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Abstract: In order to clarify the difference in corrosion performance between low Cr-containing
(3Cr, 5Cr, and 9Cr) tubing material and carbon steel N80 in the Carbon dioxide (CO2) flooding
injection and production environment and the range of adaptation, corrosion tests and analysis were
carried out in simulated working conditions. In this paper, the electrochemical potentiodynamic
testing technology and the weight loss method were used to comparatively analyze the corrosion
performance and variation law of three types of tubing materials with different Cr contents in a
simulated CO2 flooding-produced water environment under different partial pressure conditions.
Additionally, scanning electron microscopy and Energy Dispersive Spectrometer (EDS) analysis were
conducted to examine the surface corrosion morphology characteristics and elemental composition
of material films under various conditions. The results indicate that the open circuit potentials of
3Cr, 5Cr, and carbon steel N80 were similar under the same experimental conditions. However, the
open circuit potentials of 9Cr were relatively high and there was an obvious passivation zone in
anodic polarization. Nevertheless, compared to that of 13Cr, the passivation state was unstable, and
pitting corrosion continued to expand once it formed. This demonstrates that the corrosion resistance
of the material can be effectively enhanced and a stable passivation state can be achieved in the
anodic polarization region when the Cr content of the material reaches at least 13%. The service life
of materials can be predicted based on their corrosion rate under high temperature and pressure
simulation environments. We found that 9Cr materials exhibited good adaptability while 3Cr and
5Cr materials showed poor adaptability. Therefore, it was not recommended to use 3Cr and 5Cr
materials. Therefore, 3Cr, 5Cr, and N80 materials will be used at lower partial pressure levels of
CO2 (<0.2 MPa).

Keywords: carbon dioxide flooding; electrochemistry; corrosion rate; low Cr-containing tubing

1. Introduction

Corrosion has always been the focus of oil and gas field exploration, development, and
deep exploitation. Every year, serious accidents, environmental pollution, and casualties
caused by the corrosion failure of oil casing pipes result in significant economic losses and
have a negative impact on the country [1,2]. Especially in recent years, with the proposed
national “dual carbon” emission reduction target, carbon dioxide capture, utilization, and
storage (CCUS), as a new technology with significant potential for large-scale emission
reduction, has been increasingly applied and popularized to varying degrees in major
oilfields [3–5]. However, many problems such as pipe corrosion and fracture failure, which
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affect the efficiency of CO2 flooding, pose major obstacles to promoting the widespread
adoption of this technology. Therefore, proposing efficient corrosion prevention and control
technology and successfully applying it in oilfields is one of the key means to slow down
pipe corrosion [6,7]. Currently, various anticorrosion measures are used in oilfields, in-
cluding anticorrosion materials, coatings, corrosion inhibitors, etc. [8–11]. Considering the
economic cost, it is expected to explore an anticorrosion method that can meet the produc-
tion cycle and have a cost-effective investment in CO2 environments for oilfields [12–16].
Therefore, it is recommended to use relatively economical pipes with certain corrosion
resistance in oilfields, such as different low-alloy pipes with varying Cr contents (3Cr, 5Cr,
9Cr, etc.) [17–20]. However, due to the complexity of the oil and gas field environment,
especially the coupling effect of corrosion factors such as the harshness of the fluid in a
CO2 flooding injection–production environment and variations in CO2 concentration in
associated gas, there are many controversies and uncertainties regarding the adaptability of
these materials in an oilfield environment. Meng et al. [21] studied the corrosion behavior of
3Cr steel under the condition of oil–water two-phase laminar flow, and the results showed
that the corrosion rate of the material reached 3.56 mm/a in the single-water-phase environ-
ment of the oilfield and the corrosion rate was 1.6 mm/a in the water phase containing oil.
Gu Lin et al. [22] studied the corrosion behavior of 3Cr pipes in production wells containing
oxygen flooding, and the results showed that when O2 (3%) and CO2 (4.01%) coexisted in
production wells, O2 played a significant catalytic role in CO2 corrosion. With an increase in
oxygen content, the corrosion rate of pipes increased sharply, and the corrosion rate of 3Cr
was much higher than that of an extremely severe corrosion grade. Zhao Guoxian et al. [23]
studied the high temperature and high pressure corrosion characteristics of 5Cr casing steel
under different CO2 partial pressures and showed that the depth and diameter of pitting
pits on the surface did not change significantly with the change in CO2 partial pressure
from low to high under a high temperature and high pressure corrosion environment while
the pitting rate showed a gradually decreasing trend. Zhang Siqi et al. [24] studied the
corrosion performance of 3Cr steel under a coexisting CO2/H2S environment and showed
that the corrosion resistance of 3Cr steel under a coexisting environment is relatively better
than that under a CO2 environment. Ji Nan et al. [25] analyzed the corrosion causes of 3Cr
steel tubing in a gas injection well and showed that the inner and outer walls of 3Cr steel
tubing were mainly corroded by dissolved oxygen, resulting in a mismatch between the
properties of tubing materials and the actual service corrosion environment. Xia Wenbin
et al. [26] analyzed the reasons for the cracking of a L80-3Cr corrosion-resistant oil well
pipe end and showed that a brittle bainite structure was produced in the process of pipe
making, resulting in poor cracking resistance in the material. The research results of these
studies have no reference significance in a CO2 flooding injection–production environment.
This paper mainly analyzes the adaptability of three kinds of low-Cr oil pipe materials
in a CO2 flooding injection–production environment in order to provide a reliable data
basis for oilfield material selection. So, based on the injection–production environment
of CO2 flooding in XX Oilfield, the corrosion performance and adaptability of three types
of tubing materials with different Cr contents are evaluated and analyzed in this paper.
The study explored the differences in and adaptability range of corrosion performance for
Cr-containing materials in the produced water environment and various corrosion systems
in XX Oilfield. It also clarified whether these three types of Cr-containing materials meet
the practical application requirements, providing a positive scientific basis and technical
support for the optimal selection of downhole tubing strings in the injection–production
environment of CO2 flooding in XX Oilfield.

