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Abstract: Nanostructured Zinc Oxide (ZnO) was deposited on silicon (c-Si) and macroporous silicon
(m-PS) using a radio frequency (RF) reactive magnetron sputtering technique. Two RF powers of
60 and 80 W were selected for ZnO deposition on the substrates. Furthermore, the c-Si and m-PS
substrate temperatures were kept at 500 and 800 ◦C, respectively. The morphological, structural,
and optical characteristics of the samples were studied using scanning electron microscopy (SEM),
an X-ray diffractometer (XRD), X-ray photoelectron spectroscopy (XPS), and photoluminescence
spectroscopy (PL). The SEM images revealed the formation of ZnO nanorods on the c-Si and ZnO
nanostructures constituted by the assembly of nanorods. It has been found that the increasing RF
sputtering power caused the rise in the residual stress. In addition, the increase in the deposition
temperature caused an improvement in the arrangement of the crystals, which was attributed to the
decrease in crystal defects.

Keywords: zinc oxide; macroporous silicon; RF sputtering; structure; morphology properties

1. Introduction

ZnO is a semiconductor material with a wide band gap of 3.37 eV and a high excitation
binding energy of 60 meV. In comparison to other semiconductor materials, ZnO has the
main characteristics of presenting piezoelectricity, thermal and chemical stability, and
high stability against environmental corrosions. It is also non-toxic, and its fabrication is
low-cost [1–3]. Such properties have made ZnO an attractive material in technological
applications, especially in light-emitting diodes [4,5], solar cells [6,7], catalysis [8–10], gas
sensors [11–13], and optoelectronic devices [14,15]. ZnO applications become even more
interesting when it is deposited on porous nanostructure substrates such as porous silicon
(PS).

Recent studies on ZnO deposited on PS via EBIC (electron-beam-induced current) have
demonstrated that ZnO/PS is an isotype heterojunction with the possibility of enhancing
charge carrier flow, which makes it possible to obtain light-emitting diodes and solar
cells [15]. Additionally, a sensor based on ZnO/PSNW (zinc oxide on porous silicon
nanowires) showed excellent gas sensing performance for various NO2 concentrations
(5–50 ppm), reaching a high electrical resistance rate of 35% for 50 ppm of NO2 [16].
Furthermore, studies revealed a pyroelectric coefficient in ZnO/PS 40 times higher than in
ZnO/c-Si and a pyroelectric voltage as high as 2.4 V [17].

Various techniques have been applied to deposit ZnO on PS, such as spray pyroly-
sis [18,19], chemical vapor deposition [20], hydrothermal [3,21], sol–gel [22], and magnetron
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sputtering [23]. There even exist computational methods to describe and understand the
formation of ZnO, such as density functional theory (DFT) and ab initio molecular dynamics
simulation (AIMD) [24,25].

In the present work, we applied the magnetron sputtering technique because is the
most used and studied for its efficiency, high interfacial adhesion, and ability to deposit
high-density films. Furthermore, magnetron sputtering allows thin films to be deposited
on different types of substrates at high temperatures with excellent uniformity and quality
crystallinity. From a practical point of view, the study of the properties of thin films at
higher temperatures makes it possible to ensure the durability and repeatability of devices
operated at high temperatures. Therefore, a material needs to exhibit good thermal stability
at operating temperatures. In general, the thermal stability of a material depends on factors
such as structural phases and the degree of crystallinity, which are correlated with the route
of synthesis [26].

When the magnetron sputtering technique is adopted, the pressure, gas type, gas flow,
temperature, and power deposition have a significant effect on the quality of the formed
films. For example, the working pressure can change the grain size and crystal structure of
deposited ZnO, allowing the films of deposited ZnO to be oriented in different crystalline
planes. Likewise, deposits made with low power density show a very smooth surface and
preferential orientation of the grains [27]. Furthermore, the increase in oxygen content in
the argon environment results in a decrease in the deposition rate of the films [27]. Husam
S. Al-Salam and M. J. Abdullah deposited ZnO on PS, maintaining an RF power deposition
of 150 W with its posterior annealing at 500 ◦C during 2 h. The results revealed a high
and deep porosity with a roughness of 178 nm [28]. K. Cicek et al. formed ZnO on PS and
silicon utilizing the RF&DC magnetron sputtering technique with a flow rate of Ar and
O2 at 120 W power. They found that a pyroelectric coefficient of 8.2 can be achieved for
deposits on PS, which is more than ~40 times higher than the one on Si substrate [17].

