X-ray diffractometer, a scanning electron microscope, an energy spectrometer,
a Vickers hardness tester, and a friction wear tester. The effect of different additions of Y2O3 on
the microstructure and properties of the coatings was investigated. The results indicate that the
addition of Y2O3 leads to a significant refinement of the grain size and a denser microstructure of the
coatings. Coatings with a high Y2O3 content provide superior hardness and wear resistance. With a
Y2O3 content of 7.5 wt.%, the coating exhibits the finest grain size, highest hardness, and smallest
wear volume. Excessive amounts of Y2O3, however, cause a reduction in the surface properties of
the coating.

Keywords: laser cladding; Y2O3; microstructure; wear resistance

1. Introduction

Magnesium (Mg) alloys are composed of magnesium based on the addition of other
elements, normally added elements such as Al, Zn, and Mn [1]. As one of the most widely
used metallic materials in contemporary industry, Mg alloys are regarded as the green
industrial materials of the 21st century [2,3]. The density of Mg alloy is low, only two-thirds
that of Al, making it the lightest engineering material available [4]. Mg alloys have good
heat dissipation, high specific strength, high specific stiffness, a high modulus of elasticity,
good damping properties, and cutting properties [5]. It also exhibits excellent physical
and chemical properties such as good biocompatibility, good recyclability, high hydrogen
storage capacity, and a high theoretical specific capacity of the battery [6,7]. Owing to
their excellent physical and chemical properties, Mg alloys are used in the aerospace,
automotive, electronics, biomedical, and energy industries [8,9]. Nonetheless, the low
hardness, poor wear resistance, and weak corrosion resistance of Mg alloys limit their
further promotion [10–12].

For the improvement of the surface properties of Mg alloys, laser cladding technology
is widely applied. Asghar et al. [13] successfully fabricated Ni60 coatings on LA43M Mg
alloys by using the ultra-high-speed laser cladding technique and obtained superior surface
mechanical properties. Sundaraselvan et al. [14] used laser melting technology to surface
modify the AZ61 Mg alloy with nano-Al2O3 and investigated the strengthening effect
of nanoceramic particles. Studies have shown that laser cladding of alloy coatings can
effectively address surface property defects in Mg alloys [15–18]. The binary alloys are often
similar in composition to the matrix material, possess good physical and chemical com-
patibility with the matrix, and bond firmly after fusion coating [19–22]. Dziadoń et al. [23]
investigated the microstructure of the surface layer of Mg laser alloyed with Al-Si. The
differences in the microstructure of surface layers corresponded to the differences in their
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wear resistance and corrosion resistance. Zhang et al. [24] prepared an Al-Si coating on
the surface of a Mg-6Zn-1Ca alloy using laser cladding in order to improve the surface
properties of Mg alloys. The results revealed that the coating mainly consisted of α-Mg,
Mg2Si dendrites, Mg17Al12, and Al3Mg2 phases. The microhardness of the coating (310 HV)
was approximately five times higher than that of the substrate (54 HV). Wang [25] et al.
designed three melting solutions by using pulsed direct current (P-DC) cold arc on the
surface of AZ61 Mg alloy, namely Al-Si alloy (AlSi5), Al-Mn alloy (AlMn), and Al-Mg alloy
(AlMg5). The Al-Si alloy coating had the lowest wear rate, approximately 13.9% of that of
the matrix. Laser cladding Al-Si alloy coatings significantly improves the surface properties
of the Mg alloys. Additionally, the microstructure formed by adding Y2O3 has pronounced
effects on the friction and wear characteristics of the coating [26–28]. There is quite limited
research into the improvement of Mg alloy surface coatings by means of Y2O3. Moreover,
the relevant research mainly focuses on the improvement of coating performance by low
rare earth oxide addition, and some research only takes it as one of the variables [29,30].
Therefore, studying the addition of rare earth oxides as the only variable and in the higher
range is quite beneficial.

The AZ91 series of Mg alloys has the advantages of high yield, mature technology, and
promising development. In this paper, the AZ91HP Mg alloy, which has better performance
in the AZ91 series, was chosen as the substrate. The surface properties were improved by
preparing Al-Si alloy coatings with Y2O3 through laser cladding technology. The research
focused on the effect of various Y2O3 contents on the microstructure, Vickers hardness,
and wear resistance of the cladding. The findings provide an experimental foundation and
theoretical guidance for further improvement of the microstructure and wear properties of
Mg alloys.

