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Abstract: In this study, homogeneous (Ti, Nb)(C, B)/IN625 composite coatings with almost defect-free
microstructures were successfully prepared on a 42CrMo steel substrate by coupling ultra-high-speed
laser cladding (USLC) with the direct reaction synthesis (DRS) technique to introduce the in-situ
exothermic reaction into the cladding materials; these were comparatively analyzed with the pure
IN625 coating prepared only by USLC. Our results showed that the interface of the composite
coating/substrate was greatly affected by about 670 kJ Joule heat released from the in-situ reaction
happening during the cladding process, which was sufficient to remelt the as-deposited materials and
significantly increased the coating/substrate interface width to around 24 µm, six times the interface
width of pure IN625 coating. Furthermore, the residual stress inside the coating and across the
interfacial region was also reduced, alleviating the interface stress mismatch. However, the surface
hardness of (Ti, Nb)(C, B)/IN625 composite coating was found to be lower than that of the IN625
coating, and the average wear weight loss was only 10% of that of the IN625 coating, attributable to
the in-situ authigenic TiCB, TiC, NbMo3B4 and NbMo2B2 phases providing load transfer from the
hard phases to the IN625 composite matrix to achieve abrasion reduction and wear resistance. It was
also found that the formation of nano-equiaxial ultrafine grains in the depth range of 250 nm below
the wear surface was facilitated by the coupling of the three fields of plastic rheology-heat-force,
which dynamically strengthened the wear surface. Based on these findings, it is suggested to promote
the strategy of combing USLC and DRS techniques to achieve an additional ability to enhance the
coating microstructure and reduce residual stress, to achieve better tribological performance.

Keywords: USLC; composite coating; residual stress; wear; in-situ reaction

1. Introduction

Ultra-high-speed laser cladding (USLC) is a rapid coating preparation technique which
uses a coaxial powder feeding device to converge the powder spot and the laser spot, as the
powder spatially absorbs most of the laser energy before entering the melt pool. The USLC
offers the advantages of high coating preparation efficiency [1], thin thickness [2], low
dilution rate [3], high powder utilization [4], and high coating densities [5], which makes
USLC a green and advanced coating preparation technology as compared to traditional
laser cladding. USLC has been widely used in the surface remanufacturing of hydraulic
cylinders in the field of engineering machinery, the surface treatment of brake discs in
the field of automobile manufacturing, the repair of engine magazines in the aerospace
industry, and so on [6,7].
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Ni-based alloys with excellent impact toughness, corrosion resistance, oxidation resis-
tance, wear resistance, and cost-effectiveness have been extensively studied and widely
used in the field of laser cladding technology [8–11]. Asghar et al. [9] prepared a dense and
defect-free Ni60 coating via USLC; it consisted of supersaturated γ-Ni and some in-situ
precipitated hard phases (e.g., carbides or borides of Cr); the average hardness of the
coating reached 948 HV, showing significant improvements in wear resistance. However,
the heat absorbed by the substrate decreased as the heating rate increased, resulting in
a significant reduction of both the dilution rate and the heat affected zone (HAZ) of the
substrate [12]. When the melting rate was increased from 0.6 m/min to 76.6 m/min, the
width of the HAZ for the Ni45 coating decreased from about 400 µm to about 50 µm, and
the width of the melting interface also dropped from about 150 µm to about 3 µm [8].
Although the reduction of the interface width significantly improved the shear mechanical
performance at the interface [13], it also introduced significant internal stress at the fusion-
coated interface due to the thermal expansion coefficient mismatch between the coating
and the substrate, in addition to the existence of a chemical composition gradient at the
USLC interface, leading to a relatively weak interface [14].

Strengthening phases (such as TiC and TiB2) can offer the advantages of high hardness,
excellent wear resistance, good thermal stability [15,16], and good wettability with IN625
alloy [17,18]. It was reported that adding TiC particles into the ultra-high-speed laser-
melted IN625 coatings could significantly improve the wear resistance, but the TiC particles
often showed an agglomeration effect, leading to the uniform distribution of the hardness
and wear rate of the extreme high speed laser cladding coatings [19]. The in-situ synthesis
method of Ni-based TiC-TiB2 composite was originally derived from self-propagating
high temperature synthesis [20] using an exothermic reaction. This method was further
developed for rapid reaction and uniform dispersion of the enhanced phase, often known as
direct reaction synthesis (DRS) [21]. Related studies have explored the microstructure and
properties of in-situ synthesized metal-based TiC and TiC-TiB2 composite coatings [22,23],
but no effort has been made to study the wear resistance behavior. Previous studies using
non-in-situ synthesis methods have already demonstrated these composite coatings to offer
excellent wear-reducing [24] and wear-resistant properties [25]. Therefore, it is expected
that the in-situ synthesized composite coatings from USLC should also have excellent
wear-reducing and wear-resistance capabilities, which are yet to be investigated.