Although the deposition of ZnO films on PS substrates using the magnetron sputtering
technique has been carried out, there are few reports detailing the study of higher tempera-
tures and its comparison with power deposition on the properties of ZnO on PS. Under
this scenario, it is of vital importance to study the synthesis parameters for the design
and development of new devices. In this work, we have deposited ZnO on macroporous
silicon using the magnetron sputtering technique, varying the RF power and the deposition
temperature to study the effect caused by the porous substrate on the ZnO.

2. Materials and Methods

Macroporous Silicon (m-PS) substrates were fabricated on p-type crystalline Silicon
(c-Si) wafers with a thickness of about 280 µm. The typical resistivity was 5–10 Ωcm and
the planar orientation was (100). The native surface oxide on the reference wafers was
chemically etched with a hydrofluoric acid solution (HF). Later, m-PS substrates were
obtained via the electrochemical etching of c-Si, with a density current of 4 mA/cm2

for 15 min, using a mixture of hydrofluoric acid (HF, 48 wt.%) and dimetylformamide
(HCON(CH3)2, 99.9 wt.%) as an electrolyte in the volumetric ratio of 1:3. Finally, m-PS
substrates were oxidized for 30 min in the air to stabilize their surface [8–10,13]. ZnO film
deposition on m-PS was achieved through magnetron sputtering (ATC Orion 8 Cluster
Flange, Aja International, Hingham, MA, USA.) using two radio frequency (RF) powers
of 60 W (A) and 80 W (B), respectively. It is important to note that in each deposition of
ZnO, the temperature of the substrates was kept at 500 ◦C (A5/m-PS, B5/m-PS) and 800 ◦C
(A8/m-PS, B8/m-PS) for 1 h. The deposition was achieved using a 2-inch ZnO target with
99.99% purity, the base pressure of the system was 2 × 10−6 Torr, and the Ar flow was
30 sccm, to obtain a working pressure of 5 × 10−3 Torr. The ZnO films were deposited
on c-Si to obtain the reference samples: A5/c-Si, A8/c-Si, B5/c-Si, and B8/c-Si. Table 1
shows the summary of the prepared samples. The surface morphology of the fabricated
structures was characterized using a scanning electron microscope (SEM, JEOL JSM-7800F,
Tokyo, Japan). The ZnO crystal structures were studied using an X-ray diffractometer (XRD,
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ORION, D2 PHASER Bruker, Baden-Wurtemberg, Karlsrueh, Germany) using the CuKα

radiation and λ = 0.15406 nm. An X-ray photoelectron spectroscope (XPS, Thermo K-Alpha,
Waltham, MA, USA) equipped with an Al Kα monochromatic X-ray source (hv = 1486.6 eV)
in an analysis chamber at a base pressure of 10−7 mbar was used to investigate the chemical
state of the elements in the prepared ZnO. Photoluminescence studies were carried out
using a Varian fluorescence spectrometer (Cary Eclipse, Varian Inc., Palo Alto, CA, USA)
under 325 nm excitation.

Table 1. Summary of samples fabricated.

Sample Substrate Temperature (◦C) RF Power (W)

A5/c-Si

silicon
500

60
B5/c-Si 80
A8/c-Si

800
60

B8/c-Si 80

A5/m-PS

macroporous silicon
500

60
B5/m-PS 80
A8/m-PS

800
60

B8/m-PS 80

3. Results
3.1. Scanning Electronic Microscopy (SEM)

SEM micrographs were obtained to study the effects of RF power and temperature
during the deposition of ZnO on the substrates. Figure 1 shows the top-view and cross-
sectional SEM images of m-PS substrates with interconnected pores. These pores had a
diameter between 100 and 200 nm and a thickness around 200 nm.