2. Experimental Procedures
2.1. Test Material

The test material is a commercial tubing material used in the oilfield, and its chemical
composition (mass fraction) is shown in Table 1. The metallographic structure of the tubing
material, mainly consisting of martensitic structure, is depicted in Figure 1.
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Table 1. Chemical composition of material for test (wt%).

Element C Si S P Mn Cr Ni Mo V Cu Ti

3Cr 0.25 0.25 0.002 0.009 0.48 2.91 0.065 0.076 0.012 0.024 0.003

5Cr 0.091 0.20 0.002 0.009 0.36 4.90 0.045 0.09 0.021 0.053 0.002

9Cr 0.12 0.31 0.005 0.014 0.36 9.01 0.066 1.00 0.017 0.0098 0.0001

N80 0.25 0.36 0.005 0.010 1.41 0.21 0.016 0.004 / 0.015 /

Figure 1. Metallographic structure analysis of three kinds of Cr-containing materials.

2.2. Experimental Methods
2.2.1. Electrochemical Test

Potentiodynamic polarization curves were measured using the M273 potentiostat
produced by American PerkinElmer Company and its 352 SoftCorr III software test system.
A three-electrode system was adopted, with the sample serving as the working electrode.
The silver chloride electrode (Ag-AgCl) was used as the reference electrode while a graphite
rod was used as an auxiliary electrode. The scanning rate of the moving electrode was set
at 0.3 mV/s. During the test, the working electrode was a square sample with an area of
1 cm2. The other side was welded with copper wire, and all non-working faces were coated
with epoxy resin. The working face of the sample was polished using 600#–1000# SiC
water-based sandpaper, washed with distilled water after oil removal using acetone, and
dried for later use. The simulation test parameters were carried out according to the most
harsh environment of the XX Oilfield, and the test solution medium was prepared in the
laboratory according to the ion concentration provided by the oilfield (refer to Table 2 for
details of each ion concentration). The test temperature was set at 80 ◦C, which simulates
harsh conditions in wellbores. Additionally, CO2 gas with a concentration ≥ 99.99% was
used as the corrosive agent during testing.

Table 2. Ion concentration of solution medium in laboratory simulation test (mg/L).