In this paper, in-situ synthesized (Ti, Nb)(C, B)/IN625 composite coatings were suc-
cessfully prepared by coupling USLC technology with DRS technology. The dilution rate
of USLC was effectively reduced by the exotherm reaction in the coating system, and the
internal stress at the fused interface was effectively mitigated. The wear resistance mecha-
nism on the coating surface was investigated in detail to explore its technical feasibility for
the in-situ preparation of Ni-based ceramic composite coatings via USLC.

2. Experimental Section
2.1. Coating Preparation

The rod-shape substrate was made of quenched 42CrMo steel with dimensions of
150 mm (φ) × 300 mm (L), and the surface was polished to a final roughness of 0.2 µm Ra,
followed by alcohol cleaning before USLC. The pre-alloyed powder for USLC consisted of
80 wt% IN625 + 20 wt% (TA15 + B4C), where the proportions of Ti and B4C were chosen
according to their molar ratio of 3:1, as shown in

3Ti + B4C→TiC + 2TiB2 + Q (1)

The morphology of the pre-alloyed powder after ball milling for 4 h was shown in
Figure 1. The powder preparation methods, particle sizes and composition obtained by
energy dispersive spectroscopy (EDS) analysis are summarized in Table 1. IN625-based
composite ceramic coatings and pure IN625 coatings with the same axial cladding length of
250 mm and thicknesses of about 0.4 mm were prepared respectively, using USLC at room
temperature. The USLC process parameters are shown in Table 2.
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Figure 1. Morphologies of pre-alloyed powders obtained by scanning electron microscope (SEM,
manufactured by JEOL Ltd., Tokyo, Japan).

Table 1. Preparation methods, particle size and EDS analysis of pre-alloyed powders.

No. Material Preparation
Method

Particle Size
(µm)

EDS (wt%)

Ni Cr Mo Si Fe Nb Ti V Zr Al C B

1 IN625 Gas-water
atomization 30–70 55.46 22.85 9.94 0.24 4.11 4.96 1.21 0.32 0.28 0.32 0.10 0.21

2 TA15 PREP 15–53 3.21 0.22 0.52 0 0 0.1 82.86 2.1 1.89 7.8 0.51 0.79

3 B4C Carbothermal
reduction 1–5 0 0 0 0 0 0 0.07 0.05 0.02 2.26 18.5 79.1

Table 2. Ultra-high-speed laser cladding (USLC) process parameters.

Laser Power
P/w

Linear Velocity
vL/(m·min−1)

Axial Offset
d/(mm·r−1)

Powder-Feeding Rate
vP/(g·min−1)

Protective Airflow
g/(L·min−1)

4400 5 1.6 28 7

2.2. Wear Testing

A high-speed reciprocating friction and wear tester (model: MDW-02 from Jinan Yihua
Tribology Testing Institute, Jinan, China) was used to study the wear performance of the
coatings against 360-mesh SiC sandpaper at room temperature for 90 min per specimen,
using water as the lubricating medium. The dimensions of the wear test specimen are
shown in Figure 2, and the testing force was set as 20 N. The reciprocating wear distance
was chosen as 30 mm with a 2 Hz testing frequency. During the test, the sandpaper was
replaced once the reciprocating wear time reached 30 min. Three wear specimens were
taken as a group to calculate the average weight loss.



Coatings 2023, 13, 2099 4 of 16
Coatings 2023, 13, x FOR PEER REVIEW 4 of 17 
 

 

 

Figure 2. Wear test setup with schematic drawings showing the wear test specimen dimensions. 

2.3. Microstructure Characterization 

Metallographic specimens were cut from the USLC-coated sample in dimensions of 

15 mm (L) × 10 mm (W) × 8 mm (H), using electrical discharge machining (EDM, 

WGM-4N, manufactured by Posittec Wedm CNC Equipment Co., Ltd, Suzhou, China). 

These specimens were polished and etched for 10–15 s using a solution of 10% FeCl3-4% 

HNO3-86% CH3CH2OH; then, the microstructures of the coatings were obtained by 

scanning electron microscopy (SEM, JSM-7200F manufactured by JEOL Ltd., Tokyo, Ja-

pan). The element distribution in the interface region was analyzed by energy dispersive 

spectroscopy (EDS, XFlash5030T, manufactured by Bruker, Berlin, Germany) with a total 

amount of not less than 20,000 cps. Furthermore, the cross-section of the coatings after 

vibratory polishing for 4 h were characterized using electron back-scattered diffraction 

(EBSD, EDAX Velocity Super, manufactured by AMETEK Commerical Enterprise 

(Shanghai), Co., Ltd., Beijing, China). Finally, thin slices (8 μm × 8 μm × 50 nm) along the 

vertical direction of the wear surface were prepared using a focused ion beam (FIB), then 

transferred to a double spherical aberration transmission electron microscope 

(DSA-TEM, FEI Titan Cube 80–300, manufactured by FEI Company, Hillsboro, OR, USA) 

to observe the cross-sectional morphologies with accelerating voltages of 200 kV, while 

the elemental distribution of the ceramic particles was analyzed via energy dispersive 

spectroscopy (EDS, Oxford Xplore, manufactured by Oxford, Shanghai, China). 