Coatings 2023, 13, x FOR PEER REVIEW 3 of 12 
 

 

summary of the prepared samples. The surface morphology of the fabricated structures 
was characterized using a scanning electron microscope (SEM, JEOL JSM-7800F, Tokyo, 
Japan). The ZnO crystal structures were studied using an X-ray diffractometer (XRD, 
ORION, D2 PHASER Bruker, Baden-Wurtemberg, Karlsrueh, Germany) using the CuKα 
radiation and λ = 0.15406 nm. An X-ray photoelectron spectroscope (XPS, Thermo K-Al-
pha, Waltham, MA, USA) equipped with an Al Kα monochromatic x-ray source (hv = 
1486.6 eV) in an analysis chamber at a base pressure of 10−7 mbar was used to investigate 
the chemical state of the elements in the prepared ZnO. Photoluminescence studies were 
carried out using a Varian fluorescence spectrometer (Cary Eclipse, Varian Inc., Palo Alto, 
CA, USA) under 325 nm excitation. 

Table 1. Summary of samples fabricated. 

Sample Substrate Temperature (°C) RF Power (W) 
A5/c-Si 

silicon 
500 

60 
B5/c-Si 80 
A8/c-Si 

800 
60 

B8/c-Si 80 
A5/m-PS 

macroporous silicon 
500 

60 
B5/m-PS 80 
A8/m-PS 

800 
60 

B8/m-PS 80 

3. Results 
3.1. Scanning Electronic Microscopy (SEM) 

SEM micrographs were obtained to study the effects of RF power and temperature 
during the deposition of ZnO on the substrates. Figure 1 shows the top-view and cross-
sectional SEM images of m-PS substrates with interconnected pores. These pores had a 
diameter between 100 and 200 nm and a thickness around 200 nm. 

 
Figure 1. SEM image of top view (a) and cross-section (b) of bare m-PS substrates. 

Figure 2 shows SEM micrographs of ZnO deposited on c-Si and m-PS after the RF 
sputtering process. We can observe that ZnO film fully covers the m-PS substrate (Figure 
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defined structure. On the other hand, the SEM images of samples deposited at 800 °C 
(Figure 2e–h) revealed the formation of better-defined nanostructures. This could be be-
cause, with the increase in deposition temperature, coalescence is enhanced and atomic 
mobility increases, causing the formation of better-defined structures [29,30]. 

Figure 1. SEM image of top view (a) and cross-section (b) of bare m-PS substrates.

Figure 2 shows SEM micrographs of ZnO deposited on c-Si and m-PS after the
RF sputtering process. We can observe that ZnO film fully covers the m-PS substrate
(Figure 2b,d,f,h). One may also note that the ZnO samples growth at 500 ◦C (Figure 2a–d)
was characterized by continuous and dense ZnO agglomerates. These agglomerates were
distributed uniformly on the substrates, indicating that the ZnO deposit does not have
a well-defined structure. On the other hand, the SEM images of samples deposited at
800 ◦C (Figure 2e–h) revealed the formation of better-defined nanostructures. This could be
because, with the increase in deposition temperature, coalescence is enhanced and atomic
mobility increases, causing the formation of better-defined structures [29,30].
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tures constituted by the assembly of nanorods. Likewise, it can be observed that such 
nanostructures were grown over smaller nanoparticles with diameter sizes around 29 and 
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Figure 2. SEM images of ZnO deposited on c-Si (left images) and m-PS (right images) at RF power of
60 W (a,b,e,f) and 80 W (c,d,g,h) for different temperature deposition: 500 ◦C (a–d) and 800 ◦C (e–h).