Name BaCl2 Na2SO4 NaHCO3 CaCl2 NaCl

Concentration 1976.4 167.56 157.92 848.0 23882.0

2.2.2. High Temperature and High Pressure Immersion Test

The High Temperature and High Pressure (HTHP) autoclave was used to simulate the
formation water environment produced in the oilfield, and we compared and analyzed the
corrosion performance and pitting corrosion sensitivity of three low Cr tubing materials.
The sample size was 40 mm × 10 mm × 3 mm, and the test solution was prepared according
to Table 2. Prior to testing, nitrogen was introduced into the solution for at least two hours to
deoxidize it. After installing the sample, nitrogen deoxidization continued for an additional
thirty minutes. Then, CO2 gas with varying partial pressures was introduced based on
the test conditions and heated to the required temperature before timing began. The test
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period lasted for 168 h. Following testing, any residual corrosive medium on the surface of
the sample was washed away using distilled water. Then, after drying off any remaining
water from its surface, corrosion product film removal took place followed by weighing
of weight loss via FR2300MK electronic balance in order to calculate average corrosion
rate of said sample. Finally, VE-GA II scanning electron microscope (SEM) observation
occurred regarding surface corrosion morphology while analytically pure chemical reagents
and gases were used throughout. The schematic diagram of the high-temperature and
high-pressure soaking test device is shown in Figure 2.
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Figure 2. Diagram of high-temperature and high-pressure soaking test device.

3. Results and Discussion
3.1. Electrochemical Corrosion Behavior of Materials

Figure 3 illustrates the open circuit potential curves of 3Cr, 5Cr, and 9Cr materials
in saturated CO2 solution medium. Comparing the open circuit potentials of the three
materials (E3Cr = −671 mV, E5Cr = −675 mV, and E9Cr = −627.5 Mv), it can be seen that
under the same test conditions, the open circuit potentials of 3Cr and 5Cr materials are
basically similar. However, the open circuit potential of the 9Cr material is relatively higher
by approximately ∆E = 43 mV compared to the first two materials. This indicates that the
corrosion activity of the 9Cr material is comparatively weaker in this particular solution
medium. The increase in Cr content is helpful for the formation of a Cr(OH)3 passivation
film on the surface [27,28], and 9Cr material has relatively good stability and corrosion
resistance compared to the other two materials containing low Cr. The open circuit potential
when using carbon steel N80 as the contrast material is EN80 = −683 mV, which is close to
the potential of the first two Cr-containing materials.
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Figure 4 illustrates the polarization curves of 3Cr, 5Cr, and 9 Cr materials at different
CO2 concentrations and 80 ◦C, including a 50% CO2 aqueous solution (Condition 1) and a
saturated CO2 aqueous solution (Condition 2). It can be observed from the polarization
curve in Figure 4 that the self-corrosion potential of the material containing 9% chromium
is relatively high under both concentrations of CO2, indicating a weak thermodynamic
tendency for corrosion in the test environment [29]. At the same time, the anode curve
has obvious passivation zone, and the passivation current density remains unchanged
or decreases, which shows that it is easy for the surface of the material to be deactivated
and the film hinders the further corrosion of the material. However, when the anodic
polarization potential increases continuously and reaches the pitting corrosion explosion
potential, the passivation film breaks down, resulting in a sudden increase in corrosion
current density (Icorr) and subsequent pitting corrosion. Comparing the polarization curves
and curve indicators of three Cr-containing materials under Condition 2 (Table 3), it can
be seen that the self-corrosion potential of the materials under Condition 2 has a slight
upward trend, which indicates that the surface passivation film is easy to form under this
environment, so that the thermodynamic kinetic energy of the materials increases, thus
weakening the corrosion trend. At the same time, the curve slightly shifts to the right
and the corrosion current density increases relatively. From the dynamic analysis, once
corrosion occurs, the corrosion rate is relatively large, and the self-corrosion potentials of
3Cr and 5Cr materials in the two CO2 environments are similar to those of N80, which
indicates that the corrosion resistance of these two materials containing low Cr is similar
to that of carbon steel N80. Compared with the chemical compositions of the materials,
the Cr content only increases by 2%–4%, not enough to obviously improve the corrosion
resistance of the materials in this simulated test environment.
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Table 3. Electrochemical performance indicators of materials in different conditions.