2.4. Nanoindentation Testing 

An ultra-nanoindentation tester (UNHT, manufactured by Anton Parr, Vindobona, 

Austria) equipped with a diamond Berkovich indenter was used to investigate the local 

residual stress near the coating/substrate interface. The stressed sample for the 

nanoindentation test was selected from the metallographic specimens described in Sec-

tion 2.3, with the same dimensions. A thin slice with a thickness of only 0.4 mm was cut 

across the interface to assist in the stress analysis, which is considered as the corre-

sponding “stress-free” sample. The details of sample preparation, nanoindentation test-

ing locations and parameters, and the methodologies for residual stress evaluation are all 

given in our previous work [14]. In this study, only the Giannakopoulos & Suresh (G&S) 

energy method and the modified Oliver and Pharr (O&P) method corrected by direct 

measurement of residual indents using atomic force microscopy (AFM) were used for 

local residual stress calculations. The modified formula for the indentation-projected 

contact area, Ai, of a “pile-up” indentation is shown in 

Figure 2. Wear test setup with schematic drawings showing the wear test specimen dimensions.

2.3. Microstructure Characterization

Metallographic specimens were cut from the USLC-coated sample in dimensions of
15 mm (L) × 10 mm (W) × 8 mm (H), using electrical discharge machining (EDM, WGM-
4N, manufactured by Posittec Wedm CNC Equipment Co., Ltd, Suzhou, China). These
specimens were polished and etched for 10–15 s using a solution of 10% FeCl3-4% HNO3-
86% CH3CH2OH; then, the microstructures of the coatings were obtained by scanning
electron microscopy (SEM, JSM-7200F manufactured by JEOL Ltd., Tokyo, Japan). The
element distribution in the interface region was analyzed by energy dispersive spectroscopy
(EDS, XFlash5030T, manufactured by Bruker, Berlin, Germany) with a total amount of
not less than 20,000 cps. Furthermore, the cross-section of the coatings after vibratory
polishing for 4 h were characterized using electron back-scattered diffraction (EBSD, EDAX
Velocity Super, manufactured by AMETEK Commerical Enterprise (Shanghai), Co., Ltd.,
Beijing, China). Finally, thin slices (8 µm × 8 µm × 50 nm) along the vertical direction
of the wear surface were prepared using a focused ion beam (FIB), then transferred to a
double spherical aberration transmission electron microscope (DSA-TEM, FEI Titan Cube
80–300, manufactured by FEI Company, Hillsboro, OR, USA) to observe the cross-sectional
morphologies with accelerating voltages of 200 kV, while the elemental distribution of the
ceramic particles was analyzed via energy dispersive spectroscopy (EDS, Oxford Xplore,
manufactured by Oxford, Shanghai, China).

2.4. Nanoindentation Testing

An ultra-nanoindentation tester (UNHT, manufactured by Anton Parr, Vindobona,
Austria) equipped with a diamond Berkovich indenter was used to investigate the local
residual stress near the coating/substrate interface. The stressed sample for the nanoin-
dentation test was selected from the metallographic specimens described in Section 2.3,
with the same dimensions. A thin slice with a thickness of only 0.4 mm was cut across
the interface to assist in the stress analysis, which is considered as the corresponding
“stress-free” sample. The details of sample preparation, nanoindentation testing locations
and parameters, and the methodologies for residual stress evaluation are all given in our
previous work [14]. In this study, only the Giannakopoulos & Suresh (G&S) energy method
and the modified Oliver and Pharr (O&P) method corrected by direct measurement of
residual indents using atomic force microscopy (AFM) were used for local residual stress
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calculations. The modified formula for the indentation-projected contact area, Ai, of a
“pile-up” indentation is shown in

Ai =
θi

360
πR2 − 1

2
Li

Li
2

tan θi
2

=
L2

i
4

(
θiπ

360
sin−2 θi

2
− cot

θi
2

)
(2)

where θi is the top angle of an isosceles triangle with a base of Li (as shown in Figure 3 for a
typical AFM scan of a nanoindentation impression). To account for pile-up, Li was related
to the maximum indentation depth, hmax, and the pile-up height, hpi, using Equation (3)
derived from the O&P model [26]:

Li = 7.35(hmax+ hpi) (3)
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The geometrical relationship of an isosceles triangle is given in

xi = 3.765 tan
θi
4

Li (4)