2. Materials and Methods

The cladding coating was prepared with Al-Si eutectic powder and Y2O3 powder. The
Al-Si eutectic powder has 99.9% purity, a particle size of 48–150 µm, and a mass ratio of Al
to Si of 88:12. Y2O3 powder has a purity of 99.9% and an average particle size of 150 µm.
AZ91HP Mg alloy with dimensions of 30 mm × 15 mm × 10 mm was used as the substrate
material, and the chemical compositions are shown in Table 1.

Table 1. AZ91HP component contents (wt.%).

Element Al Zn Mn Si Fe Cu Ni Be Mg

content 8.8900 0.5620 0.2041 0.0443 0.0030 0.0034 0.0090 0.0012 balance

The composite coating was prepared using a transverse flow CO2 laser processing
system (DL-HL-T2000). The specific experimental parameters are shown in Table 2. The
experiments were carried out with a spot diameter of 3 mm for laser cladding, a prefabri-
cated coating thickness of 1 mm, a coating lap rate of 30%, and argon as a protective gas
with a flow rate of 5 L/min.

Table 2. Experimental parameters for laser cladding coatings.

Order Al-Si
(wt.%)

Y2O3
(wt.%)

Power
(W)

Scanning Speed
(mm/min)

1 100 0 1300 400
2 97.5 2.5 1300 400
3 95 5 1300 400
4 92.5 7.5 1300 400
5 90 10 1300 400

A specimen block of size 12 mm × 12 mm × 10 mm was obtained by wire cutting,
and the specimen was ground and polished with a polishing machine. An X-ray diffraction
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analyzer (TD-3500X) was used to analyze the phase of the laser cladded specimen surface.
The specimens were subjected to an etching treatment using a solution of 10 mL HF and
15 mL HCl mixed with 90 mL of H2O. The specimens were corroded for 2 s and then
cleaned off the surface with ethylene glycol. The scanning electron microscope (JSM-7610s)
was used for the microstructure tests. The equipment was used to observe the microstruc-
ture of specimen cross-sections and wear surfaces and to measure the chemical element
distribution in the coating using its accompanying energy dispersive spectroscopy (EDS).

The hardness gradient performance of the cross-section of the laser cladding samples
was tested by the Vickers hardness tester (HXD-1000TMC/LCD). The experimental load
was 5 g, and the load retention time was 10 s. One data point was measured every 0.05 mm,
taking the average of three parallel points as the hardness value. The wear resistance of the
specimens was tested using a high-speed reciprocating fatigue friction and abrasion tester
(MGW-02). The specimens were tested for 20 min at a test force of 3 N and a frequency of
10 Hz. The pair of grinding balls used were GCr15 steel, and the reciprocal wear distance
was 3 cm. The width of the wear traces was measured using scanning electron microscopy
to calculate the wear volume. The calculation equation is as follows:

θ = 2 × arcsin
(

Lc

2R

)
, (1)

V = S × L =

(
θ × R2

2
− sinθ × R2

2

)
× L, (2)

where, θ is the center angle corresponding to the wear trace, Lc is the width of the wear
trace, R is the radius of the grinding ball, L is the length of the wear trace (total reciprocating
distance), and S is the area of the wear trace profile.

3. Results and Discussion

Figure 1 shows the macroscopic surface morphology of the coatings with various Y2O3
contents. As seen in Figure 1, the coatings exhibit a metallic lustre. The surface of the five
specimens shows no oxidation blackening, which indicates that the protective gas flow
rate was controlled within a reasonable range. The relatively flatter coating can be clearly
observed in Figure 1b–e. This indicates that the addition of Y2O3 increases the absorption
of the laser, which results in a more uniform heating of the coating. Some porosities can
be observed in Figure 1a,b,e. The poor fluidity of the melt pool leads to the formation of
cavities, whereas the addition of Y2O3 can significantly improve the fluidity of the melt
pool [29–31]. The coatings in Figure 1a,b have poor melt pool fluidity caused by the absence
of Y2O3 or low Y2O3 content, resulting in the appearance of porosities. The coatings in
Figure 1c,d have no porosity owing to the moderate addition of Y2O3, which improves the
fluidity of the coating and allows the gases generated during the laser cladding process
to escape before the melt pool solidifies. While some porosities are generated again in
Figure 1e caused by the addition of excessive amounts of Y2O3, resulting in the blocking of
the melt pool flow and impeding the discharge of gas.