Material
N80 3Cr 5Cr 9Cr N80 3Cr 5Cr 9Cr

Ecorr Icorr

Condition 1 / −680 −683 −630 / 2.47 × 10−6 2.68 × 10−6 1.56 × 10−6

Condition 2 −678 −661 −667 −625 5.32 × 10−6 1.04 × 10−5 1.59 × 10−6 4.05 × 10−6

Figure 5 shows the cyclic anodic polarization curve of Cr-containing materials in a
simulated oilfield environment in which 13Cr, with a relatively high Cr content, is used as
the contrast material. The cyclic polarization curve can judge the local corrosion tendency
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of materials by encapsulating the hysteresis envelope area. It can be seen from the test
results that there is an intersection point ϕrp (protection potential) between the forward and
reverse polarization curves of 13Cr, and there is a stable passivation zone below ϕrp, where
the pitting corrosion formed will stop developing and turn into a passivation state. It can
be seen from the cyclic anodic polarization curve of the 9Cr material that the intersection
point of the forward and reverse polarization curves is not in the anodic passivation zone
(red circle), which indicates that although the surface passivation occurs, the passivation
state is unstable, and the initial pitting corrosion continues to expand, indicating that the
pitting corrosion sensitivity is high [30,31]. Under the same conditions, 3Cr and 5Cr have
no passivation behavior. From a comparison of the cyclic anodic polarization curves of
four Cr-containing materials, it can be seen that when the content of Cr is at least 13%, it is
easy for a stable passivation zone to form on the surfaces of the materials and the pitting
corrosion has a self-repairing effect to slow down the further expansion of local corrosion.
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3.2. Effect of CO2 Partial Pressure on Corrosion Performance of Materials

The high temperature autoclave was used to simulate CO2 flooding-produced water in
an oilfield and different CO2 partial pressure environments, and the corrosion performance
and adaptability of three kinds of Cr-containing materials under service conditions were
compared and analyzed. The simulation test conditions are shown in Table 4. After each
test, the sample was taken out, the residual corrosive medium on the surface was washed
away with distilled water, and it was dehydrated and dried with absolute alcohol. After
the test, the macroscopic and microscopic corrosion morphology were observed, and then,
the average corrosion rate of the samples was calculated by using the weight loss method.

Table 4. Condition parameters of HTHP simulation test.

Test Conditions CO2 Partial
Pressure (MPa)

Temperature
(°C) Material Medium Test Period (h)

Condition 1 0.2

80

3Cr
Simulated

formation water
(See Table 2)

168Condition 2 0.5 5Cr

Condition 3 0.8 9Cr

Condition 4 1 N80

Figure 6 shows the average corrosion rates of the materials under different test con-
ditions, obtained by using the weight loss method after the high temperature and high
pressure simulation test. It can be seen that the average corrosion rates of different Cr-
containing materials are obviously different. With the gradual increase in CO2 partial
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pressure, the average corrosion rates of the three materials all increase by different degrees.
Among them, the corrosion rates of 9Cr materials are relatively the smallest under different
CO2 partial pressures, and when PCO2 is less than 1MPa, the average corrosion rates of 9Cr
materials do not increase obviously and the corrosion that occurs is mild corrosion. While
PCO2 = 1 MPa, the corrosion is moderate corrosion; however, the average corrosion rates of
3Cr and 5Cr materials increase obviously, and both reach the extremely serious corrosion
degree [32]. At the same time, it can be seen that the corrosion degree of carbon steel N80
is almost the same as that of 3Cr and 5Cr under the same test conditions, which shows
that the corrosion resistance of 3Cr and 5Cr materials is not obviously different from that
of carbon steel N80 under the simulated test conditions. Thus, the corrosion resistance of
materials cannot be effectively improved when the contents of alloying element Cr are 3%
and 5%.
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Figure 7 shows the micro-corrosion morphology of different Cr-containing materials
under the environment of the high temperature and high pressure simulation test Condition
1 in which the surfaces of 3Cr and 5Cr materials are obviously corroded and the corrosion
product films are rough with local shedding and discontinuous, indicating that the adhesion
of the product films is poor [33,34]. The surface of the 9Cr material is flat without obvious
corrosion products, which indicates that the corrosion resistance of the 9Cr material is
relatively good under the condition of relatively low CO2 partial pressure.
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Figure 8 shows the micro-corrosion morphology of different Cr-containing materials
under the high temperature and high pressure Condition 2. The comparison shows that the
corrosion product films on the surfaces of 3Cr and 5Cr materials are cracked, indicating that
each product film has a certain thickness and that the internal stress in the process of water
loss causes the film to crack so that it is easy for the solution medium to penetrate into the
substrate through the gap and cause further corrosion in the deep layer. The surface of
the 9Cr material is flat without an obvious local corrosion phenomenon under the same
observation multiple, which shows that the surface film is relatively thin and the internal
stress is too small during the dehydration process to cause film cracking.
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Figure 8. Microscopic corrosion morphology of different materials under the condition PCO2 = 0.5 MPa.