Figure 2e,g indicate the formation of ZnO nanorods on the c-Si substrates. The samples
with ZnO deposited on m-PS (Figure 2f,h) revealed the formation of ZnO nanostructures
constituted by the assembly of nanorods. Likewise, it can be observed that such nanostruc-
tures were grown over smaller nanoparticles with diameter sizes around 29 and 35 nm for
the samples A8/m-PS and B8/m-PS, respectively (inside Figure 2f,h). Unlike ZnO grown
on c-Si substrates, ZnO growth on m-PS acquires enough activation energy to occupy the
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correct nuclei-sites along the porous surface; thus, grains with lower surface energy tend to
grow [31]. Additionally, with increasing RF power, Zn and O atoms do not have enough
time to diffuse to their optimal sites in the porous substrates, causing the formation of tilted
grains (Figure 2f,h) [29,30,32]. With the rise in RF power deposition from 60 to 80 W, the
growth rate rises, which results in an increase in the amount of ZnO nanostructures on the
substrates (Figure 2g,h). The tiny particles below the ZnO nanostructures could be on the
substrate surface due to the confinement effect of the nanostructured matrix of the m-PS
substrate [33].

3.2. X-ray Diffraction (XRD)

The crystal structure of our samples was investigated through X-ray diffraction spec-
troscopy (XRD). The diffractograms obtained from the ZnO/c-Si and ZnO/m-PS samples
as a function of RF sputtering deposition power (60 and 80 W) and temperature (500 and
800 ◦C) are shown in Figure 3. The characteristic peak corresponds to the reflection (002)
plane in ZnO/c-Si, indicating a single crystalline wurtzite phase with a preferential orienta-
tion towards the c-axis. The c-axis indicates that the ZnO growth is perpendicular to the
substrate surface (Figure 3a).
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On the other hand, various diffraction peaks were observed in the ZnO deposited on
m-PS (Figure 3b) around 31.87◦, 34.51◦, and 36.35◦, corresponding to the (100), (002), and
(101) planes, respectively. The above indicates that the samples with ZnO deposited on
m-PS are polycrystalline and have a hexagonal wurtzite structure (JCPDS No. 36-1451).
The ZnO (002) orientation has been attributed to the lowest surface free energy provided by
the m-PS substrates, which induces ZnO growth perpendicular to the surface [34]. At the
same, all diffractograms show a peak in the plane (200), indicating the presence of silicon
in the substrates [35].

The XRD measurements allowed us to evaluate the crystalline size (D), density dislo-
cation (δ), biaxial stress (σ), and d-spacing (d). The D of ZnO/m-PS samples was calculated
using the Debye Scherrer formula, while δ, σ, and d were calculated using the following
formulas [31,36]:

δ =
1

D2 (1)

σ = −453.6 × 109
[

c − c0

c0

]
(2)
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d =
λ

2 sin θ
(3)

where c is the lattice parameter of the strained ZnO calculated from X-ray diffraction
data, and c0 is the strain-free lattice parameter (c0 = 0.5206 nm) (JCPDS 36-1451). All the
diffraction peaks, crystallite size, and respective d-spacing values are tabulated in Table 2.
From Table 2, we can observe good agreement with the standard values. It can also show a
% d error, and it has been observed that the difference between experimental and standard
values is within the acceptable range. Table 3 shows the full width half maximum (FWHM),
D, δ, and σ obtained for the (002) orientation in the samples.

Table 2. The X-ray diffraction peaks, 2θ, d-spacing, % d error, crystal size, and average crystal size of
ZnO deposited on c-Si and m-PS.