Figure 2 presents the XRD results of the laser cladding coatings with various Y2O3
contents. As shown, the coatings containing Y2O3 mainly consist of Mg17Al12, Mg2Al3,
Mg2Si, Al4MgY, and α-Mg, while the Al4MgY phase is absent in coatings without Y2O3
addition. The original phases in the AZ91HP Mg alloy are Mg17Al12 and α-Mg. Due to the
effect of the high-energy laser beam, the Mg alloy fully reacts with the coating material to
produce a variety of intermetallic compounds as well as Al4MgY rare earth compounds.
The diffraction peaks of the coating are concentrated between 35◦ and 40◦ with the high
peaks being all Mg-containing phases, indicating that Mg diffuses into the coating through
the melt pool and reacts fully with the coating elements to produce a variety of phase
structures. Furthermore, the addition of Y2O3 resulted in a significant alteration in the
phase diffraction intensity of the coating, as shown by the fact that a high peak at 36◦

appears in the coating without Y2O3, while a trend of decreasing and then increasing a peak
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at 36◦ occurs with increasing Y2O3 content. Similarly, a peak of 39◦ occurs in the coating
without Y2O3, while the peak shows an increasing trend as the Y2O3 content increases from
2.5 to 10.0 wt.%.
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Figure 3 illustrates the cross-sectional microstructure of the coating with various Y2O3
contents. The coating consists of four parts, from top to bottom: the cladding zone (CZ), the
bonding zone (BZ), the heat-affected zone (HAZ), and the substrate. The strip between the
coating and the substrate is wavy. The reason for this is that the different melting points of
the native α-Mg in the Mg alloy and the dissociated eutectic tissue at the grain boundaries,
leads to a different amount of melting at different locations on the surface of the substrate.
Thus, the surface of the substrate appears as a local melting depression area, which makes
the solidified substrate and coating bonding interface wavy. This further confirms that the
coating shows a good metallurgical bond with the substrate.
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Figure 4 shows the results of the line scan of the coating cross-sections with various
Y2O3 contents. Using the internal direction of the coating as the positive horizontal axis
and the elemental content as the vertical axis, it can be seen that the elemental content of
Mg gradually increases and rises steeply at the interface between the substrate and the
coating, reaching a maximum in the substrate, while the elemental content of Al shows
a decreasing trend, reaching a minimum in the substrate. The most abundant element in
the coating is Mg, which reveals that the substrate surface layer melts instantly under the
action of the laser to form a molten pool. It is conducive to a good bond between the coating
material and the substrate, but this also results in the problem of an excessive dilution rate.
From Figure 4a–d, the Mg element content in the coating gradually decreases as the Y2O3
content increases until the Y2O3 content is 7.5 wt.%, at which point the minimum amount
of elemental Mg is reached and the lowest dilution rate is achieved. This is because Y2O3
has a very high melting point. Incorporating it into the coating increases the latent heat of
melting the alloy powder, lowers the liquid phase temperature in the melt pool, raises the
solid phase temperature, and reduces the time for solidification, which allows less time for
the elements to diffuse [32,33]. This allows more of the coating elements to remain in the
melt pool and inhibits the massive influx of Mg elements into the coating, thus enhancing
the surface properties. In addition, the high melting point Y2O3 does not melt rapidly
at the first stage of melt pool formation; instead, it is dispersed in different parts of the
melt pool to absorb energy, slowing down the increase in melt pool temperature, reducing
the movement of Mg atoms, and slowing down element diffusion. As the Y2O3 content
continues to increase, the Mg element content in the coating begins to rise, as shown in
Figure 4e, indicating that the addition of excessive Y2O3 will increase the dilution rate
of the coating. This is attributed to the presence of the higher melting point Y2O3 in the
melt pool over a large area, which impedes the convection between the Mg alloy and the
Al-Si alloy in the molten state and reduces the convective heat exchange efficiency in the
melt pool. This prolongs the existence of the melt pool and increases the opportunity for
chemical element diffusion, which allows a large number of Mg atoms to enter the coating
and the dilution rate to rise. The Mg content of the coatings with Y2O3 is lower than that of
the coatings without Y2O3, which means that the addition of Y2O3 in the right amount can
reduce the dilution rate of the coatings.
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Figure 5 shows the microstructure of the coating with a Y2O3 content of 2.5 wt.%. The
coating consists mainly of dendritic crystals (1), a punctate phase (2), a matrix phase (3),
and an acicular phase (4). Dendrites are generated because the grains within the coating
are rough interfacial structures at the time of crystallization and the temperature gradient is
negative, with a large but unstable supercooling at the front of the solid-liquid interface. The
crystallization proceeds in that direction when the supercooling at the rest of the interface
spikes, thus making it more favorable for the tip to grow in that direction. The tip also
grows laterally, but not as fast as the front of the tip due to the latent heat of crystallization,
resulting in the tip growing rapidly into elongated grains called primary dendrites. The
secondary dendrites are those that grow in other directions due to fluctuations in the
surrounding supercooling. The latent heat of crystallization causes the subcooling to
decrease below a critical level, so the free energy generated during crystallization is lower
than the surface free energy, allowing secondary dendrites to not continue to grow and
form dendrite-like grains.
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Figure 5. Microstructure of the 2.5 wt.% Y2O3 coating.