When increasing the CO2 partial pressure, the microscopic corrosion morphologies
of the materials under the simulated Conditions 3 and 4 are basically similar. As shown
in Figure 9, the cracking degree of the film on the surfaces of 3Cr and 5Cr materials is
increased compared with that on the surfaces of 3Cr and 5Cr materials, which shows that
the increase in CO2 partial pressure promotes the corrosion aggravation of the materials
and the thickening of the film. In addition, two layers of cracked corrosion film can also be
seen in the local shedding area (as shown in Figure 10), indicating that as long as there is a
crack in the film and the matrix is exposed, the corrosive solution medium will penetrate
into the surface of the substrate and rapidly react with the matrix material, resulting in the
further corrosion of the material. Therefore, the density of the corrosion product film and
the good adhesion with the surface of the material have a great influence on the corrosion
resistance of the material. In comparison, the surface film of the 9Cr material is uniform
and smooth, and there is no obvious local corrosion.
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Figure 10. Microscopic corrosion morphology of local shedding area under the condition PCO2 = 1 MPa.

The EDS energy spectrum of the corrosion product film under different test condi-
tions was quantitatively measured by using an energy spectrometer and the local film
shedding area and Cr element enrichment on the surfaces were comparatively analyzed.
The schematic diagram of EDS energy spectrum detection points is shown in Figure 11,
and the test results of the element compositions of the corrosion product film under dif-
ferent conditions are shown in Table 5. It can be seen that the element compositions of
the corrosion product film are basically similar; it is mainly composed of the Cr, O, and
Fe elements. The corrosion products can be inferred as Cr(OH)3, FeCO3, and Cr2O3 [35].
Comparing the Cr content in the product films in Table 5, it can be seen that the Cr content
in the corrosion films of 3Cr and 5Cr materials is at least three times that in the substrate.
With an increase in the CO2 partial pressure, the Cr content in the product films is as high
as six times that of the substrate, indicating an aggravation of the corrosion degree and a
strengthened Cr enrichment in the corrosion product films. However, the Cr content in the
product film of the 9Cr material is about 1.5 times that of the substrate, which indicates that
the product film is relatively thin. Therefore, combined with the comprehensive analysis of
the corrosion rate, corrosion morphology, and Cr enrichment content in the product film,
although Cr is the alloy element, it is comprehensively analyzed that the Cr enrichment on
the surfaces of 3Cr and 5Cr materials is higher and the corrosion film is thicker. However,
the cracking and shedding of the film do not hinder or alleviate the further corrosion of the
materials. The relative enrichment ratio of the 9Cr product film is relatively low, and the
corrosion product film is relatively thin, but the film is flat and compact, which alleviates
the further corrosion of the material. Thus, the material has relatively good corrosion
resistance. It can be seen from the energy spectrum of the shedding area of the product film
that it is mainly composed of the Cr, O, and Fe elements. Hence, the bare surface of the
sample is corroded again to form a secondary product film.
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Table 5. EDS results of different corrosion areas on sample surfaces.