Sample (hkl) 2θ
JCPDS

2θ Experi-
mental

d-Spacing
JCPDS

d-Spacing
Experimental

% d
Error

D
(nm)

Average
D (nm)

A5/c-Si (002) 34.4937 34.4044 2.60332 2.605 0.05 15.01 15
B5/c-Si (002) 34.4937 34.2269 2.60332 2.618 0.55 11.72 12
A8/c-Si (002) 34.4937 33.8357 2.60332 2.647 1.68 18.42 18
B8/c-Si (002) 34.4937 33.7026 2.60332 2.657 2.07 22.24 22

A5/m-PS
(002) 34.4937 34.4700 2.60332 2.600 0.14 13.76

17(101) 36.4084 36.3904 2.47592 2.467 0.36 19.32

B5/m-PS
(002) 34.4937 34.4783 2.60332 2.599 0.16 11.19

15(101) 36.4084 36.2574 2.47592 2.476 0.01 17.89

A8/m-PS
(100) 31.8384 31.8459 2.81430 2.808 0.23 33.65

33(002) 34.4937 34.3530 2.60332 2.608 0.19 36.15
(101) 36.4084 36.2755 2.47592 2.474 0.06 29.21

B8/m-PS
(100) 31.8384 31.8932 2.81430 2.804 0.38 25.04

24(002) 34.4937 34.5327 2.60332 2.595 0.31 23.63
(101) 36.4084 36.3742 2.47592 2.468 0.32 22.55

Table 3. FWHM, crystallite size, dislocation density, and biaxial stress of ZnO deposited on c-Si and
m-PS via RF magnetron sputtering.

Sample 2θ (◦) FWHM D (nm) δ (1/nm2) σ (Gpa)

A5/c-Si 34.4044 0.5544 15 0.0044 −1.2631
B5/c-Si 34.2269 0.7094 12 0.0073 −0.9764
A8/c-Si 33.8357 0.4508 18 0.0029 −1.5607
B8/c-Si 33.7026 0.3732 22 0.002 −1.8944

A5/m-PS 34.4151 0.5572 15 0.0045 −1.2561
B5/m-PS 34.3264 0.963 9 0.0134 −0.7075
A8/m-PS 34.4946 0.2054 41 0.0006 −3.486
B8/m-PS 34.5317 0.3015 28 0.0013 −2.3607

According to Table 3 (from 500 to 800 ◦C), the broadening of FWHM decreased due to
the temperature increase. This could be attributed to the fact that with the rise of tempera-
ture, atom diffusion (Zn and O) in the crystal’s arrangement increases, causing enhanced
crystallinity. Haiyan Wang et al. demonstrated via XPS and photoluminescence analysis
that the increase in annealing temperature (from 600 to 900 ◦C) provides a great force for O
atoms to diffuse into ZnO thin films. This reduces the number of oxygen vacancies/defects
and defects of Zn [37]. The enhancement in crystallinity can be corroborated with the
diminution in δ values. The dislocation density represents the irregularities and the num-
ber of crystalline defects in the crystal as oxygen and zinc interstitials [38,39]. It is also
observed that with the increased RF power deposition, the atoms receive more energy and
have more driving force. This leads to an increase in intrinsic stress, as evidenced by the
increase in residual stress on the ZnO lattice. Such intrinsic stress is due to the accumulating
effect of the crystallographic flaws during deposition (increase of δ values) [38,40]. From
Table 3, it can also be observed that residual stress decreases for samples A5/c-Si and
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B8/c-Si. This may be due to the mechanical instability of ZnO nanorods. M. Riaz et al.
reported the relationship between the pore diameter of nanorods and residual stress [41].
They found that with the increase in pore diameter, the residual stress tends to increase.
The above is reflected in the shift of the angle towards higher angles.