The hpi and xi obtained from the line profiles highlighted in Figure 3 are shown in
Figure 4, which can be substituted into Equations (3) and (4) to obtain Li and θi, respectively;
then, the value of Ai can be obtained using Equation (2). The true projected indentation
contact area, A, is finally calculated by applying a correction of Ai to the project contact
area calculated using the O&P model, Ao&p, using

A = Ao&p +
3

∑
1

Ai (5)
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Similarly, the true projected contact area of the modified “stress-free” sample, A0, can
also be obtained. With a known contact area, the residual stress distribution across the
interface of the coating and 42CrMo steel substrate can, depending on the residual stress
state, be obtained using

σtensile = H
(

A0

A
− 1
)

(6)

σcompressive =
H

sinα

(
1 − A0

A

)
(7)

where H is the hardness obtained from the nanoindentation test, and α is a constant (taken
as 24.7◦ for a Berkovich indenter). The sinα in Equation (7) is introduced to account for the
different response of indentation into the compressive stress state and tensile state stress.
When compressive stress is present on the sample surface, the decomposed uniaxial stress
acts as resistance to the indentation process, so the sign in Equation (6) cannot be changed
directly to obtain the residual compressive stress.

3. Results
3.1. Microstructures of Coating/Substrate Interface

The coating/substrate interface of (Ti, Nb)(C, B)/IN625 composite coating prepared via
in-situ USLC in Figure 5a,b have uniform and dense microstructures, showing no obvious
defects such as porosity or cracks. This interface shows some remelting characteristics,
with an average estimated grain size of about 5 µm and an estimated interfacial width of
about 24 µm. However, the average interfacial width for the pure IN625 coating is only
about 4 µm, as shown in Figure 5c, which is significantly smaller than that of the composite
coatings. The Ni element distribution map in Figure 5a shows an obvious gradient across
the interface into the substrate, which indicates that the (Ti, Nb)(C, B)/IN625 composite
coating prepared via in-situ USLC can form excellent metallurgical bindings with the
42CrMo substrate and reduce the interfacial defects.
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3.2. Morphologies of (Ti, Nb)(C, B)/IN625 Composite Coating

The morphology of the (Ti, Nb)(C, B)/IN625 composite coating mainly consists of colum-
nar crystals (see Figure 6a) and some particle phases. These particles show a gradient distri-
bution along the thickness direction of the coating, mainly caused by the density difference
between the coating substrate and (Ti, Nb)(C, B) particle phases, and coupled with the cen-
trifugal force during the whole USLC process. The phase distribution of the composite coating
cross-section based on EBSD analysis is shown in Figure 6b, where the Ti-C-B phases are
marked in yellow, the Ti-C phases are marked in red, and the Nb-Mo-B phases, mostly dis-
tributed along the grain boundaries, are marked in blue. As seen in Figure 5b, the number of
particles at the coating bottom is significantly lower than that in the top area of the composite
coating shown in Figure 6b, while the number of particle phases in the mid-area of the com-
posite coating shown in Figure 6a is intermediate between them. Moreover, the variation of
local orientation at grain boundaries and intragrains was quantified by a KAM (kernel average
misorientation) map, as shown in Figure 6c. KAM is the most well-known method for local
mismatch angle analysis. Usually, the value of the mismatch angle is positively correlated with
the local strain of the crystalline material, so it is especially suitable for characterizing stresses at
grain and phase boundaries of crystalline materials. The KAM results indicate mismatch angles
smaller than 5◦ both inside grains and across grain boundaries, which can cause elastic strain
fields present inside the composite coatings to accommodate these orientation mismatches.
The elastic strain field is directly related to the residual stress, which is critically important in
the mechanical performance of coatings and needs to be further characterized in more detail.

Coatings 2023, 13, x FOR PEER REVIEW 8 of 17 
 

 

the Nb-Mo-B phases, mostly distributed along the grain boundaries, are marked in blue. 

As seen in Figure 5b, the number of particles at the coating bottom is significantly lower 

than that in the top area of the composite coating shown in Figure 6b, while the number 

of particle phases in the mid-area of the composite coating shown in Figure 6a is inter-

mediate between them. Moreover, the variation of local orientation at grain boundaries 

and intragrains was quantified by a KAM (kernel average misorientation) map, as shown 

in Figure 6c. KAM is the most well-known method for local mismatch angle analysis. 

Usually, the value of the mismatch angle is positively correlated with the local strain of 

the crystalline material, so it is especially suitable for characterizing stresses at grain and 

phase boundaries of crystalline materials. The KAM results indicate mismatch angles 

smaller than 5° both inside grains and across grain boundaries, which can cause elastic 

strain fields present inside the composite coatings to accommodate these orientation 

mismatches. The elastic strain field is directly related to the residual stress, which is crit-

ically important in the mechanical performance of coatings and needs to be further 

characterized in more detail. 