CO2 Partial
Pressure

Element
3Cr 5Cr 9Cr

Product Film Shedding Area Product Film Shedding Area Product Film

0.2 MPa

O K 53.25 18.44 56.97 27.85 32.74

Cr K 11.9 3.77 19.73 6.99 10.68

Fe K 31.83 77.79 19.83 65.16 54.67

0.5 MPa

O K 67.23 52.68 58.12 / 45.67

Cr K 20.78 23.66 32.09 / 15.16

Fe K 5.52 17.52 3.88 / 36.38

1 MPa

O K 69.52 61.38 71.31 37.96 46.69

Cr K 19.17 23.69 21.38 6.91 15.22

Fe K 5.21 7.28 3.17 55.13 35.92

3.3. Effect of Corrosion Rate on Service Life of Materials

To a great extent, the operating state of an in-service tubing string is evaluated via
residual strength. So, the limit state is reached when the residual strength of the tubing
string decays to a certain extent as a result of corrosion defects or damage. Thus, its residual
life also reaches the limit value. In this paper, the internal yield pressure that the material
can bear after corrosion thinning damage is calculated, or whether the corrosion allowance
needed to meet the internal pressure meets the requirements of the design life is judged,
based on the average corrosion rate of the above indoor simulation test and referring to the
calculation method of the internal yield pressure of the material pipe in standard of SY/T
6328-1997. The calculation results are shown in Table 6. The service design conditions of
the field tubing string are as follows: (a) The design service life of the injection–production
well tubing string is 10 years. (b) Tubing specification: Φ 88.9 × 6.45 mm. (c) The maximum
safe internal pressure of the tubing string during operation shall be taken as the reference
according to 60 MPa (pressure balance is not considered). The pressure calculation formula
is shown in Formula (1):

P = 0.875 × ((2Yp × t)/D) (1)

P—minimum internal yield pressure, Yp—specified minimum yield strength of material,
t—engineering wall thickness, D—nominal outer diameter.

Table 6. Service life, calculated from corrosion rate.

Material 9Cr 5Cr 3Cr N80

Average corrosion rate (mm/a) 0.01–0.039 0.72–1.58 0.64–2.47 0.67–2.36

Calculated corrosion margin (mm)
with reference to pressure

requirements
/ 0.93 0.93 0.93

Service life (a) 23.8 1.29–0.58 1.45–0.38 1.38–0.39

According to the corrosion rate in Figure 5 and the analysis in Table 6, it can be seen
that when the average corrosion rates of 5Cr and 3Cr tubing materials reach the serious
level under different CO2 partial pressures in a simulation test environment within the
range of PCO2 ≤ 1 MPa, their service residual life cannot meet the design service life
of the tubing string. In particular, when PCO2 = 1 MPa, the service life of two kinds of
Cr-containing tubing materials is less than 1 year. However, the 9Cr material meets the
design life requirements according to its corrosion rate calculation. So, the 9Cr material
has high adaptability under this test environment while 5Cr and 3Cr have relatively
poor adaptability.
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4. Conclusions

1. Under the simulated XX Oilfield formation water environment, the open circuit poten-
tials of the three Cr-containing materials were 9Cr > 5Cr = 3Cr; the anodic polarization
of the 9Cr material showed an obvious passivation zone, but the passivation state was
unstable. Once the pitting corrosion was formed, it expanded continuously, and the
pitting corrosion sensitivity was relatively high. The anodic polarization curves of
5Cr and 3Cr materials have no obvious passivation phenomenon.

2. Under the condition of simulating the high temperature and high pressure formation
water environment and PCO2 changing in the range of 0.2–1 MPa, the 9Cr material has
a moderate or lower corrosion degree and relatively good corrosion resistance. The
corrosion degrees of 5Cr and 3Cr materials were similar, and both of the two materials
have extremely serious corrosion, without an obvious corrosion resistance advantage
when compared with carbon steel N80.

3. We found that the 9Cr material has good adaptability and meets the design service
life of 10 years under the simulation test environment while the 5Cr and 3Cr tubing
materials have poor adaptability. Therefore, it is not recommended to use 5Cr and
3Cr tubing materials without anticorrosion measures. We predict that 3Cr, 5Cr, and
N80 materials will be used at lower partial pressures of CO2 (<0.2 MPa).
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