The point scan of the points in Figure 5 using EDS gave the chemical element composi-
tion as shown in Table 3. The ratio of Mg atoms to Si atoms at point 1 is approximately 2:1,
which is close to the atomic ratio of the Mg2Si phase, so the phase is judged to be the Mg2Si
hard phase. The ratio of Al, Mg, and Y atoms at point 2 is approximately 4:1:1, so this is the
Al4MgY phase. The ratio of Mg atoms to Al atoms at point 3 is approximately 3:2, which is
close to the atomic ratio of Mg17Al12, indicating that this phase is Mg17Al12. The ratio of
Mg atoms to Al atoms at point 4 is approximately 2:3, indicating that this phase is Mg2Al3.
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Table 3. Point scan results for coatings containing 2.5 wt.% Y2O3.

Order Mg (at.%) Al (at.%) Si (at.%) O (at.%) Y (at.%)

1 66.17 2.09 30.12 0.80 0.82
2 16.89 65.48 0.92 0.61 16.10
3 59.88 39.73 0.12 0.27 0.00
4 39.53 58.25 0.27 1.90 0.05

Figure 6 illustrates the evolution of the microstructure for the 2.5 wt.% Y2O3 coating
at different depths. A clear change in grain morphology from the top to the bottom of the
coating can be observed. Figure 6a reveals the top of the coating, where the grains are
relatively sparse but fine. This is because the surface layer is exposed to direct laser light,
resulting in the burnout of some elements, so there is a relatively loose microstructure.
There are many channels for heat dissipation from the top of the coating, which means that
free energy drops more quickly in the upper part of the melt pool, making the conversion
of the surface liquid phase into a solid phase more dynamic. The rapid drop in temperature
causes the top layer to have a lower actual crystallization temperature, resulting in a larger
degree of subcooling. This leads to a refinement of the grain size, so the top layer has finer
grains. Figure 6b shows the microstructure of the upper-middle part of the coating. The
microstructure is much denser and has the finest grain size, exhibiting the best overall
coating quality. There is no significant elemental burning as in the surface layer, and some
of the slag and impurities from the laser coating float up to this area, which provides nuclei
for crystallization and thus increases the nucleation rate to refine the grains. Figure 6c
shows the lower-middle of the coating. The grains in Figure 6c are significantly coarser than
in the upper part. This is because the microstructure has limited heat dissipation channels
during crystallization, and there is a loss of laser energy density transfer resulting in a
low melt pool temperature, which reduces subcooling and coarsens the grains. Figure 6d
depicts the bottom of the coating. The microstructure in this area has the coarsest grains.
This area has the worst heat dissipation and is affected by the latent heat of crystallization
in the upper layers, which causes poor fluidity and low nucleation rates, producing grains
that are coarse.

Coatings 2023, 13, x FOR PEER REVIEW 8 of 13 
 

 

transfer resulting in a low melt pool temperature, which reduces subcooling and coarsens 
the grains. Figure 6d depicts the bottom of the coating. The microstructure in this area has 
the coarsest grains. This area has the worst heat dissipation and is affected by the latent 
heat of crystallization in the upper layers, which causes poor fluidity and low nucleation 
rates, producing grains that are coarse. 

 
Figure 6. Microstructure of the coating with 2.5 wt.% Y2O3 at different depths: (a) top; (b) upper 
middle; (c) lower middle; and (d) bottom. 