 

 

    

Figure 6. Morphologies of (Ti, Nb)(C, B)/IN625 composite coatings: (a) back-scattered electron 

image showing columnar crystals inside coatings; (b) EBSD image, showing equiaxial crystals 

where Ti-C-B phases are marked in yellow, the Ti-C phases are marked in red, and the Nb-Mo-B 

phases, mostly distributed along the grain boundaries, are marked in blue; (c) the corresponding 

kernel average misorientation (KAM) map to show local orientation mismatches. 

3.3. Stress Distribution at the Interface of (Ti, N)(C, B)/IN625 Coating 

The load–displacement curve of the selected indentation in Figure 3 is shown in 

Figure 7, with the maximum indentation depth set as 500 nm. It was found that the in-

dentation load required to reach the same indentation depth for the coatings was clearly 

less than that for the corresponding stress-free sample, which indicates a tensile residual 

stress. Moreover, the elastic recovery of the coating sample was also found to be smaller 

during the unloading, which proved that the residual stress acted as resistance to the 

elastic recovery. The above analysis clearly demonstrates the presence of compressive 

residual tensile stresses inside the coating [27]. 

(a) (b) (c) 

Figure 6. Morphologies of (Ti, Nb)(C, B)/IN625 composite coatings: (a) back-scattered electron image
showing columnar crystals inside coatings; (b) EBSD image, showing equiaxial crystals where Ti-C-B



Coatings 2023, 13, 2099 8 of 16

phases are marked in yellow, the Ti-C phases are marked in red, and the Nb-Mo-B phases, mostly
distributed along the grain boundaries, are marked in blue; (c) the corresponding kernel average
misorientation (KAM) map to show local orientation mismatches.

3.3. Stress Distribution at the Interface of (Ti, N)(C, B)/IN625 Coating

The load–displacement curve of the selected indentation in Figure 3 is shown in
Figure 7, with the maximum indentation depth set as 500 nm. It was found that the
indentation load required to reach the same indentation depth for the coatings was clearly
less than that for the corresponding stress-free sample, which indicates a tensile residual
stress. Moreover, the elastic recovery of the coating sample was also found to be smaller
during the unloading, which proved that the residual stress acted as resistance to the elastic
recovery. The above analysis clearly demonstrates the presence of compressive residual
tensile stresses inside the coating [27].
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Figure 7. Typical indentation load–displacement curves obtained from coating sample (labelled as
“stressed”) and stress-free sample (labelled as “unstressed”).

In this study, indentations were performed across the interface for the composite
coating and pure IN625 coating samples, and pile-ups of all nanoindentations were di-
rectly measured by AFM. The true projected contact area, A, of all indentations was then
calculated using Equation (5) to apply for pile-up correction. The residual stress distribu-
tion shown in Figure 8 was obtained by selectively choosing Equation (6) or Equation (7)
depending on the stress state. It is obvious that tensile residual stress exists in both the
(Ti, Nb)(C, B)/IN625 composite coating and IN625 coating samples. The peak value of
residual tensile stress in the IN625 coating at the position of the interface is estimated to
be about 235 MPa, followed by a steep drop as indenting proceeded into the heat-affected
zone (HAZ) of the 42CrMo substrate, before reaching a steady state of compressive stress
around 100 MPa. However, the peak value of the residual tensile stress of the (Ti, Nb)(C,
B)/IN625 composite coating occurred at the coarse-grain heat-affected zone (CGHAZ) of
42CrMo, estimated to be about 180 MPa, before showing a moderately decreasing trend.
The reduction of maximum tensile residual stress and the slowdown trend for the com-
posite coating is mainly attributed to the presence of an exothermic system during the
formation process of (Ti, Nb)(C, B)/IN625, where the heat emission can greatly reduce the
temperature gradient of the USLC melt pool and delay the cooling rate. Moreover, there
is a high similarity between the residual stress values calculated using the modified O&P
method in this paper and the G&S energy method, respectively. This finding is consistent
with previous published work [14].
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Figure 8. Residual stress distribution on the cross-section of the composite coating and pure IN625
coating; the residual stress was calculated from the nano-indentation data using both Giannakopoulos
& Suresh (G&S) energy method and modified Oliver and Pharr (O&P) method corrected by the direct
measurement of residual indents using AFM.