3.3. X-ray Photoelectron Spectroscopy (XPS)

The oxidation state of ZnO on c-Si and m-PS via RF sputtered at different temperatures
and deposition powers was investigated using XPS (Figure 4). Figure 4a,b show the
characteristics peaks assigned to zinc (Zn), oxygen (O), and carbon (C). Figure 4c,d show
high-resolution spectra of the Zn 2p region for the samples. It can be observed that the
Zn2p3/2 core levels are located at around 1022.00 and 1022.05 eV for ZnO deposited on c-Si
and m-PS, respectively, while the Zn2p1/2 core levels are located at around 1045.13 and
1045.05 eV for ZnO deposited on c-Si and m-PS, respectively. The core level from Zn2p3/2
has been assigned to the Zn2+ ions in the ZnO thin films [42]. It can be seen that the position
of the peaks differs slightly; this is probably because of the different surface morphologies
of the deposited ZnO [43].
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The high-resolution spectra and deconvolution of the O1s peak were obtained to
further study the binding state of Zn and O. The deconvolution of the XPS peaks was
performed using Fityk software (1.3.1 version). Figure 5 shows the O1s scan spectra of
ZnO deposited on c-Si and m-PS at different temperatures and power depositions. Three
peaks were observed around 527.62 eV (1), 530.54 eV (2), and 533.34 eV (3). The peak (1) is
characteristic of the metal oxides [44]. The peak (2), at a low binding energy, is associated
with O2- ions in the deficient regions within the ZnO array [45]. It can also be associated
with hydrated oxides that could have been incorporated from the deposition chamber or
the presence of weakly bound oxygen on the surface of the films [45]. Weijia Yang et al.
attributed binding energy of around 530.75 eV to oxygen defects/vacancies. The central
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level of peak (2) shows asymmetry, indicating the presence of various forms of oxygen
bonds in the near-surface region of ZnO [46]. The intensity is associated with the number
of oxygen vacancies [42,47]. The peak (3) is associated with hydroxyl groups (–OH), O2, or
C–O bonds of chemisorbed or adsorbed species on the sample surface [43,47,48]. Previously,
it has been reported that intrinsic defects, such as zinc interstitial atoms (Zni) and oxygen
vacancies (VO), are electrically active and can induce localized states near the conduction
band. These species can act as donors [48].
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3.4. Photoluminescence (PL)

Photoluminescence (PL) is a very sensitive characterization technique that helps to
identify the crystallinity and defects present in ZnO. The spectra and bandgap transition
schematic of the ZnO/m-PS samples are shown in Figure 6. ZnO PL emission spectra are
composed of the near-band-edge (NBE) in the UV region, which is considered a character-
istic emission of ZnO [49], and the deep-level-emission region (DL) in the visible region,
which is universally associated with native defects in ZnO. The emission peak at ~360 nm
is primarily related to the free exciton transition in the NBE. In contrast, the multiple jumps
from DL emission are attributed to the photogenerated hole recombination on the ZnO
structural defects [50,51]. On the other hand, violet emission in the 388–440 nm range is
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mainly referred to by the Zn interstitials found in the space charge region near the sur-
face [52–54]. Furthermore, blue-green emission placed at 520 nm is commonly associated
with the oxygen vacancies (VZn) [53,55,56], and 545 nm emission is attributed to the oxygen
vacancies (Vo) [50,54]. Yellow emission in 595 nm and orange in 643–648 nm are related to
oxygen anti-sites [54,57]. Finally, red emission at 720–724 nm is due to (Vo) [58,59].
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As is shown in the previous figure, there is no shift in the peak position during RF
power and temperature variation. However, a significant change in peak emission intensity
is observed. The peak intensity is reduced as the deposition temperature increases. This
phenomenon may indicate that there is a Zn and O defect decrease on the m-PS substrate,
as can be noted in Table 3. In a similar way, the peak emission is affected inversely by the
RF power. An increment in the RF power causes a reduction in the peak emission intensity,
which is attributed to the crystallinity reduction in the samples, as indicated in the XRD
results [51,59].

4. Conclusions

ZnO was successfully deposited over c-Si and m-PS using the reactive RF magnetron
sputtering method. The formation of ZnO nanorods on the c-Si and ZnO nanostructures
constituted by nanorod assembly on m-PS was revealed. Increased RF energy deposition
results in an increase in ZnO nanostructures on the substrates and a rise in residual stress.
All the ZnO nanostructures show evident (002)-preferred orientation, corresponding to the
wurtzite structure. On the other hand, the increase in deposition temperature caused an
improvement in the arrangement of the crystals, which was attributed to the decrease in
crystal defects. XPS and PL results confirm the presence of ZnO structural defects, which
can conduce the fabrication of sensors and gas devices.
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