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Abstract: The AlCoCrFeNi powder was added to WC powder as a binder and Y2O3/ZrO2 was
doped by the wet chemical method as grain-growth inhibitors. The WC-Y2O3-ZrO2-10AlCoCrFeNi
composite powders were sintered by spark plasma sintering to obtain an alloy. The microstructure
and properties of the cemented carbide were studied. The result showed that the rare-earth-oxide
(Y2O3/ZrO2)-refined grain size of the alloy and the high-entropy alloy binder provided the alloy
with better hardness and toughness. The AlCoCrFeNi diffused slowly between the WC grains
because of a delayed diffusion effect and Cr having a low affinity for the WC matrix. During the
dynamic process of the WC particles’ dissolution and precipitation growth, the Fe, Co, and Ni that
had a better affinity for the WC matrix diffused and distributed more smoothly, which increased
the strength and toughness of the alloy. When the temperature of the SPS sintering was 1250 ◦C,
the WC-Y2O3-ZrO2-10AlCoCrFeNi cemented carbide had the best properties, which was a Vickers
hardness of 1888.14 HV and a fracture toughness of 14.76 MPa·m1/2.

Keywords: WC-based cemented carbide; high-entropy alloy binder; rare earth oxide doping; spark
plasma sintering

1. Introduction

Cemented carbide materials are widely used in drilling tools, cutting tools, machining
parts, and molds due to their excellent comprehensive mechanical properties. WC-based
cemented carbide is among the most commonly used cemented carbide materials [1–3].
Cemented carbide materials made from a single WC have a high melting point and are
difficult to sinter [4,5]. Therefore, cemented carbides used for high-performance cutting
tools and wear-resistant parts are usually manufactured by adding a Co metal binder
to induce liquid-phase sintering in WC. The combination of WC and Co provides WC-
based cemented carbide with high hardness, sufficient fracture toughness, excellent wear
resistance, and high temperature strength [6,7]. However, Co is a rare resource. In addition
to the urgent need for Co in the field of cemented carbide, the demand for Co in many
fields, such as the new lithium battery energy, is increasing; thus, the pressure on the
supply of Co resources is increasing [8]. With the increasing use of cemented carbide
materials, the property of traditional WC-Co cemented carbide has gradually failed to meet
people’s needs [9]. A high-entropy alloy can be added to cemented carbide WC and replace
Co as a binder; the obtained hardness and fracture toughness are similar to those when
Co is used as a binder [10]. To better obtain cemented carbide materials with excellent
performance, a grain-growth inhibitor can be added to improve the mechanical properties
of the alloy [11–16]. Therefore, the application of high-entropy alloys as a binder instead of
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Co and a doping inhibitor has promising research significance in manufacturing WC-based
cemented carbides.

High-entropy alloys (HEAs) usually consist of five or more elements and have high
entropy, hysteresis diffusion, cocktail, and lattice distortion effects [17]. Through proper
composition design, HEAs can potentially obtain better performance, such as improving the
structure and magnetic properties of the material [18,19]. The cemented carbide prepared by
using a high-entropy alloy instead of Co as the binder is a very feasible scheme to improve
its material properties. AlCrFeCoNiV [14], (Al)CoCrCuFeNi [20,21], AlCoCrFeNi [22] and
other high-entropy alloys have been applied in the field of cemented carbides. The high-
entropy alloy AlCrFeCoNi was used as a binder of WC cemented carbide and inhibited
the growth of WC grains, and the sintered alloy exhibited excellent hardness and fracture
toughness [23].

The life of WC-based hard metal tools is extended by adding Y2O3 and ZrO2. Y2O3
can refine WC particles during carbonization and WC grains during sintering, thereby im-
proving the hardness and fracture toughness [24]. ZrO2 improves the uneven grain growth
of WC-based cemented carbide, which gives the alloy a more uniform microstructure [25].

In this study, AlCoCrFeNi powders were used as the binder instead of Co and
Y2O3/ZrO2 was doped by the wet chemical method. WC-Y2O3-ZrO2-10AlCoCrFeNi
composite powders were mixed by ball milling and sintered by spark plasma sintering.
The effect of the HEA binder on the microstructure and properties of the WC-Y2O3-ZrO2-
10AlCoCrFeNi material was studied. Additionally, optimum sintering parameters were
also discussed to provide the alloy with better performance.