3.4. Characteristics and Properties of Wear on Coating Surfaces

The Vickers hardness measured on the surface of the (Ti, Nb)(C, B)/IN625 composite
was 240 HV0.2. The average wear rate and average friction coefficient obtained from the
composite coating were 0.012 g/h and 0.1506, respectively, showing characteristics of both
abrasive and adhesive wear (see Figure 9a). As a comparison, the surface morphology
of the pure IN625 coating presented only abrasive wear (see Figure 9b), and the average
wear rate of the surface reached 0.121 g/h, with an average coefficient of friction of 0.3184.
Furthermore, the surface Vickers hardness of the IN625 coating was 300 HV0.2, much higher
than the composite coating.
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Figure 9. Surface wear morphologies: (a) (Ti, Nb)(C, B)/IN625 composite coating and (b) pure
IN625 coating.
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4. Discussion

Compared to the pure IN625 coating on the 42CrMo steel substrate, the (Ti, Nb)(C,
B)/IN625 composite coating prepared by the in-situ USLC process clearly shows a slow-
descending residual stress distribution across the coating/substrate interface, which ben-
efited from the reactive exothermic reaction of Ti with B4C. Calculation of the reaction
exotherm in Equation (1) usually requires the input of standard molar free energy, which
can be obtained using the Gibbs–Helmholtz equation or the Van’t Hoff equation [28]:

d

(
∆GΘ

T
T

)
= −

∆HΘ
T

T2 dT (8)

where ∆G is the change of Gibbs free energy, T is the absolute temperature, and ∆HT is
the reaction enthalpy. Based on the calculations of ∆G, it is confirmed that the Gibbs free
energy of the in-situ synthesis of TiC-TiB2 in Equation (1) within Ni is lower than the
synthesis of other products (such as TiCB or Ti3B4); that is to say, the driving force for
the synthesis of TiC-TiB2 is largest. The exothermic value of the reaction, Q, can reach
up to 670 kJ [29], which is sufficient to enable the expansion of the interfacial width of
the diffusion bonding between the (TiC-TiB2) Ni composite layer and the TiAl layer from
about 60 µm to about 600 µm, as described in the literature [29]. Therefore, the exothermic
reaction is also considered as the key driving force in producing an interfacial remelting
zone with a width of about 24 µm at the coating/substrate interface in this study, as shown
in Figure 5b. This indicates that the heat released from the Equation (1) reaction during the
formation of the (Ti, Nb)(C, B)/IN625 composite coating is sufficient to make the original
fusion interface remelt for the second time, in order to obtain an interface consisting of
a near-equiaxed crystalline morphology, which is the key to achieving the purpose of
increasing the interface dilution rate during the USLC process, promoting the interface
metallurgical bonding, and reducing the interfacial local residual stress.

The formation of a near-equiaxed crystalline morphology in the remelted interface
zone can be further analyzed in terms of the solidification parameter G/R, where G repre-
sents the temperature gradient and R represents the solidification rate, which is positively
correlated with the melting rate [30]. Compared to conventional laser melting, USLC
offers a higher melting rate and exothermic heat from the reaction, which compensates
some of the thermal loss from the laser heat source to the substrate, thereby reducing the
temperature gradient and solidification rate. As a result, more and finer equiaxed crystals
tend to be produced at the position of the remelted interface zone.

The DSA-TEM analysis results in Figure 10 clearly show the morphologies of the (Ti,
Nb)(C, B)/IN625 composite coating after wear testing. Three types of different features
from top to bottom can be distinguished in the wear subsurface region, including the
equiaxed ultra-fine crystalline region in the range of 0–250 nm, the fine grain region in
the range of 250–800 nm, and the original coating region beyond 800 nm. The combined
effects of axial loading and thermal accumulation during wear testing [31] can introduce
grain refinement within the range of 800 nm under the wear surface, and these refined
grains show elongated shapes with directionality preference. The grain refinement process
is mainly related to the thermal-force-coupled dynamic plastic deformation during wear
testing [32], often referred as dynamic recrystallization [33]. Dislocations in low-level
fault-energy material can be made to re-nucleate and re-grow grains at the original grain
boundary by slipping/climbing, which in turn eliminates the dislocations and deformation
defects such as sub-grain boundaries in the deformed substrate [34]. Ultra-fine equiaxed
crystals in the range of 250 nm were observed in this study with grain sizes of 10–50 nm, as
the Ti(C, B) particles synthesized by the in-situ reaction play key roles of abrasion reduction
and regional supporting towards the IN625 substrate, and the abrasion plowing of the SiC
sandpaper on the coating substrate IN625 was significantly reduced (the depth of abrasion
plowing shown in Figure 9a is significantly smaller than that shown in Figure 9b), which
on the contrary promotes the continuous thermoplastic deformation of the wear surface.
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Finally, under the coupling of plastic–thermal–force fields via strong surface friction, super-
plastic deformation was promoted to occur in the wear surface zone within a depth of
250 nm, to obtain the microstructures of equiaxed ultra-fine grains. It is important to note
that the presence of a large number of twinning inside the ultra-fined equiaxed grains
confirms the existence of superplastic deformation in the wear surface region under a depth
of 250 nm, and the characteristics of the wear morphology in Figure 9a show the local
adhesive wear as well.
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Figure 10. Double spherical aberration transmission electron microscopy (DSA-TEM) images of (Ti,
Nb)(C, B)/IN625 composite coating to show the high-resolution microstructure of the subsurface
regions after wear testing and the in-situ reaction particles (in area #1 and area #2, respectively).

Since the hardness of SiC (2400–2800 HV) is slightly lower than that of the target
synthesized ceramic particle phases (TiC: 2600–3000 HV; TiB2: 2500–3300 HV), it is likely
that SiC particles would be removed from the sandpaper during the initial stage of the
abrasion process, causing three-body abrasive wear on the worn surface to plow down the
composite coating matrix and slightly raise the ceramic particle phases above the matrix.
Subsequently, the frictional contact body is generated after forming stable support between
the Ti(C, B) hard particle phase and SiC sandpaper, which results in “shielding” and
“fatigue crushing” effects on the worn surface and further contributes to the super-plastic
deformation, as mentioned above. This may be the reason for the presence of abrasive and
partially adhesive wear on the worn surface of the composite coating.

As a comparison, the wear surface of IN625 coating prepared by USLC has no
obvious ultra-refined equiaxed grains, but only deformed grains in the range of 0–180 nm
instead, as shown in Figure 11. Since there is no supporting effect of hard particle phases
in the wear surface area of the IN625 coating, the grains near the wear surface could
not be refined before being quickly ploughed away by SiC sandpaper during the wear
testing process. Therefore, only plastic deformation occurred in the superficial wear
region of the IN625 coating.



Coatings 2023, 13, 2099 12 of 16Coatings 2023, 13, x FOR PEER REVIEW 13 of 17 
 

 

 
Figure 11. DSA-TEM image of pure IN625 coating prepared by USLC after wear testing. 

The Vickers hardness of the (Ti, Nb)(C, B)/IN625 composite coating is lower than 
that of the pure IN625 coating, due to the relatively small particle size and density of B4C 
in the original mixed powder, as some losses of B4C are inevitable in the process of 
powder feeding during the USLC; this in turn produces a relatively high content of Ti in 
the mixed powder in the laser melting pool and promotes other in-situ reactions with the 
C in the composition of IN625 to generate TiC, thereby reducing the hardness of the 
IN625 substrate. In addition, it is also demonstrated from the interfacial stress distribu-
tion characteristics of the (Ti, Nb)(C, B)/IN625 composite coating in Figure 8 that the heat 
released from the Equation (1) reaction retards the rate of cooling during the USLC pro-
cess, causing a reduction of hardness. It is interesting to note that the reduction in hard-
ness of the (Ti, Nb)(C, B)/IN625 composite coating has in fact resulted in a 50% lower 
friction coefficient and 90% lower wear rate, as compared to the pure IN625 coating. 
Meanwhile, the lower friction coefficient can play the role of wear reduction and wear 
resistance for the (Ti, Nb)(C, B)/IN625 composite coating; this is mainly attributed to the 
high hardness of the in-situ synthesized (Ti, Nb)(C, B) particle phases, as well as the good 
wettability with the IN625 substrate, which makes it difficult for the (Ti, Nb)(C, B) parti-
cle phases to be detached from the substrate [35] and has as a significant wear-reducing 
and supporting effect on the IN625 substrate. 

EDS analysis and electron diffraction analysis were carried out on the precipitated 
phase in selected area #1 in Figure 10, identified as TiC-TiCB in Figure 12, with atomic 
spacings of 0.225 nm and 0.222 nm, respectively. The stabilized TiC-TiB2 composite pre-
cipitated phases described in the previous work [20] were not detected in these results, 
probably due to the fact that the extra-ordinary cooling rate of the USLC process is not 
enough to provide the thermodynamic conditions for the TiC-TiB2 phases from billet and 
nucleation to final growth. Therefore, the existence of unstable phases during the USLC 
process is inevitable [14]. According to the EDS analysis results, the composite precipi-
tated phase is Ti-rich internally and C-B-rich externally, which basically conforms to the 
evolutionary trend of generating Ti-C phases as a priority, followed by the coupling Ti-B 

Figure 11. DSA-TEM image of pure IN625 coating prepared by USLC after wear testing.

The Vickers hardness of the (Ti, Nb)(C, B)/IN625 composite coating is lower than
that of the pure IN625 coating, due to the relatively small particle size and density of
B4C in the original mixed powder, as some losses of B4C are inevitable in the process of
powder feeding during the USLC; this in turn produces a relatively high content of Ti
in the mixed powder in the laser melting pool and promotes other in-situ reactions with
the C in the composition of IN625 to generate TiC, thereby reducing the hardness of the
IN625 substrate. In addition, it is also demonstrated from the interfacial stress distribution
characteristics of the (Ti, Nb)(C, B)/IN625 composite coating in Figure 8 that the heat
released from the Equation (1) reaction retards the rate of cooling during the USLC process,
causing a reduction of hardness. It is interesting to note that the reduction in hardness
of the (Ti, Nb)(C, B)/IN625 composite coating has in fact resulted in a 50% lower friction
coefficient and 90% lower wear rate, as compared to the pure IN625 coating. Meanwhile,
the lower friction coefficient can play the role of wear reduction and wear resistance for
the (Ti, Nb)(C, B)/IN625 composite coating; this is mainly attributed to the high hardness
of the in-situ synthesized (Ti, Nb)(C, B) particle phases, as well as the good wettability
with the IN625 substrate, which makes it difficult for the (Ti, Nb)(C, B) particle phases to
be detached from the substrate [35] and has as a significant wear-reducing and supporting
effect on the IN625 substrate.

EDS analysis and electron diffraction analysis were carried out on the precipitated
phase in selected area #1 in Figure 10, identified as TiC-TiCB in Figure 12, with atomic spac-
ings of 0.225 nm and 0.222 nm, respectively. The stabilized TiC-TiB2 composite precipitated
phases described in the previous work [20] were not detected in these results, probably
due to the fact that the extra-ordinary cooling rate of the USLC process is not enough to
provide the thermodynamic conditions for the TiC-TiB2 phases from billet and nucleation
to final growth. Therefore, the existence of unstable phases during the USLC process is
inevitable [14]. According to the EDS analysis results, the composite precipitated phase
is Ti-rich internally and C-B-rich externally, which basically conforms to the evolutionary
trend of generating Ti-C phases as a priority, followed by the coupling Ti-B phase.
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Figure 12. The energy dispersive spectroscopy (EDS) analysis and electron diffraction analysis of
selected area #1 in Figure 10.

EDS analysis and electron diffraction analysis were also carried out for the needle-like
phase in selected area #2 in Figure 10 (see Figure 13). This phase presents an intergranular
distribution, and the precipitated positions are consistent with the blue-marked phases
shown in Figure 6b. It is determined by diffraction pattern analysis that this phase consists
of unstable NbMo3B4 and unstable NbMo2B2, which have a parallel phase relationship of
[001]NbMo2B2//[–403]NbMo3B4. The formation of those unstable phases is not related to the
lack of stable thermodynamic conditions mentioned above for USLC, but to the presence
of a strong boride precipitating element Nb and weak boride precipitating element Mo
in the IN625 substrate. By transient melting pool metallurgy, the residual B is combined
with Nb and Mo in a short time, and finally the unstable Nb-Mo-B composite precipitation
phases mostly formed at grain boundaries; this plays an auxiliary role in restraining plastic
deformation during the wearing process.
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5. Conclusions

In this study, a (Ti, Nb)(C, B)/IN625 composite coating was successfully cladded on
a 42CrMo steel substrate via USLC, by introducing the in-situ exothermic reaction. The
composite coating showed a good tribological performance due to the improved coating
microstructure and coating/interface diffusion zone. The main conclusions emerging from
this work are as follows:

(1) The reactive exothermic reaction of Ti with B4C during the cladding process can
slow down the cooling rate of USLC, and the reaction exotherm is sufficient to cre-
ate an interfacial remelting zone, offering the opportunity to modify the coating
microstructures and residual stress.

(2) The composite coating was mainly composed of columnar grains and in-situ phases
(mainly containing TiCB, TiC, NbMo3B4 and NbMo2B2 phases). These particle phases
and the load-transfer supporting from the IN625 matrix can offer a much improved
tribological performance as compared to the pure IN625 coating. The average friction
coefficient and average wear rate were found to be 0.1506 and 0.012 g/h, which are
about 50% and 10% that of the pure IN625 coating, respectively.

(3) The composite coating/substrate interfacial diffusion zone can be significantly in-
creased due to the improved dilution rate across the interface during the cladding
process, driven by the reactive exothermic reaction.

(4) The tensile residual stress inside the composite coating and stress gradient across
the interface can also be reduced by the in-situ exothermic reaction, as confirmed by
nanoindentation experiments on the cross-section.

6. Perspectives

In this paper, a DRS-USLC process was utilized successfully to obtain high-quality
(Ti, Nb)(C, B)/IN625 composite coatings on a 42CrMo steel substrate, showing excellent
tribological performance. This methodology provides a good practical solution to compen-
sate the fast heating/cooling rate of the USLC process via the in-situ exothermic reaction,
offering the advantages of increased coating dilution rate, expanded coating/substrate
diffusion zone, reduced residual stress inside the coating and across the interface, and
enhanced wear resistance of the coating. However, the effects of different USLC processing
parameters (laser power, rotation rate, etc.) on the width of the fusion interface, interfa-
cial stress and surface wear resistance need to be investigated in detail. In addition, the
tribological behavior of the coating may have undergone an evolution from “three-body
wear” to “two-body wear”, which needs to be further clarified. It is suggested to apply this
methodology to introduce in-situ exothermic reactions when modifying other cladding
material systems.
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