Figure 7 illustrates the microstructure of the coatings with different Y2O3 contents. 
As shown, the coating without Y2O3 has the coarsest grains, while the coating microstruc-
ture is significantly refined after the addition of Y2O3. The coating microstructure gradu-
ally becomes finer with the increase of Y2O3 content in a certain range, and the coating 
microstructure is finest when the content of Y2O3 is 7.5 wt.%. This is attributed to the 
denser Y2O3, which tends to enrich at the front end of the solid-liquid interface, thus in-
creasing the component subcooling of the coating. As the Y2O3 content increases, the sub-
cooling is greater, which refines the grain size. Additionally, the increased Y2O3 content 
improves the absorption rate of the coating material by the laser, which makes the coating 
more uniformly heated, resulting in a denser and more homogeneous microstructure. The 
addition of Y2O3 also increases the nucleation rate during melt pool crystallization. The 
high melting point of Y2O3 acts as a heterogeneous impurity, offering ready-made nuclei 
for crystallization, which increases the number of nuclei and thus refines the microstruc-
ture [27]. When the Y2O3 content exceeds 7.5 wt.%, the grain coating becomes coarser, but 
it still outperforms the coating without Y2O3, as shown in Figure 7e. This is because the 
excess Y2O3 is difficult to melt in the melt pool, which impedes convective heat exchange 
in the melt pool and reduces the degree of subcooling during crystallization, resulting in 
a reduction in grain refinement. Moreover, when Y2O3 acts as a heterogeneous mass to 
provide nucleation, excessive content results in its massive enrichment. This reduces the 
available nucleation substrate, and heterogeneous nucleation ceases once the nucleation 
substrate is completely encapsulated by the crystal nucleus, resulting in a decrease in the 
nucleation rate and a reduction in the number of grains. 

Figure 6. Microstructure of the coating with 2.5 wt.% Y2O3 at different depths: (a) top; (b) upper
middle; (c) lower middle; and (d) bottom.