2. Experimental Method
2.1. Materials Preparation

The WC-Y2O3-ZrO2-10AlCoCrFeNi composite powder was composed of 90% WC-
Y2O3-ZrO2 (WC 99.6%, Y2O3 0.25%, ZrO2 0.15%) and 10% AlCoCrFeNi. The morphologies
of the starting powder are shown in Figure 1.
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Figure 1. SEM (SE) images of raw materials. (a) WC-Y2O3-ZrO2 powder; (b) AlCoCrFeNi powder.

The WC-Y2O3-ZrO2-10AlCoCrFeNi cemented carbide powder was prepared by the
following steps [26,27]. (a) Dry ball milling: WC-Y2O3-ZrO2 powder, AlCoCrFeNi powder,
and balls were poured into the ball mill tank for encapsulation in the glove box filled with
argon gas. The ball powder mass ratio of 8:1 was used in the QM-QX4 type omnidirectional
planetary ball mill. The milling speed was 150 r/min, and the milling time was 1800 min.
(b) Wet ball milling: With ethanol as the liquid medium, the ball milling of WC-Y2O3-ZrO2-
10AlCoCrFeNi powder was mixed for 120 min. (c) Drying: The wet, ground solid–liquid
mixture was poured into a beaker and placed in a DHG-9070 electric heating air-blowing
drying oven at a constant temperature of 140 ◦C for 720 min. (d) Spark plasma sintering:
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The cemented carbide powder was pressed into a graphite mold with a diameter of 20 mm
and then placed in the vacuum chamber of the SPS furnace. The pre-pressure was set at
20 MPa and was slowly increased to 50 MPa during sintering. Sintering temperatures
were 1200–1300 ◦C and the holding time was 5 min. The heating and cooling rate of the
whole sintering process was 100 ◦C/min. The temperature was increased to 600 ◦C to
discharge the residual air in the powder and was maintained at this level for 5 min. The
above experimental process is shown in Figure 2.
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Figure 2. Schematic diagram of preparation process of the WC-Y2O3-ZrO2-AlCoCrFeNi cemented
carbide.

2.2. Sample Characterization

Fixed-target X-ray diffraction (XRD; Cu-Kα; PANalytical X-Pert PRO MPD, Holland)
was used to study the WC-Y2O3-ZrO2-10AlCoCrFeNi and WC-10AlCoCrFeNi powders
and their alloys. Scanning electron microscopy (FE-SEM; SU8020, Japan) was used to
analyze the microstructures of the mixed powder. Transmission electron microscopy
(FE-TEM; FEI Tecnai G2 F20 S-TWIN, USA) was used for the analysis of the WC-Y2O3-
ZrO2-10AlCoCrFeNi alloy. Image analysis software Nano Measurer 1.2 was used to obtain
the WC grain size distribution and average grain size of the sintered alloy. More than
400 WC grains per sample were used for statistics. The density of the cemented carbide was
measured by the Archimedes drainage method. The hardness of the alloy was measured
using a Vickers hardness tester, with holding time of 15 s and a load of 10 kg. The fracture
toughness (KIC) was calculated from the crack lengths measured by the Vickers indentation
by [24]:

KIC = 0.028

√
HvP
∑ L

(1)

where KIC is the fracture toughness, Hv is Vickers hardness, P is 10 kg, and L is the length
of cracks at the four corners of the indentation. The surface of the samples was polished to
mirror finish prior to indenting.

3. Results and Discussion
3.1. Microstructure and Composition of WC-Y2O3-ZrO2-10AlCoCrFeNi Powder

Figure 3 shows the XRD pattern of the WC-Y2O3-ZrO2-10AlCoCrFeNi composite
powder, showing that the diffraction peaks in the figure were mainly in the WC phase. This
was because the content of WC was much higher than that of the other phases to form this
diffraction peak phenomenon.
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Figure 3. XRD pattern of the WC-Y2O3-ZrO2-10AlCoCrFeNi composite powder.

Figure 4 shows the morphology of the WC-Y2O3-ZrO2-10AlCoCrFeNi composite
polyhedral powder. The shape of the WC-Y2O3-ZrO2-10AlCoCrFeNi composite powder
was irregular and some small particles were attached to the surface of the larger particles.
In the ball milling process, the particle size of the WC-Y2O3-ZrO2 powder differed greatly
from that of the AlCoCrFeNi powder, and the texture of the WC-Y2O3-ZrO2 powder
particles were hard and brittle, so the powder particles were broken due to collision [28].
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Figure 4. SEM (SE) images of WC-Y2O3-ZrO2-10AlCoCrFeNi powder. (a) 5000 ×; (b) 20,000 ×.

3.2. Effect of Sintering Temperature on WC-Y2O3-ZrO2-10AlCoCrFeNi Cemented Carbides

Figure 5 shows the XRD patterns of the WC-Y2O3-ZrO2-10AlCoCrFeNi cemented
carbide at 1200 ◦C, 1250 ◦C, and 1300 ◦C, showing only clear peaks for the WC phase.

Figure 6 shows the morphology and WC particle size distribution of the WC-Y2O3-
ZrO2-10AlCoCrFeNi cemented carbide at different sintering temperatures. Figure 6a,d
show that at a sintering temperature of 1200 ◦C, the average WC grain size was 0.88 µm.
Figure 6b,e show that sintering at 1250 ◦C caused no discernable porosity. The average size
of the WC crystal grains was 0.70 µm. Figure 6c,f, at a sintering temperature of 1300 ◦C,
show some abnormally coarse WC grains. The average size of the WC crystal grains was
1.01 µm.
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Figure 5. XRD patterns from the WC-Y2O3-ZrO2-10AlCoCrFeNi cemented carbide sintered at
different temperatures.
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Figure 6. SEM (SE) images and size distributions of WC grains of the WC-Y2O3-ZrO2-10AlCoCrFeNi
cemented carbide prepared at: (a,d) 1200 ◦C, (b,e) 1250 ◦C, and (c,f) 1300 ◦C.

Thus, at 1250 ◦C, the WC-Y2O3-ZrO2-10AlCoCrFeNi had almost no holes. The most
uniform WC grain distribution and the smallest grain size occurred at 1250 ◦C. Sintering
at 1200 ◦C did not allow some small grains to fully combine to form large grains, so the
WC grains showed an uneven distribution [20,29,30]. When the sintering temperature was
increased to 1300 ◦C, grain coarsening occurred. When the sintering temperature reached
1250 ◦C, the alloy was fully sintered, with almost no porosity. Therefore, at this sintering
temperature, the alloy had the lowest porosity, the most uniform WC grain distribution,
and the smallest grain size.

Figure 7 shows the densities of the WC-Y2O3-ZrO2-10AlCoCrFeNi cemented carbide
at different sintering temperatures. At 1250 ◦C, the highest actual and relative densities
were obtained. This showed that the binder phase had good wettability. Thus, it was fully
sintered, with good densification effect.
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Figure 7. Density of the WC-Y2O3-ZrO2-10AlCoCrFeNi cemented carbide at different sintering
temperatures.

Figure 8 shows the hardness and fracture toughness of the WC-Y2O3-ZrO2-10AlCoCrFeNi
cemented carbide at different sintering temperatures. The best hardness and fracture tough-
ness were obtained at a sintering temperature of 1250 ◦C.
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Figure 8. Vickers hardness and fracture toughness of the WC-Y2O3-ZrO2-10AlCoCrFeNi cemented
carbide at different sintering temperatures.

The best properties of the WC-Y2O3-ZrO2-10AlCoCrFeNi cemented carbide were
obtained at a sintering temperature of 1250 ◦C by using SPS.

3.3. Microstructure of WC-Y2O3-ZrO2-10AlCoCrFeNi

Figure 9 shows the HAADF-STEM image and EDX maps of the WC-Y2O3-ZrO2-
10AlCoCrFeNi cemented carbide. Figure 9a–c show that the main component of the dark
area in Figure 9a was the binder AlCoCrFeNi, and the main component of the bright area
was the WC. The EDX analysis of the dark area #1 and the bright area #2 showed that
the high-entropy binder AlCoCrFeNi was uniformly dispersed between the WC grains,
and Al, Co, Cr, Fe, Ni, and other elements were almost undetectable in the WC grains,
showing that AlCoCrFeNi had hardly diffused in the WC grains. AlCoCrFeNi diffuses
slowly within the WC matrix due to the delayed diffusion effect of the high-entropy alloy
AlCoCrFeNi, thereby inhibiting the growth of WC grains and improving the hardness and
fracture toughness of the alloy [21,31,32].
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Figure 9. HAADF-STEM image and EDX mapping of the WC-Y2O3-ZrO2-10AlCoCrFeNi cemented
carbide: (a) HAADF-STEM image; (b) the corresponding elemental mappings of W, C, Y, Zr, O, Al,
Co, Cr, Fe and Ni; (c) EDX from Area #1; (d) EDX from Area #2.

The enrichment of Y, Zr, and O elements was observed in the distribution of elements,
indicating that Y and Zr existed in the form of oxides in the alloy [33–35]. In the rare-earth-
oxide-modified WC-based cemented carbides, the rare earth oxide was dispersed in the
grain boundary in the form of the second phase, which had a pinning effect and a dispersion-
strengthening effect on the alloy grains, thereby improving the overall integration of the
alloy’s mechanical properties.

Figure 10 shows high-resolution TEM and line scans of the WC-Y2O3-ZrO2-10AlCoCrFeNi
cemented carbide. Figure 10a shows the high intensity of W in the grains and the low intensity
of high-entropy alloying elements. The intensity of the W element in the binder phase was
low, and the intensity of the high-entropy alloying elements was more obvious. The intensity
of Al, Fe, Co, and Ni was evenly distributed at the WC grain boundaries, and the intensity of
chromium was in the middle area. This indicated that chromium had a low affinity for the WC.
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image, (b) line scan, (c) high-resolution image, (d) diffraction patten on WC grain, and (e) binder
phase near WC grain partially diffracted spots.

In the dynamic process of WC particle dissolution and precipitation growth, the Fe,
Co, and Ni that diffused to the WC grain surface had a better affinity for the WC, which
increased the strength and toughness of the alloy [36–40].

Diffraction spot analysis was performed on a WC grain and binder phase near the
WC grain, and the results are shown in Figure 10d,e. The diffraction patten in Figure 10d
indicates that the WC grains had a hexagonal crystal structure, whereas Figure 10e shows
scattered diffraction spots different from WC phases in addition to hexagonal crystalline
WC phases. This finding shows that the AlCoCrFeNi and WC-Y2O3-ZrO2 matrixes had
good wettability and bonding, thereby improving the fracture toughness of the WC-Y2O3-
ZrO2-10AlCoCrFeNi cemented carbide.

Figure 11 shows the comparison properties for WC-Y2O3-ZrO2-10AlCoCrFeNi, WC-
10AlCoCrFeNi, and WC-Y2O3-ZrO2-10Co cemented carbides. The actual density of WC-
Y2O3-ZrO2-10AlCoCrFeNi cemented carbide was 14.18 g/cm3, the density was 99.65%, the
Vickers hardness was 1888.14 HV, and the fracture toughness was 14.76 MPa·m1/2. Com-
pared with the WC-10AlCoCrFeNi cemented carbide, the density was slightly increased,
the Vickers hardness was increased by 12.97%, and the fracture toughness was increased
by 30.62%. Compared with the WC-Y2O3-ZrO2-10Co cemented carbide, the density was
almost unchanged, the Vickers hardness increased by 50.28%, and the fracture toughness
increased by 18.46%.
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4. Conclusions

A WC-Y2O3-ZrO2-10AlCoCrFeNi cemented carbide with excellent properties was
obtained by ball milling and discharge plasma sintering. The influence of sintering temper-
ature on the microstructure and properties of the WC-Y2O3-ZrO2-10AlCoCrFeNi cemented
carbide was studied, and the following conclusions were drawn:

(1) A highly densified WC-Y2O3-ZrO2-10AlCoCrFeNi cemented carbide was obtained
by spark plasma sintering technology. Among the three samples of WC-Y2O3-ZrO2-
10AlCoCrFeNi cemented carbide sintered at 1200 ◦C, 1250 ◦C, and 1300 ◦C, the WC
grains of the alloy were smallest, the densification achieved the best effect, and the
hardness and fracture toughness were the best in the sample sintered at 1250 ◦C.

(2) AlCoCrFeNi diffused slowly within the WC matrix due to the delayed diffusion effect
of the high-entropy alloy AlCoCrFeNi, which inhibited the growth of the WC grains
and improved the hardness and fracture toughness of the alloy. Chromium had a low
affinity for the WC. During the dynamic process of the WC particle dissolution and
precipitation growth, the Fe, Co, and Ni that diffused to the WC grain surface had a
better affinity for the WC, which increased the strength and toughness of the alloy.
The WC-Y2O3-ZrO2-10AlCoCrFeNi cemented carbide had an extremely high density,
with a Vickers hardness of 1888.14 HV and fracture toughness of 14.76 MPa·m1/2.
Compared with WC-10AlCoCrFeNi and WC-Y2O3-ZrO2-10Co, the Vickers hardness
increased by 12.97% and 50.28%, and the fracture toughness increased by 30.62% and
18.46%, respectively.
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