Coatings 2023, 13, 308 8 of 12

Figure 7 illustrates the microstructure of the coatings with different Y2O3 contents. As
shown, the coating without Y2O3 has the coarsest grains, while the coating microstructure
is significantly refined after the addition of Y2O3. The coating microstructure gradually
becomes finer with the increase of Y2O3 content in a certain range, and the coating mi-
crostructure is finest when the content of Y2O3 is 7.5 wt.%. This is attributed to the denser
Y2O3, which tends to enrich at the front end of the solid-liquid interface, thus increasing
the component subcooling of the coating. As the Y2O3 content increases, the subcooling is
greater, which refines the grain size. Additionally, the increased Y2O3 content improves the
absorption rate of the coating material by the laser, which makes the coating more uniformly
heated, resulting in a denser and more homogeneous microstructure. The addition of Y2O3
also increases the nucleation rate during melt pool crystallization. The high melting point
of Y2O3 acts as a heterogeneous impurity, offering ready-made nuclei for crystallization,
which increases the number of nuclei and thus refines the microstructure [27]. When the
Y2O3 content exceeds 7.5 wt.%, the grain coating becomes coarser, but it still outperforms
the coating without Y2O3, as shown in Figure 7e. This is because the excess Y2O3 is difficult
to melt in the melt pool, which impedes convective heat exchange in the melt pool and
reduces the degree of subcooling during crystallization, resulting in a reduction in grain
refinement. Moreover, when Y2O3 acts as a heterogeneous mass to provide nucleation,
excessive content results in its massive enrichment. This reduces the available nucleation
substrate, and heterogeneous nucleation ceases once the nucleation substrate is completely
encapsulated by the crystal nucleus, resulting in a decrease in the nucleation rate and a
reduction in the number of grains.
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The hardness curves of the coatings with different Y2O3 contents are presented in
Figure 8. The curves are roughly divided into three parts: the surface of the melt layer; the
melt zone; the heat-affected zone. The hardness of the coatings prepared by laser cladding
technology (226.3–285.0 HV) is much higher than that of the substrate (80.0 HV). This is
owing to the presence of phases such as Mg2Si, Mg2Al3, and Al4MgY in the coating, which
have a finer grain structure, a higher hardness, and are distributed in various parts of the
coating, impeding dislocation movement and greatly enhancing the hardness of the coating.
The coating also exhibits a significant refinement of the microstructure, which leads to a
fine crystal strengthening effect, resulting in a much higher hardness than the substrate.
The hardness of each coating follows a trend of increasing, then leveling off, and finally
decreasing to the substrate hardness, with the maximum hardness occurring in the melt
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zone of the coating. This is because the direct irradiation of the laser causes burnout of
the most superficial elements, which results in a thinning of the surface microstructure
and a reduction in hardness. With the increase in Y2O3 content, the average hardness
of each coating in order is 226.3 HV, 266.0 HV, 273.8 HV, 285.0 HV, and 234.8 HV. The
hardness of the coating is seen to increase and then decrease as the content of Y2O3
increases, reaching a maximum value (285.0 HV) at 7.5 wt.% Y2O3. The addition of Y2O3
increases the subcooling of the crystals, which improves the nucleation rate and limits the
growth of the grains, thus increasing the degree of grain refinement with increasing content.
Furthermore, the decomposition of Y2O3 in the melt pool produces rare earth compounds.
The compounds possess the effect of purifying the melt pool, which results in a denser
and more homogeneous melt pool, increasing the hardness. The average hardness of the
coating starts to decrease as the Y2O3 content continues to increase but remains higher than
the average hardness of the coating without the Y2O3. An excessive amount of Y2O3 (over
7.5 wt.%) increases the overall melting point of the coating, decreases the subcooling, and
reduces the nucleation rate, causing coarsening of the grains and a decrease in hardness.
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The wear volume of the coating with various Y2O3 contents is presented in Figure 9.
As shown, the wear volume of the coating is significantly lower than that of the substrate.
The presence of the hard phase in the coating changes the contact between the coating and
the grinding ball, decreasing the contact area and reducing the tendency to adhere. The
coating microstructure is significantly refined, which strengthens the coating properties
and increases the hardness and wear resistance of the coating. The wear resistance was
further improved by the addition of Y2O3 to the coating. As the Y2O3 content increases, the
wear volume of the coating first decreases and then increases, but both are smaller than the
wear volume of the substrate. The minimum value (0.4584 mm3) is reached when the Y2O3
content is 7.5 wt.%, which is only 26.68% of the wear volume of the substrate. The addition
of Y2O3 refines the grain size and makes the coating more evenly distributed, increasing
the surface hardness and enhancing wear resistance. With the continued increase in Y2O3
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content, however, the wear volume of the coating with a Y2O3 content of 10 wt.% increases
compared to the wear volume of the coating at 7 wt.%. Excess Y2O3 reduces the fluidity
of the melt pool, hinders the heat dissipation of the melt pool, and decreases the degree
of subcooling, resulting in larger grains and an uneven microstructure distribution. This
microstructure presents lower surface coating hardness and poorer wear resistance.
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Figure 9. Wear volume of coatings with various Y2O3 contents.

Figure 10 shows the wear morphology of the 10 wt.% Y2O3 coating. Clear furrows
can be seen in Figure 10a, and the partial enlargement of the wear morphology is given in
Figure 10b. From Figure 10, one can observe clear signs of spalling. The coating suffered
from abrasive and adhesive wear during the experiment. There is the relative movement
between the grinding ball and the hard phase exposed to the coating surface by friction,
which results in abrasive wear. This form of wear causes a large number of furrows on
the wear surface. In addition, the reciprocating motion of the friction test generates heat
that softens the coating, which causes bonding at the point of contact between the coating
and the grinding ball. This results in adhesive wear, which causes extensive spalling of the
wear surface.
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4. Conclusions

The microstructural evolution, Vickers hardness, and friction wear properties of
the clad coatings with different Y2O3 contents were investigated. The addition of Y2O3
improves the surface morphology of the coating and refines the coating grains, thus
achieving a significant improvement in the surface properties of the coating. As the Y2O3
content increases, the coating grains gradually become finer and then coarser, and the
surface hardness and wear resistance also first strengthen and then weaken. The coating
with 7.5 wt.% Y2O3 exhibits the finest grains, the highest density, and the best surface
properties, with an average hardness of (285.0 HV), 3.6 times that of the substrate, and a
wear volume of (0.4584 mm3), 26.68% that of the substrate. Coatings with a high Y2O3
content have greater hardness and a higher wear resistance within a certain range of
additions. Excess Y2O3 causes a reduction in the surface properties of the coating